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We extend the results of Cabre and Sire (2011) to show the existence of layer solutions of fractional Laplacianswith perturbed nonlin-
earity (−Δ)𝑠𝑢 = 𝑏(𝑥)𝑓(𝑢) inRwith 𝑠 ∈ (0, 1). Here 𝑏 is a positive periodic perturbation for 𝑓, and −𝑓 is the derivative of a balanced
well potential 𝐺. That is, 𝐺 ∈ 𝐶2,𝛾 satisfies 𝐺(1) = 𝐺(−1) < 𝐺(𝜏) ∀𝜏 ∈ (−1, 1), 𝐺

󸀠

(1) = 𝐺
󸀠

(−1) = 0. First, for odd nonlinearity 𝑓
and for every 𝑠 ∈ (0, 1), we prove that there exists a layer solution via the monotone iteration method. Besides, existence results are
obtained by variational methods for 𝑠 ∈ (1/2, 1) and for more general nonlinearities. While the case 𝑠 ≤ 1/2 remains open.

1. Introduction

We consider the classical fractional Laplacian

(−Δ)
𝑠

𝑢 = 𝑏 (𝑥) 𝑓 (𝑢) in R, (1)

where 𝑠 ∈ (0, 1) and

(−Δ)
𝑠

𝑢 = 𝑐
𝑠
P.V. ∫

R

𝑢 (𝑥) − 𝑢 (𝑦)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

𝑑𝑦. (2)

Here P.V. stands for the Cauchy principle value and 𝑐
𝑠
is a

positive constant depending only on 𝑠.
In the whole paper we suppose that 𝑏 ∈ (𝐶1,𝛾 ∩ 𝐿∞)(R)

(𝛾 > max{0, 1−2𝑠}) is a positive function and 𝑏(𝑥+1) = 𝑏(𝑥)
for every 𝑥 ∈ R.

It is well known that the fractional Laplacian is a nonlocal
operator which can be localized by adding a variable

div (𝑦𝑎∇𝑢 (𝑥, 𝑦)) = 0 in R
2

+
,

−𝑑
𝑠
lim
𝑦↓0
+

𝑦
𝑎
𝜕𝑢

𝜕𝑦
= 𝑏 (𝑥) 𝑓 (𝑢) on 𝜕R2

+
= R,

(3)

where 𝑎 = 1 − 2𝑠 ∈ (−1, 1), 𝑢(𝑥, 𝑦)|
𝜕R2
+

= 𝑢(𝑥), and

𝑢 (𝑥, 𝑦) = 𝑝
𝑠
∫
R

𝑦2𝑠

(𝑦2 + 𝑧2)
(1+2𝑠)/2

𝑢 (𝑥 − 𝑧, 0) 𝑑𝑧 (4)

which is called the 𝑠-extension of 𝑢(𝑥, 0). 𝑝
𝑠
is a positive

constant multiplier depending only on 𝑠.
Obviously, (1) and (3) have their own variational struc-

tures. For nonlocal equation (1), its corresponding nonlocal
energy functional on any open interval 𝐼 ⊂ R is defined by

Enon (𝑢, 𝐼) =
1

2
∬

𝐼

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

𝑑𝑦𝑑𝑥

+ ∫
𝐼

∫
R\𝐼

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

𝑑𝑦𝑑𝑥

+ ∫
𝐼

𝑏 (𝑥) 𝐺 (𝑢) 𝑑𝑥

(5)

with prescribed boundary data outside of 𝐼.
As for elliptic equation (3), its local energy functional is

given by

Eloc (𝑢, Ω) =
𝑑
𝑠

2
∫
Ω

𝑦
𝑎

|∇𝑢|
2

𝑑𝑥 𝑑𝑦 + ∫
𝜕Ω∩𝜕R2

+

𝑏 (𝑥) 𝐺 (𝑢) 𝑑𝑥

(6)

with Ω ⊂ R2

+
an open domain. Here 𝐺 is the primitive func-

tion of−𝑓.The details for the fractional Laplacian can be seen
in [1–6].
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In view of the De Giorgi conjecture [7–9], Cabré and Sire
[1–3] consider layer solutions of the autonomous equation

