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The simplest equationmethod presents wide applicability to the handling of nonlinear wave equations. In this paper, we focus on the
exact solution of a newnonlinearKdV-likewave equation bymeans of the simplest equationmethod, themodified simplest equation
method and, the extended simplest equation method. The KdV-like wave equation was derived for solitary waves propagating on
an interface (liquid-air) with wave motion induced by a harmonic forcing which is more appropriate for the study of thin filmmass
transfer. Thus finding the exact solutions of this equation is of great importance and interest. By these three methods, many new
exact solutions of this equation are obtained.

1. Introduction

Nonlinear phenomena play a crucial role in applied math-
ematics and physics. Calculating exact and numerical solu-
tions, in particular the traveling wave solutions of nonlinear
equations inmathematical physics, plays an important role in
soliton theory. In the recent years, much effort has been spent
on this task and many significant methods have been estab-
lished such as inverse scattering transform [1], Bäcklund and
Darboux transform [2], Hirota method [3], homogeneous
balance method [4], Jacobi elliptic function method [5],
tanh-function method [6], Exp-function method [7], 𝐺󸀠/𝐺-
expansion method [8, 9], the method for construction of
meromorphic solutions [10, 11], variational iteration method
[12–14], and He’s homotopy perturbation method [15–19].

Partially, the simplest equation method is a very pow-
erful mathematical technique to seek more new solutions
of NLEEs that can be expressed as polynomial in an ele-
mentary function which satisfies a subequation like Riccati
equation, auxiliary ordinary equation, elliptic equation, and
generalized Riccati equation. It has been developed by Fan
[20] and Kudryashov [21] and the method optimizes the use
of the auxiliary equation and effectively avoids producing
some duplication solutions. There are many applications and
generalizations of the method [22–25].

Recently, Bilige introduced a method called the extended
simplest equation method as an extension of the simplest
equation method, to look for the exact traveling wave
solutions of nonlinear evolution equations (NLEEs) [26, 27].
In this method, a second order linear ordinary differential
equation (ODE) is taken as the auxiliary equation. This
method can construct different forms of exact traveling
wave solutions which cannot be obtained by using the
tanh-function method, 𝐹-expansion method, and the Exp-
function method.

The nonlinear shallow water surface waves satisfy the
Korteweg-de Vries (KdV) equation:
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This equation is only valid for long waves. Solitary waves in
film flows were studied by [18, 19]. These flows also show a
transition to turbulence. This process is better understood, if
the dynamics of nonlinear waves are traceable.

In [28] Rees and Zimmerman derived a new nonlinear
KdV-like evolution equation for surface solitary waves prop-
agating on a liquid-air interface where the wave motion is
induced by harmonic forcing:
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The nonlinearity term 𝑤𝑤
𝑥
in (1) does not appear in (2),

and the reconstruction of this term from (𝑤
2

𝑥
− 𝑤𝑤

𝑥𝑥
) is

not possible by order approximation equivalences; also the
nonlinearity term in (2) is more steep.

It was observed by Sohail et al. [29] that wave data
obtained from an online measurement technique satisfies
this evolution equation, when the wave length is just a few
multiples of the fluid depth. In [30], the integrability of this
new nonlinear partial differential equation was discussed
with a focus on the Painlevé property, the compatibility
condition, and the Bäcklund transformation.

The exact traveling wave solutions of (2) are not reported
in related references. We have tried many other algebraic
methods to seek exact solutions of (2). However, we find that
they are either not efficient or invalid. In this work, we apply
the simplest equation method, the modified simplest equa-
tion method, and the extended simplest equation method for
obtaining exact traveling solutions of (2). From the results we
see that these methods are more effective.

The organization of the paper is as follows. In Section 2,
a brief description of three simplest equation methods for
finding traveling wave solutions of nonlinear equations is
given. In Section 3, wewill study (2) by thesemethods. Finally
conclusions are given in Section 4.

2. Description of the Simplest
Equation Methods

2.1. The Simplest Equation Method

Step 1. Consider a general nonlinear PDE in the form

𝐹 (𝑢, 𝑢
𝑥
, 𝑢
𝑡
, 𝑢
𝑥𝑥
, 𝑢
𝑥𝑡
, . . .) = 0. (3)

Using 𝑢(𝑥, 𝑡) = 𝜙(𝜉), 𝜉 = 𝛼𝑥 + 𝛽𝑡, we can rewrite (6) as the
following nonlinear ODE:

𝐹 (𝜙, 𝜙
󸀠
, 𝜙
󸀠󸀠
, . . .) = 0, (4)

where the prime denotes differentiation with respect to 𝜉.

