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We investigate the long time behavior of the damped, forced KdV-BO equation driven by white noise. We first show that the global
solution generates a random dynamical system. By energy type estimates and dispersive properties, we then prove that this system
possesses a weak random attractor in the space𝐻1

(R).

1. Introduction

The deterministic Korteweg-de Vries-Benjamin-Ono (KdV-
BO) equation describes a large class of internal waves in
the ocean and stratified fluid. The well-posedness for this
equation was studied in [1, 2]. When the surface of the fluid
is submitted to a nonconstant pressure, or when the bottom
of the layer is not flat, a forcing term has to be added to
the equation [3, 4]. The long time behavior of the forced
generalized KdV-BO was studied in [5]. In this paper we
are interested in the case when the forcing term is random.
The well-posedness for the stochastic KdV-BO driven by the
additive noise was studied in [6]. We have found no studies
on the long time behavior of the stochastic KdV-BO equation.

In this paper, we consider the long time behavior of the
following stochastic damped, forced KdV-BO equation:

𝜕
𝑡
𝑢 + 𝛼H (𝜕

2

𝑥
𝑢) + 𝛽𝜕

3

𝑥
𝑢 + 𝑢𝜕

𝑥
𝑢 + 𝜆𝑢 = 𝑓 + Φ

𝜕
2
𝐵

𝜕𝑡𝜕𝑥
, (1)

where 𝛼, 𝛽, and 𝜆 are real constants and 𝛼𝛽 ̸= 0. H denotes
the Hilbert transform

H𝑓 (𝑥) = 𝑝.V.
1

𝜋
∫
𝑓 (𝑥 − 𝑦)

𝑦
𝑑𝑦. (2)

The forcing term𝑓 is time independent, and𝑢 is a random
process defined on (𝑡, 𝑥) ∈ R+

× R. Φ is a linear operator.
Also, 𝐵 is a two-parameter Brownian motion onR+

×R, that

is, a zero mean Gaussian process whose correlation function
is given by

E (𝐵 (𝑡, 𝑥) 𝐵 (𝑡, 𝑥)) = (𝑡 ∧ 𝑠) (𝑥 ∧ 𝑦) , (3)

for 𝑡, 𝑠 ⩾ 0, 𝑥, 𝑦 ∈ R.
Alternatively we consider a cylindricalWiener process𝑊

by setting

𝑊(𝑡) =
𝜕𝐵

𝜕𝑥
=

∞

∑

𝑖=0

𝛽
𝑖
𝑒
𝑖
, (4)

where {𝑒
𝑖
}
𝑖∈N is an orthonormal basis of 𝐿2(R) and {𝛽

𝑖
}
𝑖∈N is

a sequence of mutually independent real Brownian motions
in a fixed probability space (Ω,F, 𝑃) adapted to a filtration
{F}

𝑡⩾0
.

Let us write the Itô form of (1) as follows:

𝑑𝑢 + (𝛼𝐻(𝜕
2

𝑥
𝑢) + 𝛽𝜕

3

𝑥
𝑢 + 𝑢𝜕

𝑥
𝑢 + 𝜆𝑢 − 𝑓) 𝑑𝑡 = Φ𝑑𝑊, (5)

with initial condition

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) . (6)

The purpose of this paper is to study the long time behav-
ior of the problem (5) with initial data. Before describing our
works, we recall some facts related to this paper. The Cauchy
problem for the deterministic KdV-BO equation, that is, 𝜆 =
𝑓 = Φ = 0 in (5), was considered in [1]. There the authors
obtained well-posedness results by using Fourier restriction
norm method in Bourgain’s type spaces 𝑋

𝑠,𝑏
with 𝑏 > 1/2.
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Based on the global existence results given in [1], the attractor
of the damped forced KdV-BO equation was obtained in [5].
The stochastic KdV-BO equation (i.e., 𝜆 = 𝑓 = 0 in (5))
was studied in space𝑋

𝑠,𝑏
with 𝑏 < 1/2 in [6]. By introducing

some useful inequalities to deal with the irregularity caused
by stochastic term, well-posedness results were obtained in
[6]. Following the work in [6], we will construct the attractor
to the Cauchy problem for the stochastic damped, forced
KdV-BO equation.

Before stating our main result precisely, we introduce
some notations.

Denote by (⋅, ⋅) and | ⋅ | the inner product and the norm
in 𝐿2(R), respectively. And ‖ ⋅ ‖

𝑋
is the norm of the Banach

space𝑋.
Given two separable Hilbert spaces 𝐻 and 𝐻̃, we denote

by 𝐿0
2
(𝐻; 𝐻̃) the space of Hilbert-Schmidt operators from𝐻

into 𝐻̃. Its norm is given by

‖Φ‖
2

𝐿
0

2
(𝐻;𝐻̃)

= ∑

𝑖∈N

󵄩󵄩󵄩󵄩Φ𝑒𝑖
󵄩󵄩󵄩󵄩

2

𝐻̃
, Φ ∈ 𝐿

0

2
(𝐻; 𝐻̃) , (7)

where (𝑒
𝑖
)
𝑖∈N is any orthonormal basis of 𝐻. When 𝐻 =

𝐿
2
(R), 𝐻̃ = 𝐻

𝑠, 𝐿0
2
(𝐿

2
(R);𝐻𝑠

) is simply denoted by 𝐿0,𝑠
2
.

The proof of the global well-posedness of the solution (5)-
(6) is similar to [6]. Here, we only give the following global
existence results.

Assume thatΦ ∈ 𝐿
0,0

2
(orΦ ∈ 𝐿

0,1

2
); let 𝑢

0
∈ 𝐿

2
(Ω, 𝐿

2
(R))

(or 𝑢
0

∈ 𝐿
2
(Ω,𝐻

1
(R))) be F

0
-measurable. Then, the

solution 𝑢(𝑡) is global and belongs to 𝐿2(Ω; 𝐶([0, 𝑇]; 𝐿2(R)))
(or 𝐿2(Ω; 𝐶([0, 𝑇];𝐻1

(R)))) for any 𝑇 > 0.
We now give ourmain result about the long time behavior

of the KdV-BO equation based on its global existence results.

Theorem 1. Under the assumption that 𝜆 > 0, 𝑓 ∈ 𝐻
1
(R),

Φ ∈ 𝐿
0,2

2
, and 𝑢

𝑠
∈ 𝐿

2
(Ω;𝐻

1
(R)) is F

𝑠
-measurable, then

the random dynamical system associated with the stochastic
equation (5) with initial value 𝑢(𝑠) = 𝑢

𝑠
possesses a universal

weak random attractorA in𝐻1
(R).

