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We study the global disturbance rejection problem for a class of general multivariable nonlinear systems with multiclass
nonharmonic disturbances. The paper first introduces the importance and state of the art for disturbance rejection problem and
describes the control problem in the form of mathematical expressions. It stresses the multiclass disturbances produced by the
exosystem satisfying certain characteristic conditions.Then, the nonlinear internalmodels are designed in accordancewith different
characteristics of multiclass external disturbances. On the basis of introduction of the control law for disturbance-free system, a
multivariable state feedback controller is devised in terms of the designed internalmodel equations and corresponding assumptions.
A Lyapunov function is constructed to theoretically prove the global uniform boundness of all signals for the multivariable closed-
loop system. Finally, the presented method is applied to implement the speed control and reject the multiclass nonharmonic
disturbances for a two-input motor drive system. The simulation results testify correctness and effectiveness of the presented
algorithm.

1. Introduction

Due to its importance, the problem of disturbance rejection
generated by the exosystem has been paid great attention
in the world over the past few decades [1–3]. Especially,
this problem in nonlinear system has been concerned in
a recent period of time [4–6]. In terms of internal model
principle (IMP), one of the key technologies of rejection of
exogenous disturbance is to construct reasonable internal
model equations, which is able to duplicate the characteristics
of the external disturbance.

In addition, many industrial applications, such as servo
system, wind power system, photovoltaic system, and other
modern systems, which rely on power electronic equipments
to work, [7–9], are frequently influenced by the external
disturbances generated by exosystem [10, 11]. In the circum-
stance of the existence of external disturbances, the conven-
tional PID controller with constant parameters is difficult to

satisfy the requirement of high precision control for these
systems [12, 13]. Therefore, rejection of external disturbances
bymeans of newways [14, 15] is an importantwork to improve
the working performance of these industrial systems. From
the state-of-the-art technologies in disturbance rejection, the
researchers frequently assume the following:

(1) the external disturbances are frequently sinusoidal;
that is to say, the exosystem generally satisfies the con-
dition of neutral stability such as references [16, 17]
discussing the suppression of sinusoidal interference
with known and unknown frequency, respectively;

(2) currently, the focus of the research on disturbance
rejection is gradually converting from linear systems
to nonlinear systems; nevertheless, the disturbance
rejections with semiglobal stability [18] and single-
input and single-output (SISO) [19] systems are con-
cerned.
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Therefore, the disturbance rejection problem with non-
harmonic interferences and multivariable nonlinear systems
has not received adequate attention in current studies. How-
ever, the nonharmonic disturbances produced by nonlinear
exosystem can induce noise and reduce accuracy to these
industrial systems [20]. In addition, just a few articles
on nonharmonic interference suppression aim at one class
of disturbance [21]. Therefore, the research of multiclass
disturbances rejection in multivariable nonlinear system
can extend the application of present control theory to a
generalized range [22]. Hence, in [23], a global multivariable
control algorithm is proposed to reject multiclass external
nonharmonic disturbances.

In view of the issues described above, the purpose of the
paper is to propose an improved internal model principle
(IMP) based multivariable nonlinear control algorithm with
multiclass nonharmonic disturbances and utilize the pro-
posed method to control a motor drive system to run stably
and suppress multiclass external nonharmonic disturbances.
As written in [23], the critical points of the problem in
disturbance rejection are to model the nonlinear exosystem
and present a corresponding control method to suppress
the disturbance. Therefore, the essential distinction with the
work in [23], this paper addresses the problem of multi-
variable disturbances rejection with other multiclass exosys-
tems, additionally, which are provided by matrix form. For
the difference of external exosystems, the entirely different
internal model and a matching control method should be
proposed to model and reject the external disturbances in
terms of the intrinsic characteristics of exosystem. In practical
terms, the construction of internal model replicating with the
exogenous interference in the paper is on the basis of self-
contained concepts of expanded steady state generator and
internal model proposed in [24]. Similarly, the problem of
nonharmonic disturbances rejection in the paper is different
from the work in [22], which aims to reject a constant
disturbance.

The innovative works in the paper are the following:

(1) the previous work in references [20, 21] is extended to
a generalized field with multivariable inputs of non-
linear systems and multiclass nonlinear exosystems;

(2) an improved IMP based multivariable nonlinear con-
trol algorithm with another multiclass nonharmonic
disturbance is presented on the basis of certain char-
acteristic conditions satisfied by exosystem and state
information of closed-loop system;

(3) a new type of nonlinearmultivariable internal models
for anothermulticlass nonlinear nonharmonic distur-
bance is constructed in terms of the expanded steady
state generator and internal model.

The structures of the paper are arranged as follows. It
begins in Section 1 with an analysis of the state of the art of
disturbance rejection. The formulation of control problem
in the paper is given in Section 2. The nonlinear internal
models of multiclass external disturbances are designed in
Section 3. The nonlinear multivariable state feedback con-
troller is devised in Section 4, and the global convergence of

the presented controller is theoretically proved. The imple-
mentation of the proposed algorithm to a two-input motor
drive system is performed in Section 5 and the conclusions of
the research are obtained in the last section.