(−Δ)
𝑠

𝑢 = 𝑓 (𝑢) in R. (7)

The layer solution of (7) is a strictly increasing solution
with limits ±1 at ±∞. In [2, 3] the necessary and sufficient
conditions for existence of layer solutions were presented
by a Hamiltonian equality and a Modica-type estimate via
variational methods, that is, 𝐺󸀠(1) = 𝐺󸀠(−1) = 0 and 𝐺(1) =
𝐺(−1) < 𝐺(𝜏) for every 𝜏 ∈ (−1, 1). In other words, (7) is an
Allen-Cahn-type equation.

Equation (7) does not depend on the variable 𝑥 explicitly;
layer solutions were proved to be strictly increasing and
are the unique local minimizer by the sliding method.
Furthermore, if 𝑓 is odd and 𝑓󸀠(±1) < 0, the layer solution
is proved odd symmetric about some point where it equals
zero. Many properties about the fractional Laplacian were
established such as the regularity, Hopf lemma, harnack, and
maximum principle; for details see [2, 3].

We give the definition of layer solutions of (1).

Definition 1. A function 𝑢 ∈ (𝐶𝛽

loc ∩ 𝐿
∞)(R) (0 < 𝛽 < 1) is

said to be a layer solution of (1) if it satisfies

(−Δ)
𝑠

𝑢 = 𝑏 (𝑥) 𝑓 (𝑢) in R,

𝑢 󳨀→ ±1 as 𝑥 󳨀→ ±∞.
(8)

Different from (7), (1) depends on the variable 𝑥 explic-
itly; the sliding method cannot be used anymore and layer
solutions of (1) have no monotonicity. Therefore, methods
in [2, 3] for existence of layer solutions cannot be used here;
our problembecomes complicated. In addition, the fractional
Laplacian is a nonlocal case. All these cause some difficulties
for existence results of layer solutions of (1).

In our previous work [10], assuming that𝑓was odd and 𝑏
was even, we proved the existence of layer solutions of (1) by
variational methods and a Liouville theorem for 𝑠 ∈ [1/2, 1).
The restriction on 𝑠 was due to no Liouville-type conclusion
for 0 < 𝑠 < 1/2. We also obtained a Hamiltonian equality and
asymptotic estimates as 𝑥 → ±∞ for layer solutions. Fur-
thermore, the asymptotic behavior of layer solutions as 𝑠 ↑ 1
is also investigated.

In this paper, we still study existence results of layer
solutions of (1). At first we assume that𝑓 is odd and 𝑏 is even.
For this case, we mainly consider the 𝑠-extension of 𝑢; layer
solutions are constructed by the subsupersolution technique
for all 𝑠 ∈ (0, 1).

Theorem 2. Suppose that 𝑓 ∈ 𝐶1,𝛾(R) (𝛾 > max{0, 1 − 2𝑠})
and

(1) 𝑓(−𝜏) = −𝑓(𝜏) for every 𝜏 ∈ [−1, 1];
(2) 𝑓(1) = 𝑓(−1) = 𝑓(0) = 0, 𝑓 ≥ 0 in [0, 1] and 𝑓 ≤ 0 in
[−1, 0].

Obviously, if 𝐺(𝑢) = ∫−1
𝑢

𝑓(𝑠)𝑑𝑠,

𝐺 (1) = 𝐺 (−1) < 𝐺 (𝜏) 𝑓𝑜𝑟 𝜏 ∈ (−1, 1) ; 𝐺
󸀠

(±1) = 0. (9)

If 𝑏 is even, then there exists a layer solution 𝑢 ∈

𝐶
2,𝛼(R) (0 < 𝛼 < 1) of (1) which is also odd,

(−𝜕
𝑥𝑥
)
𝑠

𝑢 = 𝑏 (𝑥) 𝑓 (𝑢) 𝑖𝑛 R,

𝑢 󳨀→ ±1 𝑎𝑠 𝑥 󳨀→ ±∞.
(10)

For more general nonlinearities 𝑓 and 𝑠 ∈ (1/2, 1),
existence results are proved by variational methods and a
careful energy comparison. This part needs some tricks.