Thepaper is organized as follows. Section 2 contains some
concepts about the random dynamical system, and Lemma 2
which gives the existence conditions and the structure of the
attractor. Then we show that the unique solution of problem
(5)-(6) generates a random dynamical system in Section 3.
In Section 4, we prove that there exists a compact random
absorbing set, which leads to the existence of a random
attractor, that is, Theorem 1.

2. Preliminaries on Random
Dynamical System

We now recall some concepts and results from [7–9].
Let (Ω,F, 𝑃) be a probability space and {𝜃

𝑡
: Ω →

Ω, 𝑡 ∈ R} a family of measure preserving transformations
such that (𝑡, 𝜔) 󳨃→ 𝜃

𝑡
𝜔 is measurable, 𝜃

0
= 𝑖𝑑, and 𝜃

𝑡+𝑠
=

𝜃
𝑡
∘ 𝜃

𝑠
for all 𝑠, 𝑡 ∈ R. The flow 𝜃

𝑡
together with the

corresponding probability space (Ω,F, 𝑃) is called a metric
dynamical system.

A continuous random dynamical system (RDS) on a
polish space (𝑋, 𝑑) with Borel sigma-algebra F over 𝜃

𝑡
on

(Ω,F, 𝑃) is by definition a measurable map

Ψ : R
+
× Ω × 𝑋 󳨀→ 𝑋, (𝑡, 𝜔, 𝑥) 󳨃󳨀→ Ψ (𝑡, 𝜔) 𝑥, (8)

such that 𝑃-a.s.

(i) Ψ(0, 𝜔) = 𝑖𝑑 on𝑋;
(ii) Ψ(𝑡+𝑠, 𝜔) = Ψ(𝑡, 𝜃

𝑠
𝜔)Ψ(𝑠, 𝜔) for all 𝑠, 𝑡 ∈ R+ (cocycle

property);
(iii) Ψ(𝑡, 𝜔) : 𝑋 → 𝑋 is continuous.

A set-valued map 𝐾 : Ω → 2
𝑋, the set of all subsets of

𝑋, is called a random compact set, if𝐾(𝜔) is a compact 𝑃-a.s.
and if 𝜔 󳨃→ 𝑑(𝑥,𝐾(𝜔)) is measurable with respect to F for
each 𝑥 ∈ 𝑋, where 𝑑(𝑥,𝑀) = inf

𝑥∈𝑀
𝑑(𝑥, 𝑦).

Let A(𝜔) be a random set and 𝐵 ⊂ 𝑋; one says A(𝜔)
attracts 𝐵 if

lim
𝑡→∞

dist (Ψ (𝑡, 𝜃
−𝑡
𝜔) 𝐵,A) = 0, 𝑃-a.s. (9)

A random set A(𝜔) is said to be a random attractor for
the RDS Ψ if 𝑃-a.s.

(i) A(𝜔) is a random compact set;
(ii) A(𝜔) is invariant, that is, Ψ(𝑡, 𝜔)A(𝜔) = A(𝜃

𝑡
𝜔), for

all 𝑡 > 0;
(iii) A(𝜔) attracts all deterministic bounded sets 𝐵 ⊂ 𝑋.

Similar to the deterministic theory, the existence result of
random attractors can be stated as follows (see [8, 9]).

Lemma 2. If there exists a random compact set absorbing
every bounded set 𝐵 ⊂ 𝑋, then the RDS Ψ possesses a random
attractorA(𝜔),

A (𝜔) = ∪
𝐵⊂𝑋

Λ
𝐵
(𝜔), (10)

where Λ
𝐵
(𝜔) := ∩

𝑠⩾0
∪
𝑡⩾𝑠
Ψ(𝑡, 𝜃

−𝑡
𝜔)𝐵 is the omega-limit set of

𝐵.

3. Solve the Equations and Generate an RDS

We consider the following linear problem to (5)-(6):

(𝑃) {
𝑑𝑢 + {𝛼H𝜕

2

𝑥
𝑢 + 𝛽𝜕

3

𝑥
𝑢𝑑𝑡 + 𝜆𝑢} 𝑑𝑡 = Φ𝑑𝑊,

𝑢 (0) = 0,
(11)

whose solution is given by the stochastic integral (see [10])

𝑢 (𝑡) = ∫

𝑡

0

𝑈 (𝑡 − 𝑠)Φ𝑑𝑊(𝑠) . (12)

From now on we turn our attention to study the well-
posedness of a weakly damped, forced KdV-BO equation
with random parameter by change of variable.

Let us study (5) by means of the change of variable

V (𝑡) = 𝑢 (𝑡) − 𝑢 (𝑡) , (13)
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and then 𝑢 satisfies (5) if and only if V is a solution of

V
𝑡
+ 𝛼HV

𝑥𝑥
+ 𝛽V

𝑥𝑥𝑥
+ 𝜆V + VV

𝑥

+ 𝑢𝑢
𝑥
+ V𝑢

𝑥
+ 𝑢V

𝑥
= 𝑓.

(14)

This is a weakly damped, forced KdV-BO equation with
random parameter with the following initial condition:

V (0, 𝑥) = 𝑢 (0, 𝑥) + 𝑢 (0, 𝑥) = 𝑢 (0, 𝑥) . (15)

The estimation about the random parameter 𝑢 and the
bilinear term VV

𝑥
in (14) can be obtained by using themethod

in [6]. Then by the fixed point argument the global existence
results to the random parameter Cauchy problem (14)-(15)
can be obtained.

Theorem 3. Assume that Φ ∈ 𝐿
0,0

2
(𝑜𝑟 Φ ∈ 𝐿

0,2

2
); let V

0
∈

𝐿
2
(R) (or V

0
∈ 𝐻

1
(R)). Then, the solution V(𝑡) of problem

(14) and (15) is global and belongs to 𝐶([0, 𝑇]; 𝐿
2
(R))

(𝑜𝑟 𝐶([0, 𝑇];𝐻
1
(R)) for any 𝑇 > 0.

We summarize the above existence results for 𝑃-a.s. 𝜔 ∈

Ω of (14) with initial condition V(𝑠, 𝑥) = 𝑢(𝑠, 𝑥) = V
𝑠
, 𝑠 ∈ R,

as follows.

(i) Under the assumption of Theorem 3, for 𝑠 < 𝑇, and
any 𝑇 ∈ R and V

𝑠
∈ 𝐿

2
(R), there exists a unique

solution V ∈ 𝐶([𝑠, 𝑇]; 𝐿2(R)).
(ii) Under the assumption of Theorem 3, for 𝑠 < 𝑇, and

any 𝑇 ∈ R, and V
𝑠
∈ 𝐻

1
(R), there exists a unique

solution V ∈ 𝐶([𝑠, 𝑇];𝐻1
(R)).