2. Formulation of Control Problem

The multivariable nonlinear system with multiclass external
nonharmonic disturbances studied in the paper is described
in an affine form shown as below [23]:

ẋ = f (x) +

𝑚

∑

𝑖=1

g
𝑖
(x) (u

𝑖
+k
𝑖
(w)) , 1 ≤ 𝑖 ≤ 𝑚, (1)

where x ∈ R𝑛 indicate the state vectors, u
𝑖

∈ R describe the
control inputs, f(x) and g

𝑖
(x) denote the known smooth vec-

tor fields, k
𝑖
(w) represent the external nonlinear disturbances,

w ∈ R𝑞 are the exogenous vectors generated by the nonlinear
exosystem and shown as follows [24]:

ẇ = 𝑠

𝑖
(w) = 𝐴

𝑖1
w +

𝑛

∑

𝑘=2

𝐴

𝑖𝑘
w𝑠

𝑖𝑘
(w) , 1 ≤ 𝑖 ≤ 𝑚, (2)

where matrices 𝐴

𝑖1
and 𝐴

𝑖𝑘
∈ 𝑅

𝑛𝑞×𝑛𝑞
, 𝑘 = 2, . . . , 𝑛, and

𝑠

𝑖𝑘
(w) : 𝑅

𝑛𝑞
→ 𝑅 are sufficient smooth functions, and

𝑠

𝑖𝑘
(0) = 0.
For the stability problems of multivariable input system,

the key of the study is to convert multivariable nonlinear
system into multiple single-input systems [25].

Assumption 1. For the multivariable nonlinear disturbance-
free system shown below:

ẋ = f (x) +

𝑚

∑

𝑖=1

g
𝑖
(x) u
𝑖
, 1 ≤ 𝑖 ≤ 𝑚, (3)

there exists control law of sate feedback 𝛼
𝑖
(x), which can

make the system

ẋ = f (x) +

𝑚

∑

𝑖=1

g
𝑖
(x)𝛼
𝑖
(x) (4)

asymptotically converge to the origin. In consequence, a
Lyapunov function V(x) exists and makes the following
inequalities hold [20, 23]:

𝑑 (‖x‖) ≤ V (x) ≤ 𝑑 (‖x‖) ,

𝜕V (x)

𝜕x
(f (x) +

𝑚

∑

𝑖=1

g
𝑖
(x)𝛼
𝑖
(x)) ≤ −𝑑

0
(‖x‖) ,

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕V (x)

𝜕x

𝑚

∑

𝑖=1

g
𝑖
(x)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

2

≤ 𝑑

0
(‖x‖) ,

(5)

where 𝑑, 𝑑, and 𝑑

0
belong to class 𝐾

∞
functions.

Assumption 2. The flows of the vector field for nonlinear
exosystem (2) are bounded.
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Remark 3. Generally speaking, there exist numerous non-
linear systems satisfying Assumption 2, such as harmonic
functions and limit cycles of nonlinear dynamic system. The
well-known Van der Pol oscillator [20] is selected as the
exosystem in the paper and can be expressed as below:

𝑤̇

1
= 𝑤

2
,

𝑤̇

2
= − 𝑎𝑤

1
+ 𝑏 (1 − 𝑤

2

1
) 𝑤

2
,

(6)

where 𝑎 and 𝑏 are constants greater than zero. Under such
circumstances, the limit cycle generated by Van der Pol
oscillator is stable. Consequently, (6) is written in the form
of (2), and we can obtain

ẇ = 𝐴

11
w + 𝐴

12
w𝑠

12
(w) , (7)

where 𝐴

11
= [

0 1

−𝑎 𝑏
], 𝐴

12
= [

0 0

0 −𝑏
], 𝑠

12
(𝑤) = 𝑤

2

1
.

Assumption 4. There exist a constant 𝑟

𝑖
and a set of real

numbers 𝑎

𝑖0
, 𝑎

𝑖1
, . . . , 𝑎

𝑖(𝑟𝑖−1)
satisfying the following equation:

𝐿

𝑟𝑖

𝐴𝑖1wk𝑖 (w) = 𝑎

𝑖0
k
𝑖
(w) + 𝑎

𝑖1
𝐿

𝐴𝑖1wk𝑖 (w)

+ ⋅ ⋅ ⋅ + 𝑎

𝑖(𝑟𝑖−1)
𝐿

𝑟𝑖−1

𝐴𝑖1wk𝑖 (w) ,

(8)

where 𝐿

𝐴𝑖1wk𝑖(w) = (𝜕k
𝑖
(w)/𝜕w)𝐴

𝑖1
w, 𝐿

𝑚

𝐴𝑖1wk𝑖(w) = (𝜕𝐿

𝑚−1

𝐴𝑖1w
k
𝑖
(w)/𝜕w)𝐴

𝑖1
w, 𝑚 = 2, 3, . . . , 𝑟

𝑖
, and 𝐿 is an operator of Lee

derivative.

Apparently, if k
𝑖
(w) denotes a linear expression of w,

Assumption 4 will hold automatically.

Assumption 5. There exists a smooth function h
𝑖
(x) : R𝑛 →

R𝑛𝑞 making

𝜕h
𝑖
(x)

𝜕x
g
𝑖
(x) = G

𝑖
, 1 ≤ 𝑖 ≤ 𝑚,

(9)

where G
𝑖
is a nonzero constant vector defined in R𝑛𝑞 .

The questions resolved in the paper can be depicted as
below.

Definition 6. For an arbitrarily given compact subset Dw ∈

R𝑛𝑞 , a state feedback controller u
𝑖
can always be found to

guarantee the solution of original multivariable closed-loop
system (1) existence and boundness under arbitrary initial
conditions for all w(0) ∈ Dw, when 𝑡 ≥ 0, and even
lim
𝑡→∞

x(𝑡) = C, where C is a constant vector representing
the reference value.