Theorem 3. Let 𝑠 ∈ (1/2, 1). Let𝐺 ∈ 𝐶2,𝛾(R) (𝛾 > max{0, 1−
2𝑠}) be the primitive function of −𝑓 and

(a) 𝐺(1) = 𝐺(−1) < 𝐺(𝜏) for 𝜏 ∈ (−1, 1), 𝐺󸀠(1) =

𝐺󸀠(−1) = 0;
(b) 𝐺󸀠󸀠(1) > 0 and 𝐺󸀠󸀠(−1) > 0.

Then, there exists a layer solution 𝑢 ∈ 𝐶2,𝛼(R) of (1) for
some 0 < 𝛼 < 1,

(−𝜕
𝑥𝑥
)
𝑠

𝑢 = 𝑏 (𝑥) 𝑓 (𝑢) 𝑖𝑛 R,

𝑢 󳨀→ ±1 𝑎𝑠 𝑥 󳨀→ ±∞.
(11)

Remark 4. From the assumption above, there exists a 0 <
𝛿 < 1/2 such that 𝐺 is strictly increasing in [−1, −1 + 𝛿] and
decreasing in [1 − 𝛿, 1], 𝐺(𝑠) > min{𝐺(1 − 𝛿), 𝐺(−1 + 𝛿)} for
𝑠 ∈ (−1 + 𝛿, 1 − 𝛿).

For 𝑠 ≤ 1/2, the global energymay be infinite.The desired
asymptotic behavior of layer solutions at infinity, that is, 𝑢 →
±1 as 𝑥 → ±∞, cannot be obtained. This case is open.

The paper is organized as follows. In Section 2, we prove
existence results of layer solutions of (1) under odd assump-
tions of 𝑓. Section 3 is devoted to the Proof of Theorem 3.
Finally, we give some results about regularity and gradient
estimates and aHopf lemma about (1) and (3) in the appendix.

For convenience, we give some notations.
One has

𝑏 = max
R
𝑏 (𝑥) , 𝑏 = min

R
𝑏 (𝑥) . (12)

Let 𝑢 ∈ 𝐻𝑠(𝐼),

‖𝑢‖
𝐻
𝑠
(𝐼)
= ‖𝑢‖

𝐻̇
𝑠
(𝐼)
+ (∫

𝐼

𝑢
2

𝑑𝑥)
1/2

, (13)

where

‖𝑢‖
𝐻̇
𝑠
(𝐼)
=
1

2
∬

𝐼

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

𝑑𝑦𝑑𝑥

+ ∫
𝐼

∫
R\𝐼

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

𝑑𝑦𝑑𝑥

(14)

is a seminorm.

2. Odd Nonlinearities

Themain aim of this section is to solve existence problem for
odd nonlinearities. We assume that 𝑓 satisfies assumptions



Abstract and Applied Analysis 3

in Theorem 2. For example, 𝑓(𝑢) = 𝑢 − 𝑢3, the nonlinearity
of Allen-Cahn equation satisfies this condition. Here we
construct a layer solution of (1) by the subsupersolution
method. For this purpose, let us recall results in [3].

Lemma 5. Let 𝑓 ∈ 𝐶1,𝛾(R) (𝛾 > max{0, 1 − 2𝑠}), where 𝑠 ∈
(0, 1), such that 𝑓 = −𝐺󸀠. Then there exists a solution 𝑢 of

(−𝜕
𝑥𝑥
)
𝑠

𝑢 = 𝑓 (𝑢) 𝑖𝑛 R (15)

such that 𝑢󸀠 > 0 in 𝑅 and lim
𝑥→±∞

𝑢 = ±1 if and only if

𝐺
󸀠

(1) = 𝐺
󸀠

(−1) = 0, 𝐺 > 𝐺 (1) = 𝐺 (−1) 𝑖𝑛 (−1, 1) .

