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There are many articles in the literature dealing with differential subordination problems for analytic functions in the unit disk,
and only a few articles deal with the above problems in the upper half-plane. In this paper, we aim to derive several differential
subordination results for analytic functions in the upper half-plane by investigating certain suitable classes of admissible functions.
Some useful consequences of our main results are also pointed out.

1. Introduction

Let Δ denote the upper half-plane; that is,

Δ = {𝑧 ∈ C : Im (𝑧) > 0} , (1)

and let H[Δ] denote the class of functions 𝑓 which are
analytic in Δ and which satisfy the so-called hydrodynamic
normalization (see [1–3]):

lim
Δ∋𝑧→∞

[𝑓 (𝑧) − 𝑧] = 0. (2)

Also let S[Δ] denote the class of all functions in H[Δ]

which are univalent inΔ. Various basic properties concerning
functions belonging to the class S[Δ] were developed in a
series of articles (see, for details, [4–6]).

A function 𝑓 ∈ H[Δ], with 𝑓(𝑧) ̸= 0, is said to be starlike
in Δ if and only if

Im{
𝑓

(𝑧)

𝑓 (𝑧)
} < 0. (3)

We denote by S∗[Δ] the subclass of H[Δ] which consists of
functions which are starlike in Δ.

A function 𝑓 ∈ H[Δ], with 𝑓(𝑧) ̸= 𝑧, is said to be convex
in Δ if and only if

Im{
𝑓


(𝑧)

𝑓 (𝑧)
} > 0. (4)

Also, we denote byK[Δ] the subclass ofH[Δ]which consists
of functions which are convex in Δ. The classes S∗[Δ] and
K[Δ] were introduced by Stankiewicz [3].

We first need to recall the notion of subordination in the
upper half-plane.

Let 𝑓 and 𝑔 be members of H[Δ]. The function 𝑓 is
subordinate to 𝑔, written as 𝑓 ≺ 𝑔 or 𝑓(𝑧) ≺ 𝑔(𝑧), if there
exists a function 𝜑 ∈ H[Δ] with 𝜑[Δ] ⊂ Δ such that 𝑓(𝑧) =

𝑔(𝜑(𝑧)). Furthermore, if the function 𝑔 is univalent inΔ, then
we have the following equivalence (cf. [7]):

𝑓 (𝑧) ≺ 𝑔 (𝑧) (𝑧 ∈ Δ) ⇐⇒ 𝑓 (Δ) ⊂ 𝑔 (Δ) . (5)

Using methods similar to those used in the unit disk,
Răducanu and Pascu [7] have extended the theory of differen-
tial subordinations to the upper half-plane. In the following,
wewill list some definitions and theorems, which are required
to prove our main results.
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2 Abstract and Applied Analysis

Definition 1 (see [8, Definition 8.3i, p.403]). Denote by Q(Δ)

the set of functions 𝑞 ∈ H[Δ] that are analytic and injective
on Δ \ 𝐸(𝑞), where

𝐸 (𝑞) = {𝜉 ∈ 𝜕Δ : lim
𝑧→𝜉

𝑞 (𝑧) = ∞} , (6)

and are such that 𝑞(𝜉) ̸= 0 for 𝜉 ∈ 𝜕Δ \ 𝐸(𝑞).

Definition 2 (see [7]). Let Ω be a set in C and 𝑞 ∈ Q(Δ).
The class of admissible functions Ψ

Δ
[Ω, 𝑞] consists of those

functions 𝜓 : C3 × Δ → C that satisfy the following
admissibility condition:

𝜓 (𝑟, 𝑠, 𝑡; 𝑧) ∉ Ω, (7)

whenever

𝑟 = 𝑞 (𝜉) , 𝑠 = 𝑘𝑞

(𝜉) , Im{

𝑡

𝑞 (𝜉)
} ≥ 𝑘

2 Im{
𝑞


(𝜉)

𝑞 (𝜉)
} ,

(8)

where 𝑧 ∈ Δ, 𝜉 ∈ 𝜕Δ \ 𝐸(𝑞), and 𝑘 ≥ 0.
If 𝜓 : C2 × Δ → C, then the admissibility condition

reduces to

𝜓 (𝑞 (𝜉) , 𝑘𝑞

(𝜉) ; 𝑧) ∉ Ω, (9)

where 𝑧 ∈ Δ, 𝜉 ∈ 𝜕Δ \ 𝐸(𝑞), and 𝑘 ≥ 0.