3. Design of Multiclass Nonlinear
Internal Models

Let

𝜏

𝑖
(w) = col (k

𝑖
(w) , 𝐿

𝐴𝑖1wk𝑖 (w) , . . . , 𝐿

𝑟𝑖−1

𝐴𝑖1wk𝑖 (w)) ; (10)

then there exist matrices Φ

𝑖
= [

0(𝑟𝑖−1)×1
𝐼𝑟𝑖−1

𝑎𝑖0 [𝑎𝑖1 ,...,𝑎𝑟𝑖−1
]
] and 𝜓

𝑖
=

[1, 0, . . . , 0] making

𝜕𝜏

𝑖
(w)

𝜕w
𝐴

𝑖1
w = Φ

𝑖
𝜏

𝑖
(w) ,

V
𝑖
(w) = 𝜓

𝑖
𝜏

𝑖
(w) ,

(11)

where matrix pair (Φ

𝑖
, 𝜓

𝑖
) is observable and 𝐼

𝑟𝑖−1
is (𝑟

𝑖
− 1) ×

(𝑟

𝑖
− 1) unit matrix.
For the sake of establishment of nonlinear internal model

equation, the following assumption is brought up.

Assumption 7. There exists amatrixΦ

𝑖𝑘
, 𝑘 = 2, . . . , 𝑛, making

𝜕𝜏

𝑖
(w)

𝜕w
𝐴

𝑖𝑘
w = Φ

𝑖𝑘
𝜏

𝑖
(w) .

(12)

Assume 𝜏

𝑖
(w) = 𝑇

𝑖
𝜏

𝑖
(w) and 𝑇

𝑖
∈ 𝑅

𝑟𝑖×𝑟𝑖 to be nonsingular
matrices. With derivative of 𝜏

𝑖
(w) along with (2), we can

obtain

𝜕𝜏

𝑖
(w)

𝜕w
𝑠

𝑖
(w) =

𝜕𝜏

𝑖
(w)

𝜕w
(𝐴

𝑖1
w +

𝑛

∑

𝑘=2

𝐴

𝑖𝑘
w𝑠

𝑖𝑘
(w))

= 𝑇

𝑖
Φ

𝑖
𝑇

−1

𝑖
𝜏

𝑖
(w) +

𝑛

∑

𝑘=2

𝑇

𝑖
Φ

𝑖𝑘
𝑠

𝑖𝑘
(w) 𝑇

−1

𝑖
𝜏

𝑖
(w)

= 𝑇

𝑖
𝜙

𝑖
(𝑤) 𝑇

−1

𝑖
𝜏

𝑖
(w) ,

V
𝑖
(w) = 𝜓

𝑖
𝑇

−1

𝑖
𝜏

𝑖
(w) ,

(13)

where 𝜙

𝑖
(w) = Φ

𝑖
+ 𝜑

𝑖
(w), 𝜑

𝑖
(w) = ∑

𝑛

𝑘=2
Φ

𝑖𝑘
𝑠

𝑖𝑘
(w), and

𝜑

𝑖
(0) = 0, 𝜙

𝑖
(0) = Φ

𝑖
.

In terms of linear observer theory, a Hurwitz matrix
F
𝑖
is chosen to make matrix pair (F

𝑖
,G
𝑖
) be controllable

for nonzero constant vector 𝐺

𝑖
defined in (9). Due to the

observability of matrix pair (Φ

𝑖
, 𝜓

𝑖
) and the fact that F

𝑖
and

Φ

𝑖
have nonintersecting frequency spectrum, hence Sylvester

equation𝑇

𝑖
Φ

𝑖
−𝐹

𝑖
𝑇

𝑖
= 𝐺

𝑖
𝜓

𝑖
has a unique nonsingular solution

𝑇

𝑖
.
Let 𝑞

𝑖
= 𝜓

𝑖
𝑇

−1

𝑖
, the nonlinear exosystem can immerse into

the system shown as below:

𝜂̇
𝑖

= (F
𝑖

+ 𝑇

𝑖
𝜑

𝑖
(w) 𝑇

−1

𝑖
) 𝜂
𝑖

+ G
𝑖
𝑞

𝑖
𝜂
𝑖
;

k
𝑖
(w) = 𝑞

𝑖
𝜂
𝑖
.

(14)

In consequence, multiclass nonlinear internal models can
be designed as follows:

̇

𝜉

𝑖
= (F
𝑖

+ 𝑇

𝑖
𝜑

𝑖
(w) 𝑇

−1

𝑖
) (𝜉

𝑖
+ h
𝑖
(x))

−

𝜕h
𝑖
(x)

𝜕x
(f
𝑖
(x) + g

𝑖
(x) u
𝑖
) .

(15)

Define an auxiliary error e
𝑖
as

e
𝑖

= 𝜂
𝑖

− 𝜉

𝑖
− h
𝑖
(x) , (16)
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and with derivative of (16) along with (1), (14), and (15), we
can get

ė
𝑖

= (F
𝑖

+ 𝑇

𝑖
𝜑

𝑖
(w) 𝑇

−1

𝑖
) 𝜂
𝑖

+ G
𝑖
𝑞

𝑖
𝜂
𝑖

− (F
𝑖

+ 𝑇

𝑖
𝜑

𝑖
(w) 𝑇

−1

𝑖
) (𝜉

𝑖
+ h
𝑖
(x))

+

𝜕h
𝑖
(x)

𝜕x
(f
𝑖
(x) + g

𝑖
(x) u
𝑖
)

−

𝜕h
𝑖
(x)

𝜕x
(f
𝑖
(x) + g

𝑖
(x) (u

𝑖
+ v
𝑖
(w)))

= (F
𝑖

+ 𝑇

𝑖
𝜑

𝑖
(w) 𝑇

−1

𝑖
) (𝜂

𝑖
− 𝜉

𝑖
− h
𝑖
(x))

= (F
𝑖

+ 𝑇

𝑖
𝜑

𝑖
(w) 𝑇

−1

𝑖
) e
𝑖
.