(iii) Denoting such a solution V(𝑡, 𝜔; 𝑠, V
𝑠
), the mapping

V
𝑠
󳨃→ V(𝑡, 𝜔; 𝑠, V

𝑠
) is continuous for all 𝑠 ⩽ 𝑇.

Nowwe construct anRDSmodeling the stochasticweakly
damped, forced KdV-BO equation. For example, consider a
set of continuous functions with value 0 at t = 0

Ω = {𝜔 ∈ 𝐶 (R,R) : 𝜔 (0) = 0} . (16)

Let F be the Borel sigma-algebra induced by the compact
open topology ofΩ, and let𝑃 be aWienermeasure on (Ω,F).
We write (𝛽

1
(𝑡, 𝜔), . . . , 𝛽

𝑘
(𝑡, 𝜔), . . .) = 𝜔(𝑡). The time shift is

simply defined by

𝜃
𝑠
𝜔 (𝑡) = 𝜔 (𝑡 + 𝑠) − 𝜔 (𝑠) , 𝑡, 𝑠 ∈ R, (17)

and then (Ω,F, 𝑃, 𝜃
𝑡
) is an ergodic metric dynamical system

which models white noise.
Having the mapping V

𝑠
󳨃→ V(𝑡, 𝜔; 𝑠, V

𝑠
), we define

𝑢 (𝑡, 𝜔; 𝑠, 𝑢
𝑠
) = 𝑆 (𝑡, 𝑠; 𝜔) 𝑢

𝑠
= V (𝑡, 𝜔; 𝑠; V

𝑠
) + 𝑢 (𝑡, 𝜔) , (18)

where V(𝑡, 𝜔; 𝑠; V
𝑠
) is a solution to (14) with V(𝑠) = V

𝑠
and 𝑢(𝑡)

satisfies

𝑑𝑢 + {𝛼H𝜕
2

𝑥
𝑢 + 𝛽𝜕

3

𝑥
𝑢 + 𝜆𝑢} 𝑑𝑡 = Φ𝑑𝑊,

𝑢 (𝑠) = 0.

(19)

Obviously, for 𝑠 ⩽ 𝑟 ⩽ 𝑡, we have

𝑆 (𝑡, 𝑠; 𝜔) = 𝑆 (𝑡, 𝑟; 𝜔) 𝑆 (𝑟, 𝑠; 𝜔) . (20)

Thanks to (17), for any 𝑠, 𝑡 ∈ R+, 𝑢
𝑠
∈ 𝐻

1
(R), we have 𝑃-a.s.

𝑆 (𝑡 + 𝑠, 0; 𝜔) 𝑢
0
= 𝑆 (𝑡, 0; 𝜃

𝑠
𝜔) 𝑆 (𝑠, 0; 𝜔) 𝑢

0
. (21)

Therefore, the process Ψ : 𝑅
+
× Ω × 𝑉 → 𝑉 defined by

Ψ (𝑡, 𝜔) 𝑢
0
= 𝑆 (𝑡, 0 : 𝜔) 𝑢

0 (22)

is cocycle. It is continuous RDS on 𝐻
1
(R) over (Ω,F, 𝑃,

(𝜃
𝑡
)
𝑡∈R) andmodels the dynamical system associated with the

stochastic equation (5) with initial value 𝑢(𝑠) = 𝑢
𝑠
.

4. Compact Random Absorbing Set

In the following computations 𝜔 ∈ Ω is fixed. We usually
denote 𝐿𝑝(R) (1 ⩽ 𝑝 ⩽ ∞) by 𝐿𝑝

𝑥
; 𝐿𝑝([0, 𝑇]; 𝐿𝑞(R)) (1 ⩽

𝑝 ⩽ ∞, 1 ⩽ 𝑞 ⩽ ∞) by 𝐿𝑝
𝑡
(𝐿

𝑞

𝑥
); and 𝐿𝑝(R; 𝐿𝑞([0, 𝑇]))(1 ⩽

𝑝 ⩽ ∞, 1 ⩽ 𝑞 ⩽ ∞) by 𝐿𝑝
𝑥
(𝐿

𝑞

𝑡
) for any 𝑇 > 0 in this part.

First note that, for the Hilbert transform, we have for any
𝑓, 𝑔 ∈ 𝐿

2
(R)

H
2
𝑓 = −𝑓, H (𝑓𝑔) =H (H𝑓H𝑔) + 𝑓H𝑔 + 𝑔H𝑓,

(𝑓,H𝑔) = − (H𝑓, 𝑔) , (H𝑓, 𝑓) = 0,

(H𝑓,H𝑔) = (𝑓, 𝑔) ,
󵄩󵄩󵄩󵄩H𝑓

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 ,

∀𝑓 ∈ 𝐻
1
(R) , H𝑓

𝑥
= (H𝑓)

𝑥
.

(23)

Before we prove the existence of a compact random
absorbing set, we first give some estimates about the solution
𝑢 of problem (𝑃).

Let us introduce the following space to study the solution
of problem (𝑃):

𝑋
𝜎
(𝑇) = {𝑢 ∈ 𝐶 (0, 𝑇;𝐻

𝜎
(R)) ∩ 𝐿

2
(R; 𝐿

∞
([0, 𝑇])) ,

𝐷
𝜎
𝜕
𝑥
𝑢 ∈ 𝐿

∞
(R; 𝐿

2
([0, 𝑇])) ,

𝜕
𝑥
𝑢 ∈ 𝐿

4
([0, 𝑇] ; 𝐿

∞
(R))} ,

(24)

for some 𝜎 < 1.