Theorem 3 (see [7]). Let 𝜓 ∈ Ψ
Δ
[Ω, 𝑞] and 𝑝 ∈ H[Δ]. If

𝜓 (𝑝 (𝑧) , 𝑝

(𝑧) , 𝑝


(𝑧) ; 𝑧) ∈ Ω, (10)

for 𝑧 ∈ Δ, then

𝑝 (𝑧) ≺ 𝑞 (𝑧) . (11)

In the present paper, by making use of the differential
subordination results in the upper half-plane of Rǎducanu
and Pascu [7] (which is a generalization of results in the
unit disk obtained by Miller and Mocanu [8]), we determine
certain appropriate classes of admissible functions and inves-
tigate some differential subordination properties of analytic
functions in the upper half-plane. It should be remarked in
passing that, in recent years, several authors obtained many
interesting results associated with differential subordination
and superordination in the unit disk; the interested reader
may refer to, for example, [9–18].

2. The Main Subordination Results

Wefirst define the following class of admissible functions that
are required in proving our first result.

Definition 4. Let Ω be a set in C and 𝑞 ∈ Q(Δ) ∩ H[Δ].
The class of admissible functions Φ

Δ
[Ω, 𝑞] consists of those

functions 𝜙 : C3 × Δ → C that satisfy the following
admissibility condition:

𝜙 (𝑢, V, 𝑤; 𝑧) ∉ Ω, (12)

whenever

𝑢 = 𝑞 (𝜉) , V =
𝑘𝑞

(𝜉)

𝑞 (𝜉)
(𝑞 (𝜉) ̸= 0) ,

Im{

𝑢 (𝑤V + V2)

𝑞 (𝜉)
}

≥ 𝑘
2 Im{

𝑞


(𝜉)

𝑞 (𝜉)
} (𝑧 ∈ Δ; 𝜉 ∈ 𝜕Δ \ 𝐸 (𝑞) ; 𝑘 ≥ 0) .

(13)

Theorem 5. Let 𝜙 ∈ Φ
Δ
[Ω, 𝑞]. If 𝑓 ∈ H[Δ] satisfies

{𝜙(
𝑓

(𝑧)

𝑓 (𝑧)
,
𝑓


(𝑧)

𝑓 (𝑧)
−

𝑓

(𝑧)

𝑓 (𝑧)
,

𝑓 (𝑧) [𝑓


(𝑧) 𝑓

(𝑧) − (𝑓


(𝑧))
2

]

𝑓 (𝑧) [𝑓 (𝑧) 𝑓 (𝑧) − (𝑓(𝑧))
2
]

−
𝑓

(𝑧)

𝑓 (𝑧)
; 𝑧) : 𝑧 ∈ Δ} ⊂ Ω,

(14)

then

𝑓

(𝑧)

𝑓 (𝑧)
≺ 𝑞 (𝑧) (𝑧 ∈ Δ) . (15)

Proof. Define the function 𝑝(𝑧) in Δ by

𝑝 (𝑧) =
𝑓

(𝑧)

𝑓 (𝑧)
. (16)

A simple calculation yields

𝑓


(𝑧)

𝑓 (𝑧)
−

𝑓

(𝑧)

𝑓 (𝑧)
=

𝑝

(𝑧)

𝑝 (𝑧)
. (17)

Further computations show that

𝑓 (𝑧) [𝑓


(𝑧) 𝑓

(𝑧) − (𝑓


(𝑧))
2

]

𝑓 (𝑧) [𝑓 (𝑧) 𝑓 (𝑧) − (𝑓(𝑧))
2
]

−
𝑓

(𝑧)

𝑓 (𝑧)

=
𝑝


(𝑧)

𝑝 (𝑧)
−

𝑝

(𝑧)

𝑝 (𝑧)
.