(17)

4. Design of Multivariable Nonlinear State
Feedback Controller

On the basis of the established multiclass nonlinear internal
models (15) and Assumption 1, the multivariable nonlinear
state feedback controller can be designed as follows:

u
𝑖

= 𝛼
𝑖
(x) − q

𝑖
(𝜉

𝑖
+ h
𝑖
(x)) . (18)

Construct a Lyapunov function 𝑊 as below:

𝑊 = 𝑉 (x) +

𝑚

∑

𝑖=1

𝛾e
𝑖

𝑇e
𝑖
, (19)

where 𝛾 is a positive real constant.With derivative of function
𝑊 along with originally nonlinear system (1) and auxiliary
error (17), we can obtain

̇

𝑊 =

𝜕𝑉 (x)

𝜕x
(f (x) +

𝑚

∑

𝑖=1

g
𝑖
(x) (u

𝑖
+ v
𝑖
(w)))

+

𝑚

∑

𝑖=1

(𝛾e𝑇
𝑖

(F
𝑖

+ 𝑇

𝑖
𝜑

𝑖
(w) 𝑇

−1

𝑖
+ F𝑇
𝑖

+𝑇

−𝑇

𝑖
𝜑

𝑇

𝑖
(w) 𝑇

𝑇

𝑖
) e
𝑖
)

=

𝜕𝑉 (x)

𝜕x
(f
𝑖
(x)

+

𝑚

∑

𝑖=1

g
𝑖
(x) (𝛼

𝑖
(x) − q

𝑖
(𝜉

𝑖
+ h
𝑖
(x)) + q

𝑖
𝜂

𝑖
) )

+

𝑚

∑

𝑖=1

𝛾e𝑇
𝑖

(𝑆 (w)) e
𝑖

=

𝜕𝑉 (x)

𝜕x
(f
𝑖
(x) +

𝑚

∑

𝑖=1

g
𝑖
(x)𝛼
𝑖
(x))

+

𝜕𝑉 (x)

𝜕x

𝑚

∑

𝑖=1

g
𝑖
(x) q
𝑖
e
𝑖

+

𝑚

∑

𝑖=1

𝛾e𝑇
𝑖

(𝑆 (w)) e
𝑖

≤ − 𝑑

0
(‖x‖) +

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕𝑉 (x)

𝜕x

𝑚

∑

𝑖=1

g
𝑖
(x)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄩

󵄩

󵄩

󵄩

q
𝑖
e
𝑖

󵄩

󵄩

󵄩

󵄩

+

𝑚

∑

𝑖=1

𝛾e𝑇
𝑖

(𝑆 (w)) e
𝑖
,

(20)

where 𝑆(w) = F
𝑖

+ 𝑇

𝑖
𝜑

𝑖
(w)𝑇

−1

𝑖
+ F𝑇
𝑖

+ 𝑇

−𝑇

𝑖
𝜑

𝑇

𝑖
(w)𝑇

𝑇

𝑖
. By

application of inequality 2𝑎𝑏 ≤ 𝑐𝑎

2

+ 𝑐

−1

𝑏

2 (choose 𝑐 = 1)
into the second item of (20), we can get

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕𝑉 (x)

𝜕x

𝑚

∑

𝑖=1

g
𝑖
(x)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄩

󵄩

󵄩

󵄩

q
𝑖
e
𝑖

󵄩

󵄩

󵄩

󵄩

≤

1

2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕𝑉 (x)

𝜕x

𝑚

∑

𝑖=1

g
𝑖
(x)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

2

+

𝑚

∑

𝑖=1

1

2

󵄩

󵄩

󵄩

󵄩

q
𝑖

󵄩

󵄩

󵄩

󵄩

2󵄩
󵄩

󵄩

󵄩

e
𝑖

󵄩

󵄩

󵄩

󵄩

2

≤

1

2

𝑑

0
(‖x‖) +

𝑚

∑

𝑖=1

1

2

󵄩

󵄩

󵄩

󵄩

q
𝑖

󵄩

󵄩

󵄩

󵄩

2󵄩
󵄩

󵄩

󵄩

e
𝑖

󵄩

󵄩

󵄩

󵄩

2

.

(21)

Assume that there exists a compact set 𝑆(w) making 𝑆(w)

be a symmetric matrix of negative definiteness for all w ∈

𝑆(w). Hence, there exists a positive real number 𝑓 satisfying
the following inequality for all w ∈ 𝑆(w):

e𝑇
𝑖

(𝑆 (w)) e
𝑖

≤ −𝑓

󵄩

󵄩

󵄩

󵄩

e
𝑖

󵄩

󵄩

󵄩

󵄩

2

.
(22)

Substitute (21) and (22) into (20); we can get

̇

𝑊 ≤ − 𝑑

0
(‖x‖) +

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕𝑉 (x)