Step 2. Suppose that the solution of ODE (4) can be written
as follows:

𝜙 (𝜉) =

𝑛

∑

𝑖=1

𝐴
𝑖
𝑓
𝑖

(𝜉) , (5)

where 𝑓(𝜉) are the functions that satisfy some ordinary dif-
ferential equations.The simplest equation has two properties:
first it is of lesser order than (4) and second we know the
general solution of the simplest equation. 𝑛 is a positive
integer that can be determined by balancing procedure, and
𝐴
𝑖
(𝑖 = 0, 1, 2, . . .) are parameters to be determined.
In this paper, we will use as simplest equation the

equations of Bernoulli and Riccati which are well known
nonlinear ordinary differential equations and their solutions
can be expressed by elementary functions.

For the Bernoulli equation

𝑓
󸀠

(𝜉) = 𝑎𝑓 (𝜉) + 𝑏𝑓
2

(𝜉) , (6)

equation (6) admits the following exact solutions:

𝑓 (𝜉) =
𝑎 exp (𝑎 (𝜉 + 𝜉

0
))

1 − 𝑏 exp (𝑎 (𝜉 + 𝜉
0
))

(7)

for the case 𝑎 > 0, 𝑏 < 0 and

𝑓 (𝜉) = −
𝑎 exp (𝑎 (𝜉 + 𝜉

0
))

1 + 𝑏 exp (𝑎 (𝜉 + 𝜉
0
))

(8)

for the case 𝑎 < 0, 𝑏 > 0, where 𝜉
0
is a constant.

For the Riccati equation

𝑓
󸀠

(𝜉) = 𝑎𝑓
2

(𝜉) + 𝑏. (9)

Equation (9) admits the following exact solutions:

𝑓 (𝜉) = −
√−𝑎𝑏

𝑎
tanh(√−𝑎𝑏𝜉 −

𝜀 ln 𝜉
0

2
) , 𝜀 = ±1, (10)

when 𝑎𝑏 < 0 and

𝑓 (𝜉) =
√𝑎𝑏

𝑎
tan (√𝑎𝑏𝜉 + 𝜉

0
) (11)

when 𝑎𝑏 > 0, where 𝜉
0
is a constant.

Step 3. Substituting (5) along with (6) (or (9)) into (4), then
the left-hand side of (4) is converted into a polynomial in
𝑓(𝜉); equating each coefficient of the polynomial to zero
yields a set of algebraic equations for 𝐴

𝑖
, 𝑎, 𝑏.

Step 4. Solving the algebraic equations obtained in Step 3 and
substituting the results into (5), we obtain the exact traveling
wave solutions for (3).

2.2. TheModified Simplest Equation Method. In the modified
version, one makes an ansatz for the solution 𝜙(𝜉) as

𝜙 (𝜉) =

𝑛

∑

𝑖=0

𝐴
𝑖
(
𝜑
󸀠

𝜑
)

𝑖

, (12)

where 𝐴
𝑖
(𝑖 = 0, 1, 2, . . . , 𝑛) are arbitrary constants to be

determined, such that 𝑎
𝑛
̸= 0 and 𝜑 = 𝜑(𝜉) is an unspecified

function to be determined afterward.
Substitute (12) into (4) and then we account the function

𝜑. As a result of this substitution, we get a polynomial of
𝜑
󸀠
/𝜑 and its derivatives. In this polynomial, we equate the

coefficients of the samepower of𝜑−𝑗 to zero, where 𝑗 > 0.This
procedure yields a system of equations which can be solved
to find 𝐴

𝑖
(𝑖 = 0, 1, 2, . . . , 𝑛), 𝜑, and 𝜑󸀠. Then the substitution

of the results into (12) completes the determination of exact
solutions of (3).

2.3. The Extended Simplest Equation Method. We suppose
that the solutions for (4) can be expressed in the following
form:

𝜙 (𝜉) =

𝑛
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, (13)
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where 𝐴
𝑗
1

, 𝐵
𝑗
2

(𝑗
1
= 0, 1, . . . , 𝑛; 𝑗

2
= 0, 1, . . . , 𝑛 − 1) are con-

stants and 𝐴
𝑛
𝐵
𝑛−1

̸= 0. The function 𝜑 = 𝜑(𝜉) satisfies the
second order linear ODE in the form

𝜑
󸀠󸀠
+ 𝛿𝜑 = ], (14)

where 𝛿 and ] are constants. Equation (14) has three types of
general solution with double arbitrary parameters as follows:

𝜑 (𝜉)

=

{{{{

{{{{

{

𝐶
1
cosh (√−𝛿𝜉) + 𝐶

2
sinh (√−𝛿𝜉) + ]

𝛿
, 𝛿 < 0,

𝐶
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2
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𝛿
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]
2
𝜉
2
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1
𝜉 + 𝐶
2
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(15)

(
𝜑
󸀠

𝜑
)

2

=
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1
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𝛿
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𝜑
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2
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𝜑
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2

1
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𝛿
)(

1

𝜑
)

2

− 𝛿 +
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𝜑
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2

1
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2
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1

𝜑
)

2

+
2]
𝜑
, 𝛿 = 0,

(16)

where 𝐶
1
, 𝐶
2
are arbitrary constants.

