
Research Article
Effects of Controller and Nonuniform Temperature
Profile on the Onset of Rayleigh-Bénard-Marangoni
Electroconvection in a Micropolar Fluid

H. M. Azmi and R. Idris

School of Informatics and Applied Mathematics, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia

Correspondence should be addressed to R. Idris; ruwaidiah@umt.edu.my

Received 5 February 2014; Accepted 11 May 2014; Published 16 June 2014

Academic Editor: Li Weili

Copyright © 2014 H. M. Azmi and R. Idris. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Linear stability analysis is performed to study the effects of nonuniform basic temperature gradients on the onset of Rayleigh-
Bénard-Marangoni electroconvection in a dielectric Eringen’s micropolar fluid by using the Galerkin technique. In the case of
Rayleigh-Bénard-Marangoni convection, the eigenvalues are obtained for an upper free/adiabatic and lower rigid/isothermal
boundaries. The influence of various parameters has been analysed. Three nonuniform basic temperature profiles are considered
and their comparative influence on onset of convection is discussed. Different values of feedback control and electric number are
added up to examine whether their presence will enhance or delay the onset of electroconvection.

1. Introduction

Electrohydrodynamics is a branch of fluid mechanics which
involved the effects of electrical forces. It is the study of
the dynamics of electrically charged fluids involving the
movements of ionized particles or molecules and their
interactions with electric fields and the surrounding fluids. In
dielectric media, hydrostatic pressure (or motion) is created
by electrostatic fields. When media are fluids, a flow is
produced. Generally, this phenomenon is related to the direct
conversion of electrical energy into kinetic energy and vice
versa. An electric field which is generated by electrically
charged particles as well as time-varying magnetic field is
the onset of natural convection. Magnetic effects will be
dominant in highly conductive fluids. Ironically, electric
effects will control the motion in dielectric fluids with such
low values of the conductivity. The effect of electric fields on
the liquid flow is directly converted into the kinetic energy [1].

Evolution of convection in a fluid has been greatly studied
by many authors; see [2–8]. Convection is the transfer of
thermal energy from one particle to another by the motion
of fluids such as liquids or gases in a media. In general,

convection can be divided into two which are natural convec-
tion and force convection. An example of natural convection
is electroconvection. Electroconvection is the movements of
fluid in an electric field. Many authors have studied the onset
of convection in a dielectric field layer such as Roberts [2],
Char and Chiang [3], Douiebe et al. [9], and El-Sayed [10].

In 1900, Bénard has observed a hexagonal pattern of
convection cells below after heating some wax in a hot metal
dish above some critical temperature. It shows the process
of thermal convection [11]. The mechanism of thermograv-
itational (buoyancy-driven) convection and thermocapillary
(surface tension driven) convection with temperature has
been the subject of a great deal of theoretical and experi-
mental investigations since the pioneering pieces of work of
Rayleigh in 1916 [12] and Pearson in 1958 [13]. The analy-
sis of thermogravitational and thermocapillary convection,
respectively, has many important applications in the field
of engineering such as flying of airplanes and submarine
in physical engineering and production of colloids, paints,
and polymeric suspensions in chemical engineering [14].
Rayleigh-Bénard instability is a mechanism associated with
buoyancy since there appears a nondimensional Rayleigh

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 571437, 8 pages
http://dx.doi.org/10.1155/2014/571437

http://dx.doi.org/10.1155/2014/571437


2 Journal of Applied Mathematics

number 𝑅, whereas Bénard-Marangoni instability is a mech-
anism associated with surface tension, since there appears a
nondimensional Marangoni number 𝑀 [15]. Nield [16] has
combined both mechanisms into a single analysis and the
depth of the layer is found to decrease as the surface tension
mechanism becomes more dominant, and when the depth
of the layer is at most 0.1 cm, the buoyancy effect can safely
be neglected for most liquids. The pioneering pieces of work
of Pearson, Rayleigh, Bénard, and Nield have subsequently
been extended by many researchers such as Idris et al. [4],
Siddheshwar and Pranesh [17], and Pranesh and Kiran [18].