𝜕x

𝑚

∑

𝑖=1

g
𝑖
(x)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄩

󵄩

󵄩

󵄩

q
𝑖
e
𝑖

󵄩

󵄩

󵄩

󵄩

+

𝑚

∑

𝑖=1

𝛾e𝑇
𝑖

(𝑆 (w)) e
𝑖

≤ − 𝑑

0
(‖x‖) +

1

2

𝑑

0
(‖x‖) +

𝑚

∑

𝑖=1

1

2

󵄩

󵄩

󵄩

󵄩

q
𝑖

󵄩

󵄩

󵄩

󵄩

2󵄩
󵄩

󵄩

󵄩

e
𝑖

󵄩

󵄩

󵄩

󵄩

2

−

𝑚

∑

𝑖=1

𝛾𝑓

󵄩

󵄩

󵄩

󵄩

e
𝑖

󵄩

󵄩

󵄩

󵄩

2

≤ −

1

2

𝑑

0
(‖x‖) +

𝑚

∑

𝑖=1

(

1

2

󵄩

󵄩

󵄩

󵄩

q
𝑖

󵄩

󵄩

󵄩

󵄩

2

− 𝛾𝑓)

󵄩

󵄩

󵄩

󵄩

e
𝑖

󵄩

󵄩

󵄩

󵄩

2

.

(23)

Choose appropriate 𝛾 and 𝑓 to satisfy

𝜃 =

1

2

󵄩

󵄩

󵄩

󵄩

q
𝑖

󵄩

󵄩

󵄩

󵄩

2

− 𝛾𝑓 < 0; (24)
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then, we can obtain

̇

𝑊 ≤ −

1

2

𝑑

0
(‖x‖) +

𝑚

∑

𝑖=1

𝜃

󵄩

󵄩

󵄩

󵄩

e
𝑖

󵄩

󵄩

󵄩

󵄩

2

< 0. (25)

Hence, all variables are bounded. Combined with the utiliza-
tion of invariant set theorem, we can get lim

𝑡→∞
x(𝑡) = C and

lim
𝑡→∞

e
𝑖

= 0. The following theorem can be obtained.

Theorem 8. For the multivariable nonlinear system (1)
and nonlinear exosystem (2) satisfying Assumption 1 to
Assumption 7, multiclass nonlinear internal models (15) and
multivariable nonlinear state feedback controller (18) are
able to make the closed-loop system globally bounded, and
lim
𝑡→∞

x(𝑡) = C.

5. Application to Speed Control of
a Two-Input Nonlinear System

Speed control of a permanent magnet synchronous motor
drive system is widely utilized in various industrial fields.
Hence, consider a two-input variable motor drive system
shown as below [25], which is not able to tackle with a single-
input method of previous disturbance rejection:

d𝑖

𝑑

d𝑡

= −

𝑅

𝑠

𝐿

𝑑

𝑖

𝑑
+ 𝑝𝑖

𝑞
𝜔

𝑚
+

1

𝐿

𝑑

𝑢

𝑑
,

d𝜔

𝑚

d𝑡

=

𝑝𝜑

𝑓

𝐽

𝑚

𝑖

𝑞
−

𝐵

𝑚

𝐽

𝑚

𝜔

𝑚
−

1

𝐽

𝑚

𝑇

𝐿
,

d𝑖

𝑞

d𝑡

= −

𝑅

𝑠

𝐿

𝑞

𝑖

𝑞
− 𝑝𝑖

𝑑
𝜔

𝑚
−

𝑝𝜑

𝑓

𝐿

𝑞

𝜔

𝑚
+

1

𝐿

𝑞

𝑢

𝑞
,

(26)

where 𝑖

𝑑
and 𝑖

𝑞
represent the current in 𝑑-axis and 𝑞-axis,

respectively, 𝑢

𝑑
and 𝑢

𝑞
indicate the voltage in 𝑑-axis and 𝑞-

axis, respectively,𝑅
𝑠
and𝜑

𝑓
denote the resistance of stator and

flux linkage of permanent magnet, 𝜔

𝑚
is the speed, 𝑝 and 𝐽

𝑚

denote number of pole pairs and moment of inertia of rotor,
respectively, and 𝑇

𝐿
is an increasing load.

With conversion of (26) into an affine form as (1), we can
get

ẋ = f (x) +

2

∑

𝑖=1

g
𝑖
(x) (u

𝑖
+ k
𝑖
(w)) , (27)

where x = [𝑥

1
𝑥

2
𝑥

3
]

𝑇

= [
𝑖

𝑑
𝜔

𝑚
𝑖

𝑞
]

𝑇,

f (x) =

[

[

[

[

[

[

[

[

[

−

𝑅

𝑠

𝐿

𝑑

𝑥

1
+ 𝑝𝑥

2
𝑥

3

𝑝𝜑

𝑓

𝐽

𝑚

𝑥

3
−

𝐵

𝑚

𝐽

𝑚

𝑥

2
−

1

𝐽

𝑚

𝑇

𝐿

−

𝑅

𝑠

𝐿

𝑞

𝑥

3
− 𝑝𝑥

2
𝑥

1
−

𝑝𝜑

𝑓

𝐿

𝑞

𝑥

2

]

]

]

]

]

]

]

]

]

,

g
1

(x) = [

1

𝐿

𝑑

0
]

𝑇

, g
2

(x) = [

1

𝐿

𝑞

] ,

(28)

and control inputs 𝑢 = [𝑢

1
𝑢

2
]

𝑇

= [
𝑢

𝑑
𝑢

𝑞
]

𝑇.