By substituting (13) into (4) and using the second order
linear ODE (14) and (16), collecting all terms with the same
order of 1/𝜑𝑖 and (1/𝜑

𝑖
)(𝜑
󸀠
/𝜑) together, the left-hand side

of (4) is converted into another polynomial in 1/𝜑
𝑖 and

(1/𝜑
𝑖
)(𝜑
󸀠
/𝜑). Equating each coefficient of these different

power terms to zero yields a set of algebraic equations for
𝐴
𝑖
, 𝐵
𝑗
(𝑖 = 0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑛 − 1), 𝛿, and ].

Assuming constants 𝐴
𝑖
, 𝐵
𝑗
(𝑖 = 0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . ,

𝑛 − 1), 𝛿, and ] can be determined by solving the algebraic
equations, then substituting these terms and the general
solutions (15) of (14) into (13), we have many exact traveling
wave solutions of the NLEE (3).

3. Exact Solutions of New KdV-Like Equation

Making a transformation𝑤(𝑥, 𝑡) = 𝜙(𝜉) with 𝜉 = 𝛼𝑥+𝛽𝑡, (2)
can be reduced to the following ODE:

𝛼
3
𝜙
󸀠󸀠󸀠
+ 𝑘
2
𝛼𝜙
󸀠
+ 𝜖𝑐𝜆
3
(𝛼
2
𝜙
󸀠2
− 𝛼
2
𝜙𝜙
󸀠󸀠
) −

2𝑘
2
𝛽

𝑐
𝜙
󸀠
= 0, (17)

where 𝛼, 𝛽, 𝑘, 𝑐, 𝜖, and 𝜆
3
are nonzero constants. Balancing

𝜙
󸀠󸀠󸀠 and 𝜙𝜙󸀠󸀠 in (17), we obtain 𝑛 + 3 = 𝑛 + 𝑛 + 2 which gives
𝑛 = 1.

3.1. Using Simplest Equation Method. Suppose that (17) owns
the solutions in the form

𝜙 (𝜉) = 𝐴
0
+ 𝐴
1
𝑓 (𝜉) . (18)

For the Bernoulli equation, substituting (18) into (17) and
making use of the Bernoulli equation (6) and then setting

all the coefficients of 𝑓𝑘(𝜉) of the resulting system to zero,
we obtain an algebraic system of equations in terms of
𝐴
𝑖
(𝑖 = 0, 1), 𝑎, 𝑏, 𝛼, and 𝛽. Solving this system of algebraic

equations, we obtain

𝐴
0
=
3𝛼𝑎

𝜖𝑐𝜆
3

, 𝐴
1
=
6𝛼𝑏

𝜖𝑐𝜆
3

, 𝛼 = 𝛼,

𝛽 = −

𝑐𝛼 (2𝛼
2
𝑎
2
− 𝑘
2
)

2𝑘2
.

(19)

Therefore, using solutions (7) and (8) of (6) and ansatz (18),
we obtain the following exact solution of (2):

𝑤
1
(𝑥, 𝑡) =

3𝛼𝑎

𝜖𝑐𝜆
3

+
6𝛼𝑏

𝜖𝑐𝜆
3

𝑎 exp (𝑎 (𝜉 + 𝜉
0
))

1 − 𝑏 exp (𝑎 (𝜉 + 𝜉
0
))

=
3𝛼𝑎

𝜖𝑐𝜆
3

(1 +
2𝑏 exp (𝑎 (𝜉 + 𝜉

0
))

1 − 𝑏 exp (𝑎 (𝜉 + 𝜉
0
))
)

(20)

for the case 𝑎 > 0, 𝑏 < 0 and

𝑤
2
(𝑥, 𝑡) =

3𝛼𝑎

𝜖𝑐𝜆
3

−
6𝛼𝑏

𝜖𝑐𝜆
3

𝑎 exp (𝑎 (𝜉 + 𝜉
0
))

1 + 𝑏 exp (𝑎 (𝜉 + 𝜉
0
))

=
3𝛼𝑎

𝜖𝑐𝜆
3

(1 −
2𝑏 exp (𝑎 (𝜉 + 𝜉

0
))

1 + 𝑏 exp (𝑎 (𝜉 + 𝜉
0
))
)

(21)

for the case 𝑎 < 0, 𝑏 > 0, where 𝜉 = 𝛼𝑥 − (𝑐𝛼(2𝛼
2
𝑎
2
− 𝑘
2
)/

2𝑘
2
)𝑡.
For the Riccati equation, substituting (18) into (17) and

making use of the Riccati equation (9) and then setting
all the coefficients of 𝑓𝑘(𝜉) of the resulting system to zero,
we obtain an algebraic system of equations in terms of
𝐴
𝑖
(𝑖 = 0, 1), 𝑎, 𝑏, 𝛼, and 𝛽. Solving this system of algebraic

equations, we obtain

𝐴
0
= 0, 𝐴

1
=
6𝛼𝑎

𝜖𝑐𝜆
3

, 𝛼 = 𝛼,

𝛽 =

𝛼𝑐 (8𝛼
2
𝑎𝑏 + 𝑘

2
)

2𝑘2
.