The Rayleigh-Bénard-Marangoni convection in Eringen’s
micropolar fluid involves the effects of buoyancy and surface
tension. The main result from all these studies can classify
marginal states into two classes which are stationary and
oscillatory states [19]. Stationary convection is the preferred
mode for heating from below. Theoretically, oscillatory con-
vection is the most possible mode for heating from above
[17]. The theory of micropolar fluid is due to Eringen whose
theory allows for the presence of particles in the fluid by
taking into account particle motion and thermal effects [18].
We have indicated several possible applications of the theory
to suspensions which are liquid crystals, polymeric fluids,
certain anisotropic fluids, animal blood, and turbulence [14,
20].

Practically, considering uniformly distributed internal
heat source for the problem is possible, which means having
nonuniform basic temperature gradients [17]. In addition,
various numbers of controllers are added up to examine
whether their present will enhance or delay the onset of
convection [6, 21].

The aimof this paper is to examine the effect of cubic tem-
perature gradients with controller on the onset of Rayleigh-
Bénard-Marangoni in electroconvection. The critical points
for the onset of convection can be determined by using the
Galerkin technique.

2. Mathematical Formulation

An infinite horizontal layer of a Boussinesquian micropolar
fluid layer of depth 𝑑 is considered with the presence of an
electric field. Take a Cartesian coordinate system (𝑥, 𝑦, 𝑧)

with origin in the lower boundary and 𝑧-axis vertically
upwards. The body forces acting on the fluid are buoyancy,
surface tension, feedback control, and electric field. Further-
more, the spin is assumed to vanish at the boundaries.

The governing equations for the problem are the continu-
ity equation, conservation of linearmomentum, conservation
of angular momentum, conservation of energy, equation of
state, equation of state for dielectric constant, Faraday’s law,
and equation of polarization field; see [1].
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where ⃗𝑞 is the velocity, 𝜔⃗ is the spin, 𝑇 is the temperature,
𝑝 is the hydrodynamic pressure, 𝜌 is the density, 𝜌

𝑜
is the

density of the fluid at reference temperature 𝑇 = 𝑇
𝑜
, 𝑔 is

the acceleration due to gravity, 𝜁 is the coupling viscosity
coefficient or vortex viscosity, 𝜂 is the shear kinematic
viscosity coefficient, 𝐼 is the moment of inertia, 𝜆󸀠 and 𝜂

󸀠

are the bulk and shear spin viscosity coefficients, 𝛽 is the
micropolar heat conduction coefficient, 𝐶V is the specific
heat, 𝜒 is the thermal conductivity, 𝛼 is the coefficient of
thermal expansion, 𝜒
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electric field. The perturbation of (1) is nondimensionalised
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Following the classical lines of linear stability analysis
as presented by Chandrasekhar [19], the linearised and
dimensionless equations are given by
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where𝑊, 𝐺, 𝑇, and 𝜙 are, respectively, the amplitudes of the
infinitesimal perturbations of velocity, spin, temperature, and
electrostatic potential with
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The infinitesimal perturbations 𝑊, 𝐺, 𝑇, and 𝜙 are
assumed to be periodic waves and hence these permit a
normal mode in the form [19]
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where 𝑙 and 𝑚 are, respectively, the horizontal wave compo-
nents of wave number ⃗𝑎. Equation (5) substituted into (3)
yields
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If 𝜁 = 0, the above Rayleigh number identifies itself with
the classical definition [17].The operator𝐷 = 𝑑/𝑑𝑧 is defined
as differentiation with respect to 𝑧 and 𝑎 is the dimensionless
wave number [1].

Assume that the layer is bounded below by a rigid
conducting isothermal surface and above by a free insulating
adiabatic surface. Furthermore, the spin-boundary condition
is assumed to vanish at the boundaries. Equations (6)–(9) are
solved subject to the following boundary combinations:
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Table 1: Reference steady-state temperature gradients.

Model
Reference
steady-state
temperature
gradients

𝑓(𝑧) 𝑎
∗

1
𝑎
∗

2
𝑎
∗

3

1 Linear 1 1 0 0
2 Cubic 1 3(𝑧 − 1)

2 0 0 1
3 Cubic 2 0.6 + 1.02(𝑧 − 1)
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Figure 1: Plot of𝑀
𝑐
versus Ra for different values of 𝐾 = 0, 𝐾 = 2,

and 𝐾 = 4.