(18)

We now define the transformation from C3 to C by

𝑢 (𝑟, 𝑠, 𝑡) = 𝑟, V (𝑟, 𝑠, 𝑡) =
𝑠

𝑟
, 𝑤 (𝑟, 𝑠, 𝑡) =

𝑟𝑡 − 𝑠
2

𝑟𝑠
. (19)

Let

𝜓 (𝑟, 𝑠, 𝑡; 𝑧) = 𝜙 (𝑢, V, 𝑤; 𝑧) = 𝜙(𝑟,
𝑠

𝑟
,
𝑟𝑡 − 𝑠
2

𝑟𝑠
; 𝑧) . (20)
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Using (16)–(18), and from (20), we obtain

𝜓 (𝑝 (𝑧) , 𝑝

(𝑧) , 𝑝


(𝑧) ; 𝑧)

= 𝜙(
𝑓

(𝑧)

𝑓 (𝑧)
,
𝑓


(𝑧)

𝑓 (𝑧)
−

𝑓

(𝑧)

𝑓 (𝑧)
,

𝑓 (𝑧) [𝑓


(𝑧) 𝑓

(𝑧) − (𝑓


(𝑧))
2

]

𝑓 (𝑧) [𝑓 (𝑧) 𝑓 (𝑧) − (𝑓 (𝑧))
2
]

−
𝑓

(𝑧)

𝑓 (𝑧)
; 𝑧) .

(21)

Hence, (14) becomes

𝜓 (𝑝 (𝑧) , 𝑝

(𝑧) , 𝑝


(𝑧) ; 𝑧) ∈ Ω. (22)

From (19), we easily get

𝑡 = 𝑢 (𝑤V + V2) . (23)

Thus, the admissibility condition for 𝜙 ∈ Φ
Δ
[Ω, 𝑞] in

Definition 4 is equivalent to the admissibility condition for
𝜓 as given in Definition 2. Therefore 𝜓 ∈ Ψ

Δ
[Ω, 𝑞], and

by Theorem 3, we have 𝑝(𝑧) ≺ 𝑞(𝑧), or, equivalently,
𝑓

(𝑧)/𝑓(𝑧) ≺ 𝑞(𝑧), which evidently completes the proof of

Theorem 5.

IfΩ ̸=C is a simply connected domain, thenΩ = ℎ(Δ) for
some conformal mapping ℎ(𝑧) of Δ onto Ω. In this case, the
class Φ

Δ
[ℎ(Δ), 𝑞] is written as Φ

Δ
[ℎ, 𝑞]. The following result

is an immediate consequence of Theorem 5.

Theorem 6. Let 𝜙 ∈ Φ
Δ
[ℎ, 𝑞]. If 𝑓 ∈ H[Δ] satisfies

𝜙(
𝑓

(𝑧)

𝑓 (𝑧)
,
𝑓


(𝑧)

𝑓 (𝑧)
−

𝑓

(𝑧)

𝑓 (𝑧)
,

𝑓 (𝑧) [𝑓


(𝑧) 𝑓

(𝑧) − (𝑓


(𝑧))
2

]

𝑓 (𝑧) [𝑓 (𝑧) 𝑓 (𝑧) − (𝑓(𝑧))
2
]

−
𝑓

(𝑧)

𝑓 (𝑧)
; 𝑧)

≺ ℎ (𝑧) ,

(24)

then

𝑓

(𝑧)

𝑓 (𝑧)
≺ 𝑞 (𝑧) (𝑧 ∈ Δ) . (25)

Our next result is an extension of Theorem 5 to the case
where the behavior of 𝑞(𝑧) on 𝜕Δ is not known.

Theorem 7. Let ℎ and 𝑞 be univalent in Δ with 𝑞 ∈ Q(Δ), and
set 𝑞
𝜌
(𝑧) = 𝑞(𝜌𝑧) and ℎ

𝜌
(𝑧) = ℎ(𝜌𝑧). Let 𝜙 : C3 × Δ → C

satisfy one of the following conditions:

(1) 𝜙 ∈ Φ
Δ
[ℎ, 𝑞
𝜌
], for some 𝜌 ∈ (0, 1), or

(2) there exists 𝜌
0

∈ (0, 1) such that 𝜙 ∈ Φ
Δ
[ℎ
𝜌
, 𝑞
𝜌
] for all

𝜌 ∈ (𝜌
0
, 1).