(22)

Therefore, using solutions (10) and (11) of (9) and ansatz (18),
we obtain the following exact solution of (2):

𝑤
3
(𝑥, 𝑡) = −

6𝛼√−𝑎𝑏

𝜖𝑐𝜆
3

tanh(√−𝑎𝑏𝜉 −
𝜀 ln 𝜉
0

2
) , (23)

for the case 𝑎𝑏 < 0, and

𝑤
4
(𝑥, 𝑡) =

6𝛼√𝑎𝑏

𝜖𝑐𝜆
3

tan (√𝑎𝑏𝜉 + 𝜉
0
) , (24)

for the case 𝑎𝑏 > 0, where 𝜉 = 𝛼𝑥 + (𝛼𝑐(8𝛼2𝑎𝑏 + 𝑘2)/2𝑘2)𝑡.

3.2. Using the Modified Simplest Equation Method. Suppose
that (17) owns the solutions in the form

𝜙 (𝜉) = 𝐴
0
+ 𝐴
1

𝜑
󸀠

𝜑
, (25)
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where 𝐴
0
and 𝐴

1
are constants, such that 𝐴

1
̸= 0, and 𝜑 =

𝜑(𝜉) is an unspecified function to be determined. It is simple
to calculate that

𝜙
󸀠
= 𝐴
1
(
𝜙
󸀠󸀠

𝜑
− (

𝜑
󸀠

𝜑
)

2

) ,

𝜙
󸀠󸀠
= 𝐴
1

𝜑
󸀠󸀠󸀠

𝜑
− 3𝐴
1

𝜑
󸀠󸀠
𝜑
󸀠

𝜑2
+ 2𝐴
1
(
𝜑
󸀠

𝜑
)

3

,

𝜙
󸀠󸀠󸀠
= 𝐴
1

𝜑
(4)

𝜑
− 𝐴
1

4𝜑
󸀠󸀠󸀠
𝜑
󸀠
+ 3𝜑
󸀠󸀠2

𝜑2
+ 12𝐴

1

𝜑
󸀠󸀠
𝜑
󸀠2

𝜑3

− 6𝐴
1
(
𝜑
󸀠

𝜑
)

4

,

(26)

substituting (25) and (26) into (17) and equating the coef-
ficients of 𝜑𝑗 (𝑗 = −3, −2, −1, 0) to zero yield the following
system:

𝜑
0

: −𝐴
1
𝛼
2
𝑐𝜑
󸀠4
(6𝛼 + 𝜖𝑐𝜆

3
𝐴
1
) = 0,

𝜑
−1
: 𝐴
1
(𝑘
2
𝛼𝑐𝜑
󸀠󸀠
− 2𝑘
2
𝛽𝜑
󸀠󸀠
− 𝜖𝑐
2
𝜆
3
𝛼
2
𝐴
0
𝜑
󸀠󸀠󸀠
+ 𝛼
3
𝑐𝜑
(4)
) = 0,

𝜑
−2
: 𝐴
1
(−3𝛼
3
𝑐𝜑
󸀠󸀠2
− 4𝛼
3
𝑐𝜑
󸀠󸀠󸀠
𝜑
󸀠
− 𝑘
2
𝛼𝑐𝜑
󸀠2
+ 𝜖𝑐
2
𝜆
3
𝛼
2
𝐴
1
𝜑
󸀠󸀠2

+ 3𝜖𝑐
2
𝜆
3
𝛼
2
𝐴
0
𝜑
󸀠󸀠
𝜑
󸀠
− 𝜖𝑐
2
𝜆
3
𝛼
2
𝐴
1
𝜑
󸀠󸀠󸀠
𝜑
󸀠

+2𝑘
2
𝛽𝜑
󸀠2
) = 0,

𝜑
−3
: 𝐴
1
𝛼
2
𝑐𝜑
󸀠2
(12𝛼𝜑

󸀠󸀠
+ 𝜖𝑐𝜆
3
𝐴
1
𝜑
󸀠󸀠
− 2𝜖𝑐𝜆

3
𝐴
0
𝜑
󸀠
) = 0.