(16)

If in addition 𝑓󸀠(−1) < 0 and 𝑓󸀠(1) < 0, then this solution
is unique up to translations.

As a consequence, if 𝑓 is odd and 𝑓󸀠(±1) < 0, then the
solution is odd with respect to some point. That is, 𝑢(𝑥 + 𝑏) =
−𝑢(−𝑥 + 𝑏) for some 𝑏 ∈ R.

Remark 6. Denote 𝑢∗ to be the odd solution of (15) such that
𝑢∗(0) = 0. Define 𝑢(𝑥) = 𝑢∗(𝑏

1/2𝑠

𝑥) and 𝑢(𝑥) = 𝑢∗(𝑏1/2𝑠𝑥);
they are a supersolution and a subsolution of (1) in (0,∞).
Indeed, by simple calculations,

(−Δ)
𝑠

𝑢 = (−Δ)
𝑠

𝑢
∗

(𝑏
1/2𝑠

𝑥) = 𝑏𝑓(𝑢
∗

(𝑏
1/2𝑠

𝑥))

≥ 𝑏 (𝑥) 𝑓 (𝑢) in (0,∞) ,

(−Δ)
𝑠

𝑢 = (−Δ)
𝑠

𝑢
∗

(𝑏
1/2𝑠

𝑥)

= 𝑏𝑓 (𝑢
∗

(𝑏
1/2𝑠

𝑥)) ≤ 𝑏 (𝑥) 𝑓 (𝑢) in (0,∞) .

(17)

Furthermore, 𝑢 > 𝑢 in (0,∞) by monotonicity of 𝑢∗ and the
fact that 𝑏 > 𝑏.

In order to prove Theorem 2, we give the following two
lemmas.

Lemma 7. Let 𝑢(⋅, ⋅) and 𝑢(⋅, ⋅) be the 𝑠-extensions of 𝑢(⋅, 0)
and 𝑢(⋅, 0), respectively, inR2

+
; then 𝑢 > 𝑢 for 𝑥 > 0 and 𝑦 ≥ 0.

Furthermore, one has

div (𝑦𝑎∇𝑢) = 0 𝑖𝑛 R
2

+
∩ {𝑥 > 0} ,

−𝑑
𝑠
lim
𝑦↓0
+

𝑦
𝑎
𝜕𝑢

𝜕𝑦
≥ 𝑏 (𝑥) 𝑓 (𝑢) 𝑜𝑛 𝜕R

2

+
∩ {𝑥 > 0} ,

div (𝑦𝑎∇𝑢) = 0 𝑖𝑛 R
2

+
∩ {𝑥 > 0} ,

−𝑑
𝑠
lim
𝑦↓0
+

𝑦
𝑎
𝜕𝑢

𝜕𝑦
≤ 𝑏 (𝑥) 𝑓 (𝑢) 𝑜𝑛 𝜕R

2

+
∩ {𝑥 > 0} .

(18)

Proof. For every 𝑢(⋅, 0) ∈ (𝐶 ∩ 𝐿∞)(R), 𝑢(𝑥, 𝑦) (𝑦 > 0), the
𝑠-extension of 𝑢(𝑥, 0) can be expressed by

𝑢 (𝑥, 𝑦) = 𝑝
𝑠
∫
R

𝑦2𝑠

(𝑧2 + 𝑦2)
(1+2𝑠)/2

𝑢 (𝑥 − 𝑧, 0) 𝑑𝑧

= 𝑝
𝑠
∫
R

1

{𝑧2 + 1}
(1+2𝑠)/2

𝑢 (𝑥 − 𝑦𝑧, 0) 𝑑𝑧.

(19)

If V(𝑥, 0) = 𝑢(𝑎𝑥, 0), for some 𝑎 ∈ R,

V (𝑥, 𝑦) = 𝑝
𝑠
∫
R

1

(𝑧2 + 1)
(1+2𝑠)/2

V (𝑥 − 𝑦𝑧, 0) 𝑑𝑧

= 𝑝
𝑠
∫
R

1

(𝑧2 + 1)
(1+2𝑠)/2

𝑢 (𝑎𝑥 − 𝑎𝑦𝑧, 0) 𝑑𝑧

= 𝑢 (𝑎𝑥, 𝑎𝑦) .