If 𝑓 ∈ H[Δ] satisfies (24), then

𝑓

(𝑧)

𝑓 (𝑧)
≺ 𝑞 (𝑧) (𝑧 ∈ Δ) . (26)

Proof. The proof of Theorem 7 is similar to that of [8,
Theorem 2.3d, p.30] and so we choose to omit it.

The next theorem yields the best dominant of the differ-
ential subordination (24).

Theorem 8. Let ℎ be univalent in Δ and 𝜙 : C3 × Δ → C.
Suppose that the following differential equation:

𝜙(𝑞 (𝑧) ,
𝑞

(𝑧)

𝑞 (𝑧)
,
𝑞


(𝑧)

𝑞 (𝑧)
−

𝑞

(𝑧)

𝑞 (𝑧)
; 𝑧) = ℎ (𝑧) , (27)

has a solution 𝑞(𝑧) and satisfies one of the following conditions:

(1) 𝑞 ∈ Q(Δ) and 𝜙 ∈ Φ
Δ
[ℎ, 𝑞],

(2) 𝑞 is univalent in Δ and 𝜙 ∈ Φ
Δ
[ℎ, 𝑞
𝜌
], for some 𝜌 ∈

(0, 1), or
(3) 𝑞 is univalent in Δ and there exists 𝜌

0
∈ (0, 1) such that

𝜙 ∈ Φ
Δ
[ℎ
𝜌
, 𝑞
𝜌
] for all 𝜌 ∈ (𝜌

0
, 1).

If 𝑓 ∈ H[Δ] satisfies (24), then

𝑓

(𝑧)

𝑓 (𝑧)
≺ 𝑞 (𝑧) , (28)

and 𝑞 is the best dominant.

Proof. Following the same arguments as in [8, Theorem 2.3e,
p.31], we deduce that 𝑞 is a dominant fromTheorems 6 and 7.
Since 𝑞 satisfies (27), it is also a solution of (24) and therefore
𝑞 will be dominated by all dominants. Hence, 𝑞 is the best
dominant.

In the particular case 𝑞(𝑧) = 𝑧, and in view of Defini-
tion 4, the class of admissible functionsΦ

Δ
[Ω, 𝑞], denoted by

Φ
Δ
[Ω, 𝑧], is described below.

Definition 9. Let Ω be a set in C. The class of admissible
functionsΦ

Δ
[Ω, 𝑧] consists of those functions𝜙 : C3×Δ → C

such that

𝜙(𝜉,
𝑘

𝜉
,
𝐿𝜉 − 𝑘

2

𝑘𝜉
; 𝑧) ∉ Ω, (29)

whenever 𝑧 ∈ Δ, Im(𝐿) = 0, 𝜉 ∈ R \ {0}, and 𝑘 > 0.

Corollary 10. Let 𝜙 ∈ Φ
Δ
[Ω, 𝑧]. If 𝑓 ∈ H[Δ] satisfies

𝜙(
𝑓

(𝑧)

𝑓 (𝑧)
,
𝑓


(𝑧)

𝑓 (𝑧)
−

𝑓

(𝑧)

𝑓 (𝑧)
,

𝑓 (𝑧) [𝑓


(𝑧) 𝑓

(𝑧) − (𝑓


(𝑧))
2

]

𝑓 (𝑧) [𝑓 (𝑧) 𝑓 (𝑧) − (𝑓(𝑧))
2
]

−
𝑓

(𝑧)

𝑓 (𝑧)
; 𝑧)

∈ Ω,

(30)
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then

𝑓

(𝑧)

𝑓 (𝑧)
≺ 𝑧 (𝑧 ∈ Δ) . (31)

For the special caseΩ = 𝑞(Δ) = {𝜔 : Im(𝜔) > 0}, the class
Φ
Δ
[Ω, 𝑧] is simply denoted byΦ

Δ
[Δ, 𝑧]. Corollary 10 can now

be written in the following form.