(27)

Solving the first equation of system (27), one has 𝐴
1
= 0 and

𝐴
1
= −6𝛼/𝜖𝑐𝜆

3
. When 𝐴

1
= 0, we obtain trivial solution;

therefore, the case is rejected. Substituting 𝐴
1
= −6𝛼/𝜖𝑐𝜆

3

into the other equations of system (27), we can obtain the
following results:

𝐴
0
= 0, 𝛼 =

2𝛽

𝑐
, 𝛽 = 𝛽, 𝜑 = 𝑘

1
𝜉 + 𝑘
2
, (28)

where 𝑘
1
and 𝑘
2
are arbitrary constants, and

𝐴
0
= ±

3𝑘√2𝛼𝑐 (𝛼𝑐 − 2𝛽)

2𝛼𝑐2𝜖𝜆
3

, 𝛼 = 𝛼,

𝛽 = 𝛽, 𝜑 = 𝑘
1
+ 𝑘
2
exp(

𝑘√2𝛼𝑐 (𝛼𝑐 − 2𝛽)

2𝛼2𝑐
𝜉) ,

(29)

where 𝑘
1
and 𝑘
2
are arbitrary constants, 2𝛼𝑐(𝛼𝑐 − 2𝛽) > 0.

Substituting (28) into (25), we can get the exact solution
of (2):

𝑤
5
(𝑥, 𝑡) = 𝐴

1

𝜑
󸀠

𝜑
= −

12𝛽𝑘
1

𝑐2𝜖𝜆
3
(𝑘
1
𝜉 + 𝑘
2
)
, (30)

where 𝜉 = (2𝛽/𝑐)𝑥 + 𝛽𝑡.

Substituting (29) into (25), we can get the exact solution
of (2):

𝑤
6
(𝑥, 𝑡)

= 𝐴
0
+ 𝐴
1

𝜑
󸀠

𝜑

=

3𝑘𝜀√2𝛼𝑐 (𝛼𝑐 − 2𝛽)

2𝜖𝑐2𝜆
3

×(

−𝑘
1
+ 𝑘
2
exp((−𝑘𝜀√2𝛼𝑐 (𝛼𝑐 − 2𝛽)/2𝛼2𝑐) 𝜉)

𝑘
1
+ 𝑘
2
exp((−𝑘𝜀√2𝛼𝑐 (𝛼𝑐 − 2𝛽)/2𝛼2𝑐) 𝜉)

) ,

(31)

where 𝜉 = 𝛼𝑥 + 𝛽𝑡, 𝜀 = ±1.
We can arbitrarily choose the parameters 𝑘

1
and 𝑘

2
.

Therefore, if we set 𝑘
1
= ±𝑘
2
, (31) reduces to

𝑤
7
(𝑥, 𝑡) = −

3𝑘√2𝛼𝑐 (𝛼𝑐 − 2𝛽)

2𝜖𝑐2𝜆
3

× tanh(
𝑘√2𝛼𝑐 (𝛼𝑐 − 2𝛽)

4𝛼2𝑐
𝜉) ,

𝑤
7
(𝑥, 𝑡) = −

3𝑘√2𝛼𝑐 (𝛼𝑐 − 2𝛽)

2𝜖𝑐2𝜆
3

× coth(
𝑘√2𝛼𝑐 (𝛼𝑐 − 2𝛽)

4𝛼2𝑐
𝜉) ,

(32)

where 2𝛼𝑐(𝛼𝑐 − 2𝛽) > 0.
Using hyperbolic function identities, from (32), we obtain

the following periodic solutions:

𝑤
9
(𝑥, 𝑡) =

3𝑘√−2𝛼𝑐 (𝛼𝑐 − 2𝛽)

2𝜖𝑐2𝜆
3

× tan(
𝑘√−2𝛼𝑐 (𝛼𝑐 − 2𝛽)

4𝛼2𝑐
𝜉) ,

𝑤
10
(𝑥, 𝑡) = −

3𝑘√−2𝛼𝑐 (𝛼𝑐 − 2𝛽)

2𝜖𝑐2𝜆
3

× cot(
𝑘√−2𝛼𝑐 (𝛼𝑐 − 2𝛽)

4𝛼2𝑐
𝜉) .