Lemma 4 (see [11]). Assume that Φ ∈ 𝐿
0,𝜎

2
for some 𝜎 > 3/4;

then 𝑢 is almost surely in 𝑋
𝜎
(𝑇) for any 𝑇 > 0 and any 𝜎 such

that 3/4 < 𝜎 < 𝜎. More precisely,

E( sup
𝑡∈[0,𝑇]

‖𝑢‖
2

𝐻
𝜎

𝑥

) ⩽ 𝐶‖Φ‖
2

𝐿
0,𝜎

2

, for any 3
4
< 𝜎 ⩽ 𝜎,

E((∫
𝑇

0

sup
𝑥∈R

󵄨󵄨󵄨󵄨𝜕𝑥𝑢
󵄨󵄨󵄨󵄨

4

𝑑𝑡)

1/2

) ⩽ ‖Φ‖
2

𝐿
0,𝜎

2

,

E(∫
R

sup
𝑡∈[0,𝑇]

|𝑢|
2
𝑑𝑥) ⩽ 𝐶 (𝜎) ‖Φ‖

2

𝐿
0,𝜎

2

;

(25)
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let 0 < 𝜀 < inf{𝜎, 2}, and then

E(sup
𝑥∈R

∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝐷

𝜎−𝜀
𝜕
𝑥
𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡) ⩽ 𝐶 (𝜀) ‖Φ‖
2

𝐿
0,𝜎

2

; (26)

one also has

E((∫
𝑇

0

sup
𝑥∈R

|𝑢|
4
𝑑𝑡)

1/2

) ⩽ ‖Φ‖
2

𝐿
0,𝜎

2

, (27)

where 𝐶(𝜀) and 𝐶(𝜎) depend on 𝜀, 𝜎, respectively.

Remark 5. We have to impose a stronger condition on Φ ∈

𝐿
0,2

2
in the present paper than that on Φ ∈ 𝐿

0,1

2
in [11]. Thus,

the solution 𝑢 of the linear problem is more regular, which
will be used in proving the boundedness of 𝑢 in𝐻1

(R). More
precisely, we can get

E((∫
𝑇

0

sup
𝑥∈R

󵄨󵄨󵄨󵄨󵄨
𝜕
2

𝑥
𝑢
󵄨󵄨󵄨󵄨󵄨

4

𝑑𝑡)

1/2

) ⩽ ‖Φ‖
2

𝐿
0,𝜎

2

,

E(sup
𝑥∈R

∫

𝑇

0

󵄨󵄨󵄨󵄨𝐷𝜕𝑥𝑢
󵄨󵄨󵄨󵄨

2

𝑑𝑡) ⩽ 𝐶‖Φ‖
2

𝐿
0,𝜎

2

.

(28)

4.1. Absorption in 𝐿2(R) at Time 𝑡 = −1. Let 𝑠 < −1 and
𝑢
𝑠
∈ 𝐿

2
(R) be given, and let V be the solution of (14) with

initial condition V(𝑠, 𝑥) = V
𝑠
.

Multiplying (14) in 𝐿2(R) by V, we obtain

1

2

𝑑

𝑑𝑡
‖V‖2 + 𝜆‖V‖2 = ∫

R

(𝑓V −
1

2
𝑢
𝑥
V2 − 𝑢𝑢

𝑥
V)𝑑𝑥. (29)

It follows that

𝑑

𝑑𝑡
‖V‖2 + 𝜆‖V‖2 ⩽ 󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩𝐿∞
𝑥

‖V‖2

+
2

𝜆

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

𝐿
∞

𝑥

‖𝑢‖
2
+
2

𝜆

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

.

(30)

Using Gronwall Lemma for 𝑠 ⩽ −1 and noticing Lemma 4,
we get

‖V (−1)‖2

⩽ ‖V (𝑠)‖2 exp{−∫
−1

𝑠

(𝜆 −
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩𝐿∞
𝑥

) 𝑑𝜏}

+ ∫

−1

𝑠

(
2

𝜆

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

𝐿
∞

𝑥

‖𝑢‖
2
+
2

𝜆

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

)

× exp{−∫
−1

𝑡

(𝜆 −
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩𝐿∞
𝑥

) 𝑑𝜏} 𝑑𝑡

⩽ ‖V (𝑠)‖2

× exp {−(−1 − 𝑠)3/4 (𝜆(−1 − 𝑠)1/4 − 󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩𝐿4
𝑡
(𝐿
∞

𝑥
)
)}

+
2

𝜆
∫

−1

𝑠

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

𝐿
∞

𝑥

‖𝑢‖
2 exp{−∫

−1

𝑡

(𝜆 −
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩𝐿∞
𝑥

) 𝑑𝜏} 𝑑𝑡

+
2

𝜆
∫

−1

𝑠

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2 exp{−∫
−1

𝑡

(𝜆 −
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩𝐿∞
𝑥

) 𝑑𝜏} 𝑑𝑡

⩽ ‖V(𝑠)‖2𝑒
−(−1−𝑠)

3/4
(𝜆(−1−𝑠)

1/4
−‖Φ‖
𝐿
0,𝜎

2

)

+ 𝐾
1
.

(31)
Noticing

∫

−1

𝑠

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

𝐿
∞

𝑥

‖𝑢‖
2 exp{−∫

−1

𝑡

(𝜆 −
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩𝐿∞
𝑥

) 𝑑𝜏} 𝑑𝑡

⩽ sup
𝑡∈(−1,𝑠)

‖𝑢‖

× ∫

−1

𝑠

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

𝐿
∞

𝑥

exp{−∫
−1

𝑡

(𝜆 −
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩𝐿∞
𝑥

) 𝑑𝜏} 𝑑𝑡

⩽ ‖Φ‖
2

𝐿
0,𝜎

2

(‖Φ‖
2

𝐿
0,𝜎

2

+ 𝐶) ,

∫

−1

𝑠

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2 exp{−∫
−1

𝑡

(𝜆 −
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩𝐿∞
𝑥

) 𝑑𝜏} 𝑑𝑡 ⩽ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

,

(32)

we get that𝐾
1
= 𝐶(‖Φ‖

2

𝐿
0,𝜎

2

‖Φ‖
2

𝐿
0,𝜎

2

+ ‖Φ‖
2

𝐿
0,𝜎

2

+ (2/𝜆)‖𝑓‖
2

𝐿
2

𝑥

).
Then we have the following proposition.

Proposition 6. There exists a random radius 𝑟
1
(𝜔) > 0, such

that for all 𝜌 > 0 there exists 𝑡(𝜔) ⩽ −1 such that the following
holds 𝑃-a.s. For all 𝑠 ⩽ 𝑡(𝜔) and all 𝑢

𝑠
∈ 𝐿

2
(R) with ‖𝑢

𝑠
‖ ⩽ 𝜌,

the solution 𝑢 of problem (5) with initial condition 𝑢(𝑠, 𝑥) = 𝑢
𝑠

satisfies the inequality

‖𝑢 (−1, 𝜔)‖
2
⩽ 𝑟

2

1
(𝜔) . (33)

Proof. Given 𝜌 > 0, there exists 𝑡(𝜔) such that

𝑒
−(−1−𝑠)

3/4
(𝜆(−1−𝑠)

1/4
−‖Φ‖
2

𝐿
0,𝜎

2

)

𝜌
2
⩽ 1 (34)

for all 𝑠 ⩽ 𝑡(𝜔). Put

𝑟
2

1
(𝜔) = 1 + 𝐾

1
+ ‖𝑢 (−1)‖

2
. (35)

Then the proof of the proposition is completed.