Corollary 11. Let 𝜙 ∈ Φ
Δ
[Δ, 𝑧]. If 𝑓 ∈ H[Δ] satisfies

Im
{{

{{

{

𝜙(
𝑓

(𝑧)

𝑓 (𝑧)
,
𝑓


(𝑧)

𝑓 (𝑧)
−

𝑓

(𝑧)

𝑓 (𝑧)
,

𝑓 (𝑧) [𝑓


(𝑧) 𝑓

(𝑧) − (𝑓


(𝑧))
2

]

𝑓 (𝑧) [𝑓 (𝑧) 𝑓 (𝑧) − (𝑓(𝑧))
2
]

−
𝑓

(𝑧)

𝑓 (𝑧)
; 𝑧)

}}

}}

}

> 0,

(32)

then

Im{
𝑓

(𝑧)

𝑓 (𝑧)
} > 0 (𝑧 ∈ Δ) . (33)

Example 12. Let the functions 𝐴, 𝐵 : Δ → C be analytic in Δ

and satisfy Im 𝐴(𝑧) ≤ 0 and Im 𝐵(𝑧) ≤ 0.Then, the functions

𝜙
1 (𝑢, V, 𝑤; 𝑧) = 𝑢 + V + 𝐴 (𝑧) ,

𝜙
2 (𝑢, V, 𝑤; 𝑧) = 𝛼 (𝑢 + V) + (1 − 𝛼) 𝑢 + 𝐵 (𝑧) (0 ≤ 𝛼 ≤ 1)

(34)

satisfy the admissibility condition (29) and hence Corol-
lary 10 yields

Im{
𝑓


(𝑧)

𝑓 (𝑧)
+ 𝐴 (𝑧)} > 0 ⇒ Im{

𝑓

(𝑧)

𝑓 (𝑧)
} > 0,

Im{𝛼
𝑓


(𝑧)

𝑓 (𝑧)
+ (1 − 𝛼)

𝑓

(𝑧)

𝑓 (𝑧)
+ 𝐵 (𝑧)}

> 0 ⇒ Im{
𝑓

(𝑧)

𝑓 (𝑧)
} > 0.

(35)

Next, we introduce the following class of admissible func-
tions.

Definition 13. Let Ω be a set in C and 𝑞 ∈ Q(Δ) ∩ H[Δ].
The class of admissible functions Φ

Δ,1
[Ω, 𝑞] consists of those

functions 𝜙 : C2 × Δ → C that satisfy the admissibility
condition

𝜙(𝑞 (𝜉) , 𝑞 (𝜉) +
𝑘𝑞

(𝜉)

𝑞 (𝜉)
; 𝑧) ∉ Ω, (36)

where 𝑧 ∈ Δ, 𝜉 ∈ 𝜕Δ \ 𝐸(𝑞), and 𝑘 ≥ 0.

Theorem 14. Let 𝜙 ∈ Φ
Δ,1

[Ω, 𝑞]. If 𝑓 ∈ H[Δ] satisfies

{𝜙(
𝑓

(𝑧)

𝑓 (𝑧)
,
𝑓


(𝑧)

𝑓 (𝑧)
; 𝑧) : 𝑧 ∈ Δ} ⊂ Ω, (37)

then

𝑓

(𝑧)

𝑓 (𝑧)
≺ 𝑞 (𝑧) (𝑧 ∈ Δ) . (38)

Proof. Define the function 𝑝(𝑧) in Δ by

𝑝 (𝑧) =
𝑓

(𝑧)

𝑓 (𝑧)
. (39)

A simple calculation yields

𝑓


(𝑧)

𝑓 (𝑧)
= 𝑝 (𝑧) +

𝑝

(𝑧)

𝑝 (𝑧)
. (40)

Define the transformation from C2 to C by

𝑢 (𝑟, 𝑠) = 𝑟, V (𝑟, 𝑠) = 𝑟 +
𝑠

𝑟
. (41)

Let

𝜓 (𝑟, 𝑠; 𝑧) = 𝜙 (𝑢, V; 𝑧) = 𝜙 (𝑟, 𝑟 +
𝑠

𝑟
; 𝑧) . (42)

The proof will make use of Theorem 3. Using (39) and (40),
and from (42), we get

𝜓 (𝑝 (𝑧) , 𝑝

(𝑧) ; 𝑧) = 𝜙(

𝑓

(𝑧)

𝑓 (𝑧)
,
𝑓


(𝑧)