The classical linear basic state temperature gradient is
𝑎
∗

1
= 1, 𝑎∗

2
= 0, and 𝑎∗

3
= 0. The other different reference

steady-state temperature gradients examined in this paper are
listed in Table 1.

3. Solution

The Euler-Lagrange equations which are (6)–(9) are solved
subject to the boundary conditions (10) which constitute an
eigenvalue problem. The eigenvalue problem is solved by
using the single-term Galerkin technique. The variables in
(6)–(9) written in terms of trial functions which are𝑊
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and 𝜙, respectively; then the equations are integrated with
respect to 𝑧 from 0 to 1 and all the constants which are 𝐴, 𝐵,
𝐶, and 𝐸 are eliminated from the resulting equations. Lastly,
the boundary conditions (10) are applied into the resulting
equations. Here, we obtained the Marangoni number,𝑀:
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Figure 2: Plot of critical Marangoni number,𝑀
𝑐
, versus couple parameter,𝑁

1
, for different electric number, 𝐿, and (a)𝐾 = 0, (b)𝐾 = 4, and

(c) 𝐾 = 8.
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where the angle brackets ⟨⟩ denote the integration with
respect to 𝑧 when 𝑧 is between 0 and 1. We choose the trial
functions for lower rigid isothermal and upper free adiabatic
as follows:

𝑊
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such that they all satisfy the boundary conditions in (5) and
(6), except the one given by 𝐷2𝑊 + 𝑎

2

𝑀𝑇 = 0 at 𝑧 = 1,
but the residual from this is included in the residual from the
differential equations.
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Figure 3: Plot of critical Marangoni number, 𝑀
𝑐
, versus couple stress parameter, 𝑁

3
, for different electric number, 𝐿, and (a) 𝐾 = 0, (b)

𝐾 = 4, and (c) 𝐾 = 8.

4. Results and Discussion

Theaimof this paper is to study the effects of feedback control
[6, 21] together with the effect of nonuniform temperature
profiles on the onset of Rayleigh-Bénard-Marangoni [1, 4, 22,
23] electroconvection.

The graph of the critical Marangoni number 𝑀
𝑐
as a

function of Rayleigh number, Ra, for the different values
of feedback control, 𝐾, is plotted with different tempera-
ture profiles as in Figure 1. From Figure 1, we concluded
that, for the different temperature profiles, increasing value
of Rayleigh number, Ra, decreased the critical Marangoni
number, 𝑀

𝑐
, significantly; hence, the system becomes more

unstable. The onset of convection will be delayed when

the value of feedback control,𝐾, in the system is increased. As
the feedback control, 𝐾, gains, 𝑀

𝑐
increases monotonically,

showing that the feedback control stabilizes the no-motion
state for all wave numbers. Meanwhile, we observed that
the presence of buoyancy force, Ra, promoted the onset of
convection. Our results showed that Model 1 (Linear) with
𝑎
∗

1
= 1, 𝑎∗

2
= 0, and 𝑎∗

3
= 0 is less stabilizing than Model

3 (Cubic 2); that is,𝑀
𝑐3
< 𝑀
𝑐1
. Further, the results indicate

that Model 2 (Cubic 1) with 𝑎∗
1
= 0, 𝑎∗

2
= 0, and 𝑎∗

3
= 1 is

themost stabilizing of all the considered types of temperature
gradients; that is,𝑀

𝑐1
< 𝑀
𝑐3
< 𝑀
𝑐2
.

Figures 2(a)–2(c) illustrate the critical Marangoni num-
ber, 𝑀

𝑐
, versus coupling parameter, 𝑁

1
, for the different

values of feedback control, 𝐾, and electric number, 𝐿,
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Figure 4: Plot of critical Marangoni number,𝑀
𝑐
, versus micropolar heat conduction parameter,𝑁

5
, for different electric number, 𝐿, and (a)

𝐾 = 0, (b) 𝐾 = 4, and (c) 𝐾 = 8.

is plotted with different temperature profiles for lower rigid
isothermal and upper free adiabatic boundaries. Clearly,𝑀

𝑐

increases with 𝑁
1
. Increases in 𝑁

1
indicate the increasing

concentration of microelements. As microelements increase
in number with 𝑁

1
, greater part of the energy system is

consumed by these elements in developing the gyrational
velocities of the fluid and it concludes that onset of convection
is delayed. Increasing 𝑁