(33)
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3.3. Using the Extended Simplest Equation Method. Suppose
that (17) owns the solutions in the form

𝜙 (𝜉) = 𝐴
0
+ 𝐴
1

𝜑
󸀠

𝜑
+ 𝐵
1

1

𝜑
, (34)

where 𝐴
0
, 𝐴
1
, and 𝐵

1
are constants to be determined later,

𝐴
1
𝐴
3
̸= 0, and function 𝜑 = 𝜑(𝜉) satisfies the second order

linear ODE (14).
By substituting (34) into (17), using the second order

linearODE expressions (14) and (16), collecting all termswith
the same order of 1/𝜑𝑖 and (1/𝜑

𝑖
)(𝜑
󸀠
/𝜑) together, the left-

hand side of (17) is converted into another polynomial in 1/𝜑𝑖

and (1/𝜑𝑖)(𝜑󸀠/𝜑). Equating each coefficient of these different
power terms to zero yields a set of algebraic equations for
𝐴
0
, 𝐴
1
, 𝐵
1
, 𝛼, 𝛽, 𝛿, and ]. Solving these equations, we obtain

the following results.
If 𝛿 > 0, one has

𝐴
0
= 0, 𝐴

1
= ±√

𝛿

Δ
𝐵
1
, 𝐵

1
= 𝐵
1
,

𝛼 = ±
1

3
𝑐𝜖𝜆
3
√
𝛿

Δ
𝐵
1
, 𝛿 = 𝛿, ] = ],

𝛽 = ±(((9𝛿
2
𝑘
2
𝐶
2

2
− 9𝑘
2]2 + 9𝛿2𝑘2𝐶2

1

+2𝐵
2

1
𝛿
2
𝑐
2
𝜖
2
𝜆
2

3
) 𝑐
2
𝜖𝜆
3
√
𝛿

Δ
)(54Δ𝑘

2
)
−1

)𝐵
1
,

(35)

where Δ = 𝛿
2
𝐶
2

1
+ 𝛿
2
𝐶
2

2
− ]2 > 0, and

𝐴
0
= 0, 𝐴

1
= 𝐴
1
, 𝐵

1
= 0,

𝛼 = −
1

3
𝑐𝜖𝜆
3
𝐴
1
, 𝛿 = ±

]

√𝐶
2

1
+ 𝐶
2

2

, ] = ],

𝛽 = −
𝑐
2
𝜖𝜆
3

54𝑘2
(±

2𝑐
2
𝜖
2
𝜆
2

3
𝐴
2

1
]

√𝐶
2

1
+ 𝐶
2

2

+ 9𝑘
2
)𝐴
1
,

(36)

𝐴
0
= 0, 𝐴

1
= 𝐴
1
, 𝐵

1
= 0, 𝛼 = −

1

6
𝑐𝜖𝜆
3
𝐴
1
,

𝛽 = −

𝑐
2
𝜖𝜆
3
(2𝑐
2
𝜖
2
𝜆
2

3
𝐴
2

1
𝛿 + 9𝑘

2
)

108𝑘2
𝐴
1
,

𝛿 = 𝛿, ] = 0,
(37)

𝐴
0
= 0, 𝐴

1
= 𝐴
1
, 𝐵

1
= 𝐵
1
,

𝛼 = −
1

3
𝑐𝜖𝜆
3
𝐴
1
, 𝛿 =

𝐵
2

1

𝐴
2

1
(𝐶
2

1
+ 𝐶
2

2
)
, ] = 0,

𝛽 = −

𝑐
2
𝜖𝜆
3
(2𝑐
2
𝜖
2
𝜆
2

3
𝐵
2

1
+ 9𝑘
2
𝐶
2

1
+ 9𝑘
2
𝐶
2

2
)

54𝑘2 (𝐶
2

1
+ 𝐶
2

2
)

𝐴
1
.

(38)

Substituting (35)–(38) into (34), making use of solutions
(15) of (14), we can obtain, respectively, exact traveling wave
solutions expressed by trigonometric functions of (2).

Consider

𝑤
11
(𝑥, 𝑡) = ±

𝛿𝐵
1
(−𝐶
1
sin (√𝛿𝜉) + 𝐶

2
cos (√𝛿𝜉))

√Δ (𝐶
1
cos (√𝛿𝜉) + 𝐶

2
sin (√𝛿𝜉) + (]/𝛿))

+
𝐵
1

𝐶
1
cos (√𝛿𝜉) + 𝐶

2
sin (√𝛿𝜉) + (]/𝛿)

,

(39)

where 𝜉 = 𝛼𝑥+𝛽𝑡; 𝛼, 𝛽 are determined in (35); 𝐵
1
, 𝐶
1
, 𝐶
2
, 𝛿,

and ] are arbitrary constants.
Consider

𝑤
12
(𝑥, 𝑡) =

𝐴
1
√𝛿 (−𝐶

1
sin (√𝛿𝜉) + 𝐶

2
cos (√𝛿𝜉))

𝐶
1
cos (√𝛿𝜉) + 𝐶

2
sin (√𝛿𝜉) + (]/𝛿)

, (40)

where 𝜉 = 𝛼𝑥 + 𝛽𝑡; 𝛼, 𝛽, 𝛿 are determined in (36); 𝐴
1
, 𝐶
1
,

and 𝐶
2
, and ] are arbitrary constants.