We can also get an auxiliary estimate from (30) by the
Gronwall Lemma with 𝑠 ⩽ 𝑡 ⩽ 0.

Consider the following:

‖V (𝑡)‖2 ⩽ ‖V (𝑠)‖2 exp{−∫
𝑡

𝑠

(𝜆 −
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩𝐿∞
𝑥
(R)
) 𝑑𝜏}

+
2

𝜆
∫

𝑡

𝑠

(
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩

2

𝐿
∞

𝑥

‖𝑢‖
2
+
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

)

× exp{−∫
−1

𝑡

(𝜆 −
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩𝐿∞
𝑥

) 𝑑𝜏} 𝑑𝑡.

(36)

This inequality will be useful in the following proof.
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4.2. Absorption in 𝐻
1
(R) at Time 𝑡=0. To obtain the 𝐻1

estimate, we multiply (14) by V
𝑥𝑥

and integrate by part to get

1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩V𝑥
󵄩󵄩󵄩󵄩

2

−
1

2
((V2)

𝑥
, V

𝑥𝑥
) + 𝜆

󵄩󵄩󵄩󵄩V𝑥
󵄩󵄩󵄩󵄩

2

+
3

2
(𝑢

𝑥
, V2

𝑥
) + (𝑢

𝑥
, V

𝑥
)

+ (𝑢𝑢
𝑥𝑥
, V

𝑥
) + (V𝑢

𝑥𝑥
, V

𝑥
) − (𝑓

𝑥
, V

𝑥
) = 0.

(37)

(14) × V2𝑑𝑥 implies

1

3

𝑑

𝑑𝑡
∫
R

V3𝑑𝑥 − 𝛼∫
R

(V2)
𝑥
HV

𝑥
𝑑𝑥

− 𝛽∫
R

(V2)
𝑥
V
𝑥𝑥
𝑑𝑥 + 𝜆∫

𝑥

V3𝑑𝑥

+ (𝑢𝑢
𝑥
+ V𝑢

𝑥
+ 𝑢V

𝑥
− 𝑓, V2) = 0.

(38)

Moreover

𝑑

𝑑𝑡
∫
R

VHV
𝑥
𝑑𝑥 + ∫

R

(V2)
𝑥
HV

𝑥
𝑑𝑥 + 2∫

R

𝑢V
𝑥
HV

𝑥
𝑑𝑥

− 2 (𝑓 − 𝜆V − 𝑢𝑢
𝑥
,HV

𝑥
) = 0.

(39)

Combining (37), (38), and (39) (2𝛽(37) + (38) + 𝛼(39)), we
have

𝑑

𝑑𝑡
∫
R

(𝛽
󵄨󵄨󵄨󵄨V𝑥
󵄨󵄨󵄨󵄨

2

+
1

3
V3 + 𝛼VHV

𝑥
)𝑑𝑥 + 2𝛽𝜆

󵄩󵄩󵄩󵄩V𝑥
󵄩󵄩󵄩󵄩

2

+ 𝜆∫
R

V3𝑑𝑥 + 2𝛼𝜆∫
R

VHV
𝑥
𝑑𝑥

+ 3𝛽 (𝑢
𝑥
, V2

𝑥
) + 2𝛼 (𝑢, V

𝑥
HV

𝑥
)

+ 2𝛽 (𝑢
2

𝑥
+ 𝑢𝑢

𝑥𝑥
+ V𝑢

𝑥𝑥
− 𝑓

𝑥
, V

𝑥
)

+ (𝑢𝑢
𝑥
+ V𝑢

𝑥
+ 𝑢V

𝑥
− 𝑓, V2)

− 2𝛼 (𝑓 − 𝑢𝑢
𝑥
,HV

𝑥
) = 0.

(40)

Denote

𝜑 (V) = ∫
R

(𝛽
󵄨󵄨󵄨󵄨V𝑥
󵄨󵄨󵄨󵄨

2

+
1

3
V3 + 𝛼VHV

𝑥
)𝑑𝑥. (41)

And noticing that

− (V
𝑥
𝑢, V2) = 2 (V

𝑥
𝑢, V2) + (V𝑢

𝑥
, V2) ,

− (V
𝑥
𝑢, V2) =

1

3
(V𝑢

𝑥
, V2) ,

󵄨󵄨󵄨󵄨󵄨
3 (𝑢

𝑥
, V2

𝑥
)
󵄨󵄨󵄨󵄨󵄨
⩽ 3

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩𝐿∞
𝑥

󵄩󵄩󵄩󵄩V𝑥
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑥

,

󵄨󵄨󵄨󵄨2𝛼 (𝑢, V𝑥HV
𝑥
)
󵄨󵄨󵄨󵄨 ⩽ 2 |𝛼| ‖𝑢‖𝐿∞

󵄩󵄩󵄩󵄩V𝑥
󵄩󵄩󵄩󵄩

2

,

(42)

we deduce that

𝑑

𝑑𝑡
𝜑 (V) + (𝜆 −

2 |𝛼|

𝛽
‖𝑢‖𝐿∞

𝑥

− 3
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩𝐿∞
𝑥

)𝜑 (V) + 𝛽𝜆󵄩󵄩󵄩󵄩V𝑥
󵄩󵄩󵄩󵄩

2

⩽ −(
2

3
𝜆 +

2 |𝛼|

3𝛽
‖𝑢‖𝐿∞

𝑥

+
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩𝐿∞
𝑥

)∫
R

V3𝑑𝑥

− 𝛼(𝜆 +
2 |𝛼|

𝛽
‖𝑢‖𝐿∞

𝑥

+ 3
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩𝐿∞
𝑥

)

× ∫
R

VHV
𝑥
𝑑𝑥 − 2𝛽 (𝑢

2

𝑥
+ 𝑢𝑢

𝑥𝑥
+ V𝑢

𝑥𝑥
− 𝑓

𝑥
, V

𝑥
)

− (𝑢𝑢
𝑥
+
2

3
V𝑢

𝑥
− 𝑓, V2)

+ 2𝛼 (𝑓 − 𝑢𝑢
𝑥
,HV

𝑥
) .