1
is to stabilize the system. From

Figure 2, it is also observed that the increase in electric
number, 𝐿, decreases the critical Marangoni number,𝑀

𝑐
; as

a result, the onset of convection is delayed. Therefore, the
electric number, 𝐿, destabilizes the system. Besides, we have
examined that the increasing value of 𝐾 delayed the onset
of convection and rendered the system stable. From those

three temperature gradients, Model 2 (Cubic 1) is shown to
be the most stabilizing with 𝑎∗

1
= 0, 𝑎∗

2
= 0, and 𝑎∗

3
= 1 of

all the considered types of the temperature gradients; that is,
𝑀
𝑐1
< 𝑀
𝑐3
< 𝑀
𝑐2
.

Figures 3(a)–3(c) illustrate the critical Marangoni num-
ber,𝑀

𝑐
, versus couple stress parameter, 𝑁

3
, for the different

values of feedback control, 𝐾, and electric number, 𝐿, in
the absence of buoyancy force, Ra, is plotted with differ-
ent temperature profiles. From Figure 3, 𝑀

𝑐
decreases with

increasing 𝑁
3
. Increasing 𝑁

3
decreases the couple stress of

the fluid which causes a decreasing in microrotation and
hence makes the system more unstable. Thus, increasing 𝑁

3

destabilizes the system as couple stresses are operative at only
small values of 𝑁

3
. Decrease in 𝑀

𝑐
is significant for lower



Journal of Applied Mathematics 7

values of 𝑁
3
; at higher values, dip in 𝑀

𝑐
is insignificant.

Meanwhile, the onset of convection would be delayed when
the value of feedback control, 𝐾, in the system is increased.
Linear temperature profile is less stabilizing thanCubic 2, and
Cubic 1 is the most stabilizing one; that is,𝑀

𝑐1
< 𝑀
𝑐3
< 𝑀
𝑐2
.

Besides, it illustrates that increasing electric number, 𝐿, will
decrease criticalMarangoni number,𝑀

𝑐
; as a result, the onset

of convection is delayed.
Figures 4(a)–4(c) illustrate the results of the critical

Marangoni number,𝑀
𝑐
, versus micropolar heat conduction

parameter,𝑁
5
, for the different values of feedback control,𝐾,

and electric number, 𝐿, is plotted with different temperature
profiles gradient. When 𝑁

5
increases, 𝑀

𝑐
also increases.

Increasing micropolar heat conduction parameter, 𝑁
5
, will

make the heat induced into the fluid due to these microele-
ments also increase, thus reducing the heat transfer from
bottom to the top. Decrease in heat transfer will delay the
onset of instability. 𝑁

5
acts as a stabilizing effect on the

system. Meanwhile, increases in feedback control, 𝐾, for
every temperature gradient will delay the onset of convection
in the system.The different temperature gradients are Linear,
Cubic 1, and Cubic 2. Cubic 1 is the most stabilizing one
among them. Linear temperature profile is less stabilizing
compared to Cubic 2; that is, 𝑀

𝑐1
< 𝑀
𝑐3
< 𝑀
𝑐2
. It is also

observed that the increase in electric number, 𝐿, decreases
the critical Marangoni number,𝑀

𝑐
. As a result, the onset of

convection is delayed. Therefore, electric number, 𝐿, acts as a
destabilizing effect on the system.

5. Conclusion

In this work, we used the classical linear stability analysis
to investigate the effect of feedback control, electric number,
and different temperature gradients profiles on the onset
of thermocapillary and thermogravitational convection in a
dielectric micropolar fluid. Our results provided evidence
that the presence of feedback control helped in delaying
the onset of convection in dielectric micropolar fluid. When
the value of feedback control increased, then the system
became more stable. Electric number which acts as a desta-
bilizing effect on the system will delay the onset of thermal
convection. Of the three models considered in this paper,
Model 2 (Cubic 1) is the most stable compared to Model
1 (Linear) and Model 3 (Cubic 2). Model 3 (Cubic 2) is
suitable for consideration for laboratory experimentation
withmicrogravity environment.Therefore, we concluded that
dielectric field mechanism has a destabilizing effect on the
system.
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