Consider

𝑤
13
(𝑥, 𝑡) =

𝐴
1
√𝛿 (−𝐶

1
sin (√𝛿𝜉) + 𝐶

2
cos (√𝛿𝜉))

𝐶
1
cos (√𝛿𝜉) + 𝐶

2
sin (√𝛿𝜉)

, (41)

where 𝜉 = 𝛼𝑥 + 𝛽𝑡; 𝛼, 𝛽 are determined in (37); 𝐴
1
, 𝐶
1
, 𝐶
2
,

and 𝛿 are arbitrary constants.
Consider

𝑤
14
(𝑥, 𝑡) =

𝐴
1
√𝛿 (−𝐶

1
sin (√𝛿𝜉) + 𝐶

2
cos (√𝛿𝜉))

𝐶
1
cos (√𝛿𝜉) + 𝐶

2
sin (√𝛿𝜉)

+
𝐵
1

𝐶
1
cos (√𝛿𝜉) + 𝐶

2
sin (√𝛿𝜉)

,

(42)

where 𝜉 = 𝛼𝑥+𝛽𝑡; 𝛼, 𝛽, 𝛿 are determined in (38);𝐴
1
, 𝐵
1
, and

𝐶
1
, and 𝐶

2
are arbitrary constants.

If 𝛿 < 0, one has

𝐴
0
= 0, 𝐴

1
= ±√

−𝛿

Δ
𝐵
1
, 𝐵

1
= 𝐵
1
,

𝛼 = ±
1

3
𝑐𝜖𝜆
3
√
−𝛿

Δ
𝐵
1
, 𝛿 = 𝛿, ] = ],

𝛽 = ±(((−9𝛿
2
𝑘
2
𝐶
2

2
− 9𝑘
2]2 + 9𝛿2𝑘2𝐶2

1

+2𝐵
2

1
𝛿
2
𝑐
2
𝜖
2
𝜆
2

3
) 𝑐
2
𝜖𝜆
3
√
−𝛿

Δ
)(54Δ𝑘

2
)
−1

)𝐵
1
,

(43)

where Δ = −𝛿
2
𝐶
2

1
+ 𝛿
2
𝐶
2

2
+ ]2 > 0.
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Consider
𝐴
0
= 0, 𝐴

1
= 𝐴
1
, 𝐵

1
= 0,

𝛼 = −
1

3
𝑐𝜖𝜆
3
𝐴
1
, 𝛿 = ±

]

√𝐶
2

2
− 𝐶
2

1

, ] = ],

𝛽 = −
𝑐
2
𝜖𝜆
3

54𝑘2
(±

2𝑐
2
𝜖
2
𝜆
2

3
𝐴
2

1
]

√𝐶
2

2
− 𝐶
2

1

+ 9𝑘
2
)𝐴
1
,

(44)

𝐴
0
= 0, 𝐴

1
= 𝐴
1
, 𝐵

1
= 0, 𝛼 = −

1

6
𝑐𝜖𝜆
3
𝐴
1
,

𝛽 = −

𝑐
2
𝜖𝜆
3
(2𝑐
2
𝜖
2
𝜆
2

3
𝐴
2

1
𝛿 + 9𝑘

2
)

108𝑘2
𝐴
1
,

𝛿 = 𝛿, ] = 0,
(45)

𝐴
0
= 0, 𝐴

1
= 𝐴
1
, 𝐵

1
= 𝐵
1
,

𝛼 = −
1

3
𝑐𝜖𝜆
3
𝐴
1
, 𝛿 = −

𝐵
2

1

𝐴
2

1
(𝐶
2

2
− 𝐶
2

1
)
, ] = 0,

𝛽 =

𝑐
2
𝜖𝜆
3
(2𝑐
2
𝜖
2
𝜆
2

3
𝐵
2

1
+ 9𝑘
2
𝐶
2

1
− 9𝑘
2
𝐶
2

2
)

54𝑘2 (𝐶
2

2
− 𝐶
2

1
)

𝐴
1
.

(46)

Substituting (43)–(46) into (34), making use of solutions
(15) of (14), we can obtain, respectively, exact traveling wave
solutions expressed by hyperbolic functions of (2).