For the sake of understandability, the external distur-
bances inputs, V

1
and V

2
, which denote different nonlinear

nonharmonic disturbance input signals, are both produced
by Van der Pol oscillator shown in (6), and let 𝑎 = 𝑏 = 1.
Hence, 𝐴

11
= [

0 1

−1 1
], 𝐴

12
= [

0 0

0 −1
]. Evidently, 𝐴

21
= 𝐴

11

and 𝐴

22
= 𝐴

12
. It is important to note that 𝐴

11
, 𝐴

21
, 𝐴

12
,

and 𝐴

22
are not elements in matrix 𝐴

1
or 𝐴

2
, which are

all independent matrices defined in (2). For the sake of
convenience, let 𝐴

11
= 𝐴

21
= 𝐴

1
, 𝐴

12
= 𝐴

22
= 𝐴

2
,

and 𝑠

12
(w) = 𝑠

22
(w) = 𝑤

2

1
. The bounded limit cycle will be

generated by the oscillator; hence, Assumption 2 holds.
Let 𝑐

1
, 𝑐

2
, and 𝑐

3
all be certain positive constants; the con-

trol law of disturbance-free system for (27) can be obtained by
means of backstepping control and can be shown as follows:

𝛼 (x) = [

𝛼
1

(x)

𝛼
2

(x)

]

=

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝐿

𝑑
(𝑐

1
𝑥

1
+

𝐿

𝑞

𝐿

𝑑

𝑝𝑥

2
𝑥

3
)

𝐿

𝑞

(

(

(

−

𝑝𝜑

𝑓

𝐽

𝑚

𝑐

2
(𝑥

2
− 𝜔ref) +

𝑅

𝑠

𝐿

𝑞

𝑥

3

+

𝐿

𝑑

𝐿

𝑞

𝑝𝑥

2
𝑥

1
+

𝑝𝜑

𝑓

𝐿

𝑞

𝑥

2

−𝑐

3
(𝑥

3
−

𝐽

𝑚

𝑝𝜑

𝑓

(

𝜑

𝑓

𝐽

𝑚

𝜔ref +

1

𝐽

𝑚

𝑇

𝐿
))

)

)

)

]

]

]

]

]

]

]

]

]

]

]

]

]

,

(29)

where 𝜔ref is the reference speed. It can be verified that
disturbance-free system (3) can be stabilized by 𝛼(x). Owing
to its unimportance for the study of the paper, the derivation
process of the controller for the disturbance-free system is
omitted.

Let

V (x) =

1

2

𝑥

2

1
+

1

2

𝑐

2
(𝑥

2
− 𝜔ref)

2

+

1

2

(𝑥

3
−

𝐽

𝑚

𝑝𝜑

𝑓

(

𝜑

𝑓

𝐽

𝑚

𝜔ref +

1

𝐽

𝑚

𝑇

𝐿
))

2

.

(30)

Bymeans of some calculations and simplifications, we can
get

𝜕𝑉 (x)

𝜕x
(f (x) +

2

∑

𝑖=1

g
𝑖
(x)𝛼
𝑖
)

= − (𝑐

1
+

𝑅

𝑠

𝐿

𝑑

) 𝑥

2

1
−

𝜑

𝑓

𝐽

𝑚

𝑐

2
(𝑥

2
− 𝜔ref)

2

− 𝑐

3
(𝑥

3
−

𝐽

𝑚

𝑝𝜑

𝑓

(

𝜑

𝑓

𝐽

𝑚

𝜔ref +

1

𝐽

𝑚

𝑇

𝐿
))

2

,

𝜕V (x)

𝜕x

𝑚

∑

𝑖=1

g
𝑖
(x)

=

1

𝐿

𝑑

𝑥

1
+

1

𝐿

𝑞

(𝑥

3
−

𝐽

𝑚

𝑝𝜑

𝑓

(

𝜑

𝑓

𝐽

𝑚

𝜔ref +

1

𝐽

𝑚

𝑇

𝐿
)) .

(31)
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To be more specific, the relevant parameters of the motor
drive system are depicted as follows: the rated torque ofmotor
𝑇

𝑒
= 5.0N⋅m, number of rotor pole pairs 𝑝 = 4, flux linkage

of permanent magnet 𝜑

𝑓
= 0.18Wb, resistance of stator 𝑅

𝑠
=

1.95 Ω, inductances of stator in 𝑑-axis and 𝑞-axis 𝐿

𝑑
= 𝐿

𝑞
=

0.0115H, moment of inertia of rotor 𝐽

𝑚
= 0.008 kg⋅m2, and

damping coefficient of motor 𝐵

𝑚
= 0.01N/rad/s.

In addition, we assume 𝑥

󸀠

= [𝑥

1
, (𝑥

2
− 𝜔ref), (𝑥

3
−

(𝐽

𝑚
/𝑝𝜑

𝑓
)((𝜑

𝑓
/𝐽

𝑚
)𝜔ref + (1/𝐽

𝑚
)𝑇

𝐿
))]

𝑇; by application of (30)
and (31) and selection of 𝑐

1
= 8000, 𝑐

2
= 40, and 𝑐

3
= 8000,

we can get

1

2

󵄩

󵄩

󵄩

󵄩

󵄩

x󸀠󵄩󵄩󵄩
󵄩

󵄩

2

≤ V (x) ≤ 20

󵄩

󵄩

󵄩

󵄩

󵄩

x󸀠󵄩󵄩󵄩
󵄩

󵄩

2

,

𝜕𝑉 (x)

𝜕x
(f (x) +

2

∑

𝑖=1

g
𝑖
(x)𝛼
𝑖
) ≤ −7562

󵄩

󵄩

󵄩

󵄩

󵄩

x󸀠󵄩󵄩󵄩
󵄩

󵄩

2

,

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕V (x)

𝜕x

𝑚

∑

𝑖=1

g
𝑖
(x)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

2

≤ 7562

󵄩

󵄩

󵄩

󵄩

󵄩

x󸀠󵄩󵄩󵄩
󵄩

󵄩

2

.