(43)

Now we stop to estimate the right hand side of (43) term by
term:

󵄨󵄨󵄨󵄨2𝛽 (V𝑢𝑥𝑥, V𝑥)
󵄨󵄨󵄨󵄨 ⩽ 𝐶

󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

𝐿
∞

𝑥

‖V‖2
𝐿
2

𝑥

+
𝛽𝜆

12

󵄩󵄩󵄩󵄩V𝑥
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑥

,

󵄨󵄨󵄨󵄨󵄨
2𝛽 (𝑢

2

𝑥
, V

𝑥
)
󵄨󵄨󵄨󵄨󵄨
⩽ 2

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩𝐿∞
𝑥

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩𝐿2
𝑥

󵄩󵄩󵄩󵄩V𝑥
󵄩󵄩󵄩󵄩𝐿2
𝑥

⩽ 𝐶
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩

2

𝐿
∞

𝑥

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑥

+
𝛽𝜆

12

󵄩󵄩󵄩󵄩V𝑥
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑥

,

󵄨󵄨󵄨󵄨2𝛽 (𝑢𝑢𝑥𝑥, V𝑥)
󵄨󵄨󵄨󵄨 ⩽ 𝐶

󵄩󵄩󵄩󵄩𝑢𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑥

+
𝛽𝜆

12

󵄩󵄩󵄩󵄩V𝑥
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑥

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−
2

3
(V𝑢

𝑥
, V2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩𝐿∞
𝑥

‖V‖3
𝐿
3
(R)

⩽
󵄨󵄨󵄨󵄨𝑢𝑥

󵄨󵄨󵄨󵄨𝐿∞
𝑥

|V|5/2
𝐿
2

𝑥

󵄨󵄨󵄨󵄨V𝑥
󵄨󵄨󵄨󵄨

1/2

𝐿
2

𝑥

⩽ 𝐶
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩

4

𝐿
∞

𝑥

+ |V|5
𝐿
2

𝑥

+
𝛽𝜆

12

󵄨󵄨󵄨󵄨V𝑥
󵄨󵄨󵄨󵄨

2

𝐿
2

𝑥

,

󵄨󵄨󵄨󵄨󵄨
− (𝑢𝑢

𝑥
, V2)

󵄨󵄨󵄨󵄨󵄨
⩽
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩𝐿∞
𝑥

‖𝑢‖𝐿2
𝑥

‖V‖2
𝐿
4

𝑥

⩽
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩𝐿∞
𝑥

‖𝑢‖𝐿2
𝑥

‖V‖3/2
𝐿
2

𝑥

󵄩󵄩󵄩󵄩V𝑥
󵄩󵄩󵄩󵄩

1/2

𝐿
2

𝑥

⩽
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩

4/3

𝐿
∞

𝑥

‖𝑢‖
4/3

𝐿
2

𝑥

‖V‖2
𝐿
2

𝑥

+
𝛽𝜆

12

󵄩󵄩󵄩󵄩V𝑥
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑥

⩽ 𝐶 (𝜆)
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩

4

𝐿
∞

𝑥

+ ‖𝑢‖
2

𝐿
2

𝑥

‖V‖3
𝐿
2

𝑥

+
𝛽𝜆

12

󵄩󵄩󵄩󵄩V𝑥
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑥

,

󵄨󵄨󵄨󵄨−2𝛽 (𝑓𝑥, V𝑥)
󵄨󵄨󵄨󵄨 ⩽ 𝐶 (𝜆)

󵄩󵄩󵄩󵄩𝑓𝑥
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑥

+
𝛽𝜆

12

󵄩󵄩󵄩󵄩V𝑥
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑥

,

󵄨󵄨󵄨󵄨󵄨
(𝑓, V2)

󵄨󵄨󵄨󵄨󵄨
⩽ 𝐶 (𝜆)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

4/3

𝐿
2

𝑥

‖V‖2
𝐿
2

𝑥

+
𝛽𝜆

12

󵄩󵄩󵄩󵄩V𝑥
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑥

,

2

3
𝜆‖V‖3

𝐿
3
(R) ⩽ 𝐶 (𝜆) ‖V‖

10/3

𝐿
2

𝑥

+
𝛽𝜆

12

󵄩󵄩󵄩󵄩V𝑥
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑥

,

2 |𝛼|

3𝛽
‖𝑢‖∞ ∫

R
|V|3𝑑𝑥 ⩽ 𝐶󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩

2

+ ‖𝑢‖
2
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+ ‖V‖20/3 +
𝛽𝜆

12

󵄩󵄩󵄩󵄩V𝑥
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑥

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝛼𝜆∫

R

(VHV
𝑥
+ 2𝑓HV

𝑥
) 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝐶 (‖V‖2 + 󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

) +
𝛽𝜆

12

󵄩󵄩󵄩󵄩V𝑥
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑥

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝛼
2

𝛽
‖𝑢‖∞ ∫

R

VHV
𝑥
𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝐶
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩

2

+ ‖𝑢‖
2
‖V‖4 +

𝛽𝜆

12

󵄩󵄩󵄩󵄩V𝑥
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑥

,

󵄨󵄨󵄨󵄨(𝑢𝑢𝑥,HV
𝑥
)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨
− (𝑢

2

𝑥
,HV) − (𝑢𝑢

𝑥𝑥
,HV)

󵄨󵄨󵄨󵄨󵄨

⩽ 𝐶 (‖V‖2 + 󵄩󵄩󵄩󵄩𝑢𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩

4

) +
𝛽𝜆

12

󵄩󵄩󵄩󵄩V𝑥
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑥

.

(44)

Then combining the above estimates, we get

𝑑

𝑑𝑡
𝜑 (V) + (𝜆 −

2 |𝛼|

𝛽
‖𝑢‖𝐿∞

𝑥

− 3
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩𝐿∞
𝑥

)𝜑 (V)

⩽ 𝐶 (
󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩

2

𝐿
∞

𝑥

‖V‖2
𝐿
2

𝑥

+
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩

2

𝐿
∞

𝑥

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑥

+
󵄩󵄩󵄩󵄩𝑢𝑢𝑥𝑥

󵄩󵄩󵄩󵄩

2

𝐿
2

𝑥

+
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩

2

𝐿
2

𝑥

+ ‖V‖5
𝐿
2

𝑥

+
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩

4

𝐿
∞

𝑥

+ ‖𝑢‖
2

𝐿
2

𝑥

‖V‖3
𝐿
2

𝑥

+
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

4/3

𝐿
2

𝑥

‖V‖2
𝐿
2

𝑥

+ ‖V‖10/3
𝐿
2

𝑥

+ ‖𝑢‖
2

+‖V‖20/3 + ‖𝑢‖2‖V‖4) .