Consider
𝑤
15
(𝑥, 𝑡)

= ±

𝛿𝐵
1
(𝐶
1
sinh (√−𝛿𝜉) + 𝐶

2
cosh (√−𝛿𝜉))

√Δ (𝐶
1
cosh (√−𝛿𝜉) + 𝐶

2
sinh (√−𝛿𝜉) + (]/𝛿))

+
𝐵
1

𝐶
1
cosh (√−𝛿𝜉) + 𝐶

2
sinh (√−𝛿𝜉) + (]/𝛿)

,

(47)

where 𝜉 = 𝛼𝑥+𝛽𝑡; 𝛼, 𝛽 are determined in (43); 𝐵
1
, 𝐶
1
, 𝐶
2
, 𝛿,

and ] are arbitrary constants.
Consider
𝑤
16
(𝑥, 𝑡)

=

𝐴
1
√−𝛿 (𝐶

1
sinh (√−𝛿𝜉) + 𝐶

2
cosh (√−𝛿𝜉))

𝐶
1
cosh (√−𝛿𝜉) + 𝐶

2
sinh (√−𝛿𝜉) + (]/𝛿)

,

(48)

where 𝜉 = 𝛼𝑥+𝛽𝑡; 𝛼, 𝛽, 𝛿 are determined in (44);𝐴
1
, 𝐶
1
, and

𝐶
2
, and ] are arbitrary constants.
Consider
𝑤
17
(𝑥, 𝑡)

=

𝐴
1
√−𝛿 (𝐶

1
sinh (√−𝛿𝜉) + 𝐶

2
cosh (√−𝛿𝜉))

𝐶
1
cosh (√−𝛿𝜉) + 𝐶

2
sinh (√−𝛿𝜉)

,

(49)

where 𝜉 = 𝛼𝑥 + 𝛽𝑡; 𝛼, 𝛽 are determined in (45); 𝐴
1
, 𝐶
1
, 𝐶
2
,

and 𝛿 are arbitrary constants.
Consider

𝑤
18
(𝑥, 𝑡)

=

𝐴
1
√−𝛿 (𝐶

1
sinh (√−𝛿𝜉) + 𝐶

2
cosh (√−𝛿𝜉))

𝐶
1
cosh (√−𝛿𝜉) + 𝐶

2
sinh (√−𝛿𝜉)

+
𝐵
1

𝐶
1
cosh (√−𝛿𝜉) + 𝐶

2
sinh (√−𝛿𝜉)

,

(50)

where 𝜉 = 𝛼𝑥+𝛽𝑡; 𝛼, 𝛽, 𝛿 are determined in (46);𝐴
1
, 𝐵
1
, and

𝐶
1
, and 𝐶

2
are arbitrary constants.

If 𝛿 = 0, one has

𝐴
0
= 0, 𝐴

1
= 𝐴
1
, 𝐵

1
= 𝐵
1
, 𝛼 = −

1

3
𝑐𝜖𝜆
3
𝐴
1
,

𝛽 = −
1

6
𝑐
2
𝜖𝜆
3
𝐴
1
, ] =

𝐴
2

1
𝐶
2

1
− 𝐵
2

1

2𝐴
2

1
𝐶
2

,

(51)

𝐴
0
= 0, 𝐴

1
= 𝐴
1
, 𝐵

1
= 0, 𝛼 = −

1

6
𝑐𝜖𝜆
3
𝐴
1
,

𝛽 = −
1

12
𝑐
2
𝜖𝜆
3
𝐴
1
, ] = 0.

(52)

Substituting (51) and (52) into (34), making use of solu-
tions (15) of (14), we can obtain, respectively, exact traveling
wave solutions expressed by rational functions of (2).

Consider

𝑤
19
(𝑥, 𝑡) =

2𝐴
1
(]𝜉 + 𝐶

1
)

]𝜉2 + 2 (𝐶
1
𝜉 + 𝐶
2
)
+

2𝐵
1

]𝜉2 + 2 (𝐶
1
𝜉 + 𝐶
2
)
, (53)

where 𝜉 = 𝛼𝑥 + 𝛽𝑡; 𝛼, 𝛽, and ] are determined in (51); 𝐵
1
, 𝐶
1
,

and 𝐶
2
are arbitrary constants.

Consider

𝑤
20
(𝑥, 𝑡) =

𝐴
1
𝐶
1

𝐶
1
𝜉 + 𝐶
2

, (54)

where 𝜉 = 𝛼𝑥 + 𝛽𝑡; 𝛼 and 𝛽 are determined in (52); 𝐴
1
, 𝐶
1
,

and 𝐶
2
are arbitrary constants.

4. Conclusions

In [28] Rees derived a new nonlinear KdV-like evolution
equation (2) for surface solitary waves propagating on a
liquid-air interface where the wave motion is induced by
harmonic forcing. The study on the exact solutions for (2)
is meaningful and important. However, exact traveling wave
solutions of (2) are not reported in related references. In
this work, we apply the simplest equation method, the mod-
ified simplest equation method, and the extended simplest
equation method for obtaining exact traveling solutions of
(2). And some new exact solutions expressed by hyperbolic
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function, trigonometric function, and rational functions are
obtained. The correctness of all the solutions is verified by
substituting them into original equation (2). It is easy to
see that the simplest equation methods are direct, concise,
effective, and reliable, which can be used for many other
NLEEs in mathematical physics.
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