(32)

Hence, Assumption 1 is satisfied.
Let

ℎ

1
(x) = [0 3𝐿

𝑑
𝑥

1
]

𝑇

,

ℎ

2
(x) = [

0 3𝐿

𝑞
𝑥

3
]

𝑇

.

(33)

Hence,

𝐺

1
=

𝜕ℎ

1
(x)

𝜕x
g
1

(x) = [0 3]

𝑇

,

𝐺

2
=

𝜕ℎ

2
(x)

𝜕x
g
2

(x) = [0 3]

𝑇

.

(34)

Assumption 5 holds.
Assume that V

1
and V
2
denote different nonlinear distur-

bance input signals and act on the currents of 𝑑-axis and 𝑞-
axis, respectively. Choose V

1
= 𝑤

1
and V

2
= 𝑤

2
. In other

words, V
1
and V
2
represent that the system are immersed into

two differently external disturbances.
For V
1

= 𝑤

1
, bymeans of somemathematical calculations,

it can be obtained that

𝐿

𝐴1wv1 (w) =

𝜕V
1

(w)

𝜕w
𝐴

1
w = [1 0] [

0 1

−1 1

] [

𝑤

1

𝑤

2

] = 𝑤

2
,

𝐿

2

𝐴1wv1 (w) =

𝜕𝐿

𝐴1wv1 (w)

𝜕w
𝐴

1
w = [0 1] [

0 1

−1 1

] [

𝑤

1

𝑤

2

]

= − 𝑤

1
+ 𝑤

2
= −𝑎

10
v
1

(w) + 𝑎

11
𝐿

𝐴1wv1 (w) .

(35)

Hence, there exist constants 𝑟

1
= 2, 𝑎

10
= −1, and 𝑎

11
= 1

satisfying Assumption 4.

For V
2

= 𝑤

2
, by means of similar mathematical calcula-

tions, we can get

𝐿

𝐴1wv2 (w) =

𝜕V
2

(w)

𝜕w
𝐴

1
w = [0 1] [

0 1

−1 1

] [

𝑤

1

𝑤

2

]

= − 𝑤

1
+ 𝑤

2
,

𝐿

2

𝐴1wv2 (w) =

𝜕𝐿

𝐴1wv2 (w)

𝜕w
𝐴

1
w = [−1 1] [

0 1

−1 1

] [

𝑤

1

𝑤

2

]

= − 𝑤

1
= −𝑎

20
v
1

(w) + 𝑎

21
𝐿

𝐴1wv1 (w) .

(36)

Therefore, there exist constants 𝑟

1
= 2, 𝑎

20
= 1, and 𝑎

21
= 1

making Assumption 4 be satisfied.
In terms of (35), let

𝜏

1
(w) = col (v

1
(w) , 𝐿

𝐴1wv1 (w)) = col (𝑤

1
, 𝑤

2
) . (37)

Then, there exist matrices Φ

1
= [

0(𝑟1−1)×1
𝐼𝑟1−1

𝑎10 [𝑎11 ,...,𝑎𝑟1−1
]
] =

[

0 1

−1 1
] and 𝜓

1
= [1, 0] making (11) hold and

rank [𝜓

1
𝜓

1
Φ

1
]

𝑇

= 2.
According to (36), let

𝜏

2
(w) = col (v

2
(w) , 𝐿

𝐴1wv2 (w)) = col (𝑤

2
, −𝑤

1
+ 𝑤

2
) .

(38)

In that way, there exist matrices Φ

2
=

[

0(𝑟2−1)×1
𝐼𝑟2−1

𝑎20 [𝑎21 ,...,𝑎𝑟2−1
]
] = [

0 1

1 1
] and 𝜓

2
= [1, 0] making (11)

satisfy and rank [𝜓

2
𝜓

2
Φ

2
]

𝑇

= 2.
ChooseΦ

12
= 𝐴

2
; after some calculations it can be gotten

that

𝜕𝜏

1
(w)

𝜕w
𝐴

2
w = Φ

12
𝜏

1
(w) .

(39)

Select Φ

22
= [

−1 0

−1 0
]; after some calculations we can get

𝜕𝜏

2
(w)

𝜕w
𝐴

2
w = Φ

22
𝜏

2
(w) .

(40)

Consequently, Assumption 7 is satisfied.
Assume 𝜏

1
(w) = 𝑇

1
𝜏

1
(w), where 𝑇

1
∈ 𝑅

𝑟1×𝑟1 is a
nonsingularmatrix, and by derivation of 𝜏

1
(w) alongwith (2),

we can get

𝜕𝜏

1
(w)

𝜕w
𝑠

1
(w) = 𝑇

1
𝜙

1
(w) 𝑇

−1

1
𝜏

1
(w) ,

(41)

where 𝜙

1
(w) = Φ

1
+ 𝜑

1
(w), 𝜑

1
(w) = Φ

12
𝑠

12
(w).