(45)

Applying the Gronwall Lemma for 𝑠 ⩽ 0, we find

𝜑 (V (0)) ⩽ 𝜑 (V (𝑠)) 𝑒−∫
0

𝑠
(𝜆−(2|𝛼|/𝛽)‖𝑢‖

𝐿
∞
𝑥
−3‖𝑢𝑥‖𝐿∞𝑥

)𝑑𝜏

+ 𝐶∫

0

𝑠

(
󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩

2

𝐿
∞

𝑥

‖V‖2
𝐿
2

𝑥

+
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩

2

𝐿
∞

𝑥

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑥

+ ‖𝑢‖
2

𝐿
2

𝑥

+
󵄩󵄩󵄩󵄩𝑢𝑢𝑥𝑥

󵄩󵄩󵄩󵄩

2

𝐿
2

𝑥

+
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩

4

𝐿
∞

𝑥

+ ‖V‖5
𝐿
2

𝑥

+
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩

4

𝐿
∞

𝑥

+ ‖𝑢‖
2

𝐿
2

𝑥

‖V‖3
𝐿
2

𝑥

+
󵄩󵄩󵄩󵄩𝑓𝑥

󵄩󵄩󵄩󵄩

2

𝐿
2

𝑥

+
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

4/3

𝐿
2

𝑥

‖V‖2
𝐿
2

𝑥

+ ‖V‖10/3
𝐿
2

𝑥

)

× 𝑒
−∫
0

𝑡
(𝜆−(2|𝛼|/𝛽)‖𝑢‖

𝐿
∞
𝑥
−3‖𝑢𝑥‖𝐿∞𝑥

)𝑑𝜏
𝑑𝑡.

(46)

We can read the boundedness of the right hand side of
(46) from the following estimates. Using (36), we have

∫

0

𝑠

󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

𝐿
∞

𝑥

‖V (𝑡)‖2
𝐿
2

𝑥

𝑒
−∫
0

𝑡
(𝜆−(2|𝛼|/𝛽)‖𝑢‖

𝐿
∞
𝑥
−3‖𝑢𝑥‖𝐿∞𝑥

)𝑑𝜏
𝑑𝑡

⩽ ∫

0

𝑠

󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

𝐿
∞

𝑥

× {‖V (𝑠)‖2 exp(−∫
𝑡

𝑠

(𝜆 −
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩𝐿∞
𝑥
(R)
) 𝑑𝜏) + 𝐶}

× 𝑒
−∫
0

𝑡
(𝜆−(2|𝛼|/𝛽)‖𝑢‖

𝐿
∞
𝑥
−3‖𝑢𝑥‖𝐿∞𝑥

)𝑑𝜏
𝑑𝑡

⩽ ∫

0

𝑠

󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

𝐿
∞

𝑥

‖V (𝑠)‖2𝑒−(−𝑠)
3/4

((−𝑠)
1/4

𝜆−4‖𝑢𝑥‖𝐿4
𝑡
(𝐿
∞
𝑥 )

)

𝑑𝑡

+ 𝐶∫

0

𝑠

󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

𝐿
∞

𝑥

𝑒
−∫
0

𝑡
(𝜆−(2|𝛼|/𝛽)‖𝑢‖

𝐿
∞
𝑥
−3‖𝑢𝑥‖𝐿∞𝑥

)𝑑𝜏
𝑑𝑡

⩽ 𝐶
󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩

4

𝐿
4

𝑡
(𝐿
∞

𝑥
)
.

(47)

We also have

∫

0

𝑠

∫

+∞

−∞

|𝑢|
2󵄨󵄨󵄨󵄨𝑢𝑥𝑥

󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑡

⩽ ∫

+∞

−∞

ess. sup
𝑡∈[𝑠,0]

|𝑢|
2
∫

0

𝑠

󵄨󵄨󵄨󵄨𝑢𝑥𝑥
󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑡

⩽ ∫

+∞

−∞

ess. sup
𝑡∈[𝑠,0]

|𝑢|
2
𝑑𝑥 ess.sup

𝑥∈R

∫

0

𝑠

󵄨󵄨󵄨󵄨𝑢𝑥𝑥
󵄨󵄨󵄨󵄨

2

𝑑𝑡.

= ‖𝑢‖
2

𝑊
2,∞

𝑥 (𝐿
2

𝑡
)
‖𝑢‖

2

𝐿
2

𝑥
(𝐿
∞

𝑡
)
.

(48)

The boundedness of other terms about the right hand side of
(46) is obvious. Noticing (25)–(28), we get

𝜑 (V (0)) ⩽ 𝜑 (V (𝑠)) 𝑒−∫
0

𝑠
(𝜆−3‖𝑢𝑥‖𝐿∞𝑥

)𝑑𝜏
+ 𝐶𝐾

2

⩽ 𝜑 (V (𝑠)) 𝑒−∫
0

𝑠
(𝜆−3‖𝑢𝑥‖𝐿∞𝑥

)𝑑𝜏
+ 𝐶𝐾

3
,

(49)

where

𝐾
2
= 𝐶(

󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

𝑊
2,∞

𝑥 (𝐿
2

𝑡)
‖𝑢‖

2

𝐿
2

𝑥(𝐿
∞

𝑡 )

+
󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩

4

𝐿
4

𝑡(𝐿
∞

𝑥 )
+ ‖𝑢‖

2

𝐿
∞

𝑡 (𝐿
2

𝑥)
‖𝑢‖

4

𝐿
4

𝑡(𝐿
∞

𝑥 )

+ ‖𝑢‖
2

𝐿
2

𝑥(𝐿
∞

𝑡 )
+
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩

4

𝐿
4

𝑡(𝐿
∞

𝑥 )

+‖𝑢‖
2

𝐿
2

𝑥(𝐿
∞

𝑥 )
+
󵄩󵄩󵄩󵄩𝑓𝑥

󵄩󵄩󵄩󵄩

2

𝐿
2

𝑥

) ,

𝐾
3
= ‖Φ‖

4

𝐿
0,𝜎

2

+ ‖Φ‖
6

𝐿
0,𝜎

2

+
󵄩󵄩󵄩󵄩𝑓𝑥

󵄩󵄩󵄩󵄩

2

𝐿
2

𝑥

.

(50)

Then we get the following proposition.

Proposition 7. There exists a random variable 𝑟
2
(𝜔) > 0,

such that for all 𝜌 > 0 there exists 𝑡̃(𝜔) ⩽ 0 such that the
following holds 𝑃-a.s. For all 𝑠 ⩽ 𝑡̃(𝜔) and all 𝑢

𝑠
∈ 𝐻

1
(R)

with ‖𝑢
𝑠
‖
𝐻
1
(R) ⩽ 𝜌, 𝜑 satisfies

𝜑 (V (0)) ⩽ 𝑟
2
(𝜔) . (51)

Proof. Given 𝜌 > 0, there exists 𝑡̃(𝜔) such that

𝜑 (V (𝑠)) 𝑒−∫
0

𝑠
(𝜆−(2|𝛼|/𝛽)‖𝑢‖

𝐿
∞
𝑥
−3‖𝑢𝑥‖𝐿∞𝑥

)𝑑𝜏
⩽ 1, (52)
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for all 𝑠 ⩽ 𝑡̃(𝜔). Put

𝑟
2
(𝜔) = 1 + 𝐾

3
. (53)

Then the proof of the proposition is completed.