𝑓 (𝑧)
; 𝑧) . (43)

Hence, (37) becomes

𝜓 (𝑝 (𝑧) , 𝑝

(𝑧) ; 𝑧) ∈ Ω. (44)

From (42), we see that the admissibility condition for 𝜙 ∈

Φ
Δ,1

[Ω, 𝑞] in Definition 13 is equivalent to the admissibility
condition for 𝜓 as given in Definition 2. Hence 𝜓 ∈ Ψ

Δ
[Ω, 𝑞],

and by Theorem 3, we have 𝑝(𝑧) ≺ 𝑞(𝑧) or 𝑓

(𝑧)/𝑓(𝑧) ≺

𝑞(𝑧).

Wewill denote the classΦ
Δ,1

[ℎ(Δ), 𝑞] byΦ
Δ,1

[ℎ, 𝑞], where
ℎ is the conformal mapping of Δ onto Ω ̸=C.

Theorem 15. Let 𝜙 ∈ Φ
Δ,1

[ℎ, 𝑞]. If 𝑓 ∈ H[Δ] satisfies

𝜙(
𝑓

(𝑧)

𝑓 (𝑧)
,
𝑓


(𝑧)

𝑓 (𝑧)
; 𝑧) ≺ ℎ (𝑧) , (45)

then

𝑓

(𝑧)

𝑓 (𝑧)
≺ 𝑞 (𝑧) . (46)

We extend Theorem 15 to the case in which the behavior
of 𝑞(𝑧) on 𝜕Δ is not known.
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Theorem 16. Let Ω ⊂ C and 𝑞 be univalent in Δ with 𝑞 ∈

Q(Δ). Let 𝜙 ∈ Φ
Δ,1

[ℎ, 𝑞
𝜌
], for some 𝜌 ∈ (0, 1), where 𝑞

𝜌
(𝑧) =

𝑞(𝜌𝑧). If 𝑓 ∈ H[Δ] satisfies (37), then (46) holds.

As a special case, when 𝑞(𝑧) = 𝑧, we get the following
corollary.

Corollary 17. Let Ω be a set in C and let 𝜙 : C2 × Δ → C

satisfy

𝜙(𝜉, 𝜉 +
𝑘

𝜉
; 𝑧) ∉ Ω, (47)

whenever 𝑧 ∈ Δ, 𝜉 ∈ R \ {0}, and 𝑘 ≥ 0. If 𝑓 ∈ H[Δ] satisfies

𝜙(
𝑓

(𝑧)

𝑓 (𝑧)
,
𝑓


(𝑧)

𝑓 (𝑧)
; 𝑧) ∈ Ω, (48)

then

Im{
𝑓

(𝑧)

𝑓 (𝑧)
} > 0 (𝑧 ∈ Δ) . (49)

In the special case Ω = 𝑞(Δ) = {𝜔 : Im (𝜔) > 0}, Corollary 17
reduces to the following corollary.

Corollary 18. Let 𝜙 : C2 × Δ → C satisfy

Im{𝜙(𝜉, 𝜉 +
𝑘

𝜉
; 𝑧)} ≤ 0, (50)

whenever 𝑧 ∈ Δ, 𝜉 ∈ R \ {0}, and 𝑘 ≥ 0. If 𝑓 ∈ H[Δ] satisfies

Im{𝜙(
𝑓

(𝑧)

𝑓 (𝑧)
,
𝑓


(𝑧)

𝑓 (𝑧)
; 𝑧)} > 0, (51)

then

Im{
𝑓

(𝑧)

𝑓 (𝑧)
} > 0 (𝑧 ∈ Δ) . (52)

Example 19. Let the function 𝐶 : Δ → C be analytic in Δ and
satisfy Im𝐶(𝑧) ≤ 0. Then, the function

𝜙 (𝑢, V; 𝑧) = 𝑢V + 𝐶 (𝑧) (53)

satisfies the admissibility condition (47) and hence Corol-
lary 18 becomes

Im{
𝑓


(𝑧)

𝑓 (𝑧)
+ 𝐶 (𝑧)} > 0 ⇒ Im{

𝑓

(𝑧)

𝑓 (𝑧)
} > 0. (54)
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