Suppose 𝜏

2
(w) = 𝑇

2
𝜏

2
(w), where 𝑇

2
∈ 𝑅

𝑟2×𝑟2 is a non-
singular matrix and by derivation of 𝜏

2
(w) along with (2), we

can get

𝜕𝜏

2
(w)

𝜕w
𝑠

2
(w) = 𝑇

2
𝜙

2
(w) 𝑇

−1

2
𝜏

2
(w) ,

(42)

where 𝜙

2
(w) = Φ

2
+ 𝜑

2
(w), 𝜑

2
(w) = Φ

22
𝑠

22
(w).
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Figure 1: Multiclass nonlinear disturbance inputs.

Choose𝐹

1
= [

−2 1

0 −6
]; we can verify rank [𝐺

1
𝐺

1
𝐹

1
]

𝑇

= 2.
Solving Sylvester equation 𝑇

1
Φ

1
− 𝐹

1
𝑇

1
= 𝐺

1
𝜓

1
, it can be

gotten that

𝑇

1
= [

0.1993 −0.0897

0.4884 −0.0698

] . (43)

Select 𝐹

2
= [

−2 1

0 −6
]. Similarly, we are able to obtain

rank [𝐺

2
𝐺

2
𝐹

2
]

𝑇

= 2. Solving Sylvester equation 𝑇

2
Φ

2
−

𝐹

2
𝑇

2
= 𝐺

2
𝜓

2
, we can get

𝑇

2
= [

0.3220 −0.1317

0.5122 −0.0732

] . (44)

It has already been verified that all assumed conditions
required for systems (27) and (6) are satisfied. Following the
design procedure given in Sections 3 and 4, the correspond-
ing nonlinear internal models and state feedback controller
are able to be designed as below:

̇

𝜉

1
= (−2 − 1.4651𝑤

2

1
) 𝜉

1
+ (1 + 0.598𝑤

2

1
) (𝜉

2
+ 0.0345𝑥

1
) ,

̇

𝜉

2
= −1.1395𝑤

2

1
𝜉

1
+ (−6 + 0.4651𝑤

2

1
) (𝜉

2
+ 0.0345𝑥

1
)

+ 5.85𝑥

1
− 0.138𝑥

2
𝑥

3
− 3𝑢

1
,

̇

𝜉

3
= (−2 + 0.3171𝑤

2

1
) 𝜉

3
+ (1 − 0.5707𝑤

2

1
) (𝜉

4
+ 0.0345𝑥

1
) ,

̇

𝜉

4
= 0.7317𝑤

2

1
𝜉

3
+ (−6 − 1.3171𝑤

2

1
) (𝜉

4
+ 0.0345𝑥

1
)

− 5.85𝑥

3
− 0.138𝑥

2
𝑥

1
− 2.16𝑥

2
+ 3𝑢

2
,

𝑢

1
= −92.046𝑥

1
− 0.046𝑥

2
𝑥

3
+ 2.3333𝜉

1
− 3𝜉

2
,

𝑢

2
= −413.28𝑥

2
− 90.096𝑥

3
+ 249550 + 0.046𝑥

2
𝑥

1

+ 127.7778𝑇

𝐿
+ 1.6667𝜉

3
− 3𝜉

4
.

(45)

In order to evaluate the validity of the proposed method,
the numerical simulations are performed in Matlab software
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Figure 2: System control inputs.

with the sampling interval Δ𝑡 = 0.001 s and initial conditions
𝑥(0) = [0.1 0 1.0] , 𝜂(0) = [0 0 0 0], and w(0) =

[1 −1]. In addition, the reference values of 𝑑-axis current
𝑖

𝑑
and speed 𝜔

𝑚
are set to zero and 600 r/min, respectively,

and 𝑞-axis current 𝑖

𝑞
tracks the linear variation value of

load 𝑇

𝐿
. Ultimately, the simulation results are depicted in

Figures 1, 2, and 3. Figure 1 describes the multiclass nonlinear
nonharmonic disturbances V

1
and V

2
, in which we can

see that the exogenous disturbances immersing into the
system are bounded and different, and they can originate
from different exosystems so long as the exosystems can be
written in the form of (2). Figure 2 demonstrates the control
inputs 𝑢

𝑑
and 𝑢

𝑞
, which matches the external disturbances

and reference values; and their combined actions make the
different disturbances be rejected and ensure the system
outputs to track the reference values. Figure 3 indicates the
state outputs of the system, inwhichwe can see that the𝑑-axis
current 𝑖

𝑑
and speed 𝜔

𝑚
are able to track their own reference

values in high precision. In other words, the simulation
results signify that the proposed algorithm is able to reject
the multiclass external disturbance effectively and ensures
that the closed-loop system rapidly converge to the reference
values. In consequence, the designed internal models can
replicate with the different exogenous disturbances and the
proposed controller has an excellent control performance.

6. Conclusions

In the paper, an IMP based multivariable nonlinear con-
trol algorithm with multiclass nonharmonic disturbances is
proposed to suppress the differently external nonharmonic
disturbances and control the closed-loop system to track the
reference values. The major conclusions of the research are
summarized as follows:

(1) in light of the multiclass nonharmonic disturbances,
a class of new multiclass nonlinear internal models
can be constructed on the basis of the definitions
of expanded steady state generator and IMP, and
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Figure 3: System state outputs.

the characteristics of which depend on the structural
information of exosystem and state information of
closed-loop system;

(2) a multivariable nonlinear state feedback controller
associated with the designed internal model equa-
tions is designed; the application of Lyapunov theory
can justify the convergence of the proposed control
algorithm;

(3) the application of the algorithm into a two-input
variable motor drive system demonstrates that the
presented algorithm is able to suppress the multiclass
disturbances and guarantee the multivariable closed-
loop system global uniform convergence.
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