Corollary 8. There exists a random variable 𝑟
3
(𝜔) > 0, such

that the solution 𝑢(𝑡, 𝜔; 𝑠, 𝑢
𝑠
) of problem (5) with the initial

condition 𝑢(𝑠, 𝑥) = 𝑢
𝑠
satisfies

󵄩󵄩󵄩󵄩𝑢(0, 𝜔; 𝑠, 𝑢𝑠)
󵄩󵄩󵄩󵄩𝐻1(R)

⩽ 𝑟
3
(𝜔) . (54)

Proof. We can deduce from the presentation of 𝜑(V) that

2

3

󵄩󵄩󵄩󵄩V𝑥
󵄩󵄩󵄩󵄩

2

−
1

28/3
‖V‖10/3 ⩽ 𝜑 (V) . (55)

Then

󵄩󵄩󵄩󵄩V𝑥(0)
󵄩󵄩󵄩󵄩

2

⩽
3

2
+ 𝐾

1
+

3

210/3
‖V(−1)‖10/3. (56)

By V(𝑡) = 𝑢(𝑡) − 𝑢(𝑡),
󵄩󵄩󵄩󵄩𝑢𝑥 (0)

󵄩󵄩󵄩󵄩

2

⩽ 2 (
󵄩󵄩󵄩󵄩V𝑥 (0)

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑢𝑥 (0)

󵄩󵄩󵄩󵄩

2

)

⩽ 2 (
3

2
+ 𝐾

1
+

3

210/3
‖V (−1)‖10/3 + 󵄩󵄩󵄩󵄩𝑢𝑥 (0)

󵄩󵄩󵄩󵄩

2

)

= 𝑟
3
(𝜔) .

(57)

Then the proof of the corollary is completed.

4.3. Construct the Attractor. Before we construct the random
attractor, it is worthwhile to point out that the domain about
the space variable is unbounded whichmakes the embedding
𝐻

1
(R) → 𝐿

2
(R) to be noncompact. Fortunately, we can

get weak compactness in the space𝐻1
(R) by Lemma 9 given

below. Motivated by the definition of weak attractor for the
deterministic system in [12], we extend this definition to the
RDS. Then we get weak random global attractor for (5) with
initial condition 𝑢(𝑠, 𝑥) = 𝑢

𝑠
.

Lemma 9 (see [13]). The solution operator {𝑆(𝑡)}
𝑡∈R is weakly

continuous in𝐻1
(R) in the sense that if V

0𝑛
converges weakly in

𝐻
1
(R) to some V

0
as 𝑛 → ∞, then 𝑆(𝑡)V

0𝑛
converges to 𝑆(𝑡)V

0

weakly in𝐻1
(R) for all 𝑡 ∈ R.

Having Proposition 7, Corollary 8, and Lemma 9 in hand,
one begins to construct the weak random attractor in space
𝐻

1
(R).
From Section 4.2, one gets an RDS for the stochastic

weakly damped, forced KdV-BO equation with additive
noise; that is,

𝑢 (𝑡, 𝜔; 𝑠, 𝑢
𝑠
) = 𝑆 (𝑡, 𝑠; 𝜔) 𝑢

𝑠
= V (𝑡, 𝜔; 𝑠; V

𝑠
) + 𝑢 (𝑡, 𝜔) . (58)

One recalls in [8] that if 𝐵 and 𝐴 are random sets such that
for 𝑃-almost all 𝜔 there exists a time 𝑇

𝐵
(𝜔) such that for all

𝑡 ⩽ 𝑡
𝐵
(𝜔)

Ψ (𝑡, 𝜃
−𝑡
𝜔) 𝐵 (𝜃

−𝑡
𝜔) ⊂ 𝐴 (𝜔) , (59)

then 𝐴 is said to absorb 𝐵. Of course, if 𝐴 absorbs 𝐵, then 𝐴
attracts 𝐵.

Denote

𝐴
1
= {𝑢 ∈ 𝐻

1
(R) ,

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

⩽ 𝑟
3
(𝜔)} . (60)

It is easy to see that 𝐴
1
is an absorbing set for RDS {Ψ(𝑡, 𝜔)}

in𝐻1
(R). Furthermore it is a weak compactness according to

Lemma 9.

Proposition 10. Let

A (𝜔) = ∪
𝐵⊂𝑋

Λ
𝐵
(𝜔), (61)

where Λ
𝐵
(𝜔) := ∩

𝑠⩾0
∪
𝑡⩾𝑠
𝜙(𝑡, 𝜃

−𝑡
𝜔)𝐵 is the omega-limit set of

𝐵. Here the closures are taken with respect to the weak topology
of𝐻1

(R). ThenA(𝜔) is included in 𝐴
1
and is nonempty. It is

invariant by Ψ(𝑡, 𝜔); that is,

Ψ (𝑡, 𝜔)A (𝜔) = A (𝜃
𝑡
𝜔) , ∀𝑡 > 0. (62)

The proof of Proposition 10 is easy using the following
facts.

(a) Ψ(𝑡, 𝜔) is weakly continuous on 𝐻1
(R), which is an

obvious corollary of Lemma 9.
(b) A point 𝑏 ∈ A(𝜔) if and only if there exist two

sequences (𝑠
𝑛
)
𝑛∈N ∈ R, (𝑥

𝑛
)
𝑛∈N ∈ A(𝜔) such that

𝑠
𝑛
→ −∞ and 𝜙(𝑠

𝑛
)𝑥

𝑛
→ 𝑏.

ThenA(𝜔) has the following properties:

(i) A(𝜔) is random compact set;
(ii) Ψ(𝑡, 𝜔)A(𝜔) = A(𝜃

𝑡
𝜔) for all 𝑡 ⩾ 0;

(iii) A(𝜔) attracts all deterministic bounded sets under
the sense that

lim
𝑡→∞

𝑑
𝑤
(Ψ (𝑡, 𝜃

𝑡
𝜔) 𝐵,A) = 0, (63)

where𝑑𝑤 denotes the distance in theweak topology of𝐻1
(R).

Then we get Theorem 1 in this paper.
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