(20)

Thus, 𝑢(𝑥, 𝑦) = 𝑢∗(𝑏
1/2𝑠

𝑥, 𝑏
1/2𝑠

𝑦) and 𝑢(𝑥, 𝑦) = 𝑢∗(𝑏1/2𝑠𝑥,
𝑏
1/2𝑠

𝑦).
In addition, if 𝑢(−𝑥) = −𝑢(𝑥),

𝑢 (𝑥, 𝑦) = 𝑝
𝑠
∫
R

1

(𝑧2 + 1)
(1+2𝑠)/2

𝑢 (𝑥 − 𝑦𝑧, 0) 𝑑𝑧

= 𝑝
𝑠
∫
𝑥/𝑦

−∞

1

(𝑧2 + 1)
(1+2𝑠)/2

𝑢 (𝑥 − 𝑦𝑧, 0) 𝑑𝑧

+ 𝑝
𝑠
∫
+∞

𝑥/𝑦

1

(𝑧2 + 1)
(1+2𝑠)/2

𝑢 (𝑥 − 𝑦𝑧, 0) 𝑑𝑧

= 𝑝
𝑠
∫
0

−∞

1

{(𝑧 + (𝑥/𝑦))
2

+ 1}
(1+2𝑠)/2

𝑢 (−𝑦𝑧, 0) 𝑑𝑧

+ 𝑝
𝑠
∫
+∞

0

1

{(𝑧 + (𝑥/𝑦))
2

+ 1}
(1+2𝑠)/2

𝑢 (−𝑦𝑧, 0) 𝑑𝑧

= 𝑝
𝑠
∫
+∞

0

{

{

{

1

[((𝑥/𝑦) − 𝑧)
2

+ 1]
(1+2𝑠)/2

−
1

[((𝑥/𝑦) + 𝑧)
2

+ 1]
(1+2𝑠)/2

}

}

}

× 𝑢 (𝑦𝑧, 0) 𝑑𝑧.

(21)
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Thus, for 𝑥 > 0 and 𝑦 > 0,

𝑢 (𝑥, 𝑦) − 𝑢 (𝑥, 𝑦)

= 𝑝
𝑠
∫
∞

0

{

{

{

1

[((𝑥/𝑦) − 𝑧)
2

+ 1]
(1+2𝑠)/2

−
1

[((𝑥/𝑦) + 𝑧)
2

+ 1]
(1+2𝑠)/2

}

}

}

× {𝑢
∗

(𝑏
1/2𝑠

𝑦𝑧, 0) − 𝑢
∗

(𝑏
1/2𝑠

𝑦𝑧, 0)} 𝑑𝑧

> 0

(22)

since 𝑢∗ is increasing.
Equation (18) is the consequence of direct calculations;

the proof of this lemma is complete.

Now let Ω ⊂ R2

+
be a Lipschitz bounded domain; define

the energy functional

Ẽloc (𝑤,Ω) =
𝑑
𝑠

2
∫
Ω

𝑦
𝑎

|∇𝑤|
2

𝑑𝑥 𝑑𝑦

+
𝐴

2
∫
𝜕Ω∩𝜕R2

+

𝑤
2

𝑑𝑥 − ∫
𝜕Ω∩𝜕R2

+

𝑔 (𝑥)𝑤𝑑𝑥,

(23)

where 𝐴 > 0 is a constant and 𝑔 ∈ 𝐶1,𝛾

(R) ∩ 𝐿∞(R) (𝛾 >

max{0, 1 − 2𝑠}) is a nonnegative function.

Lemma 8. Given 𝑤
0
∈ 𝐶2,𝛼(R2

+
) for some 0 < 𝛼 < 1. Let

Γ = {𝑤 ∈ 𝐻1(𝑦𝑎, Ω), 𝑤 = 𝑤
0
on 𝜕Ω ∩R2

+
}. Then there exists

a minimizer 𝑤 ∈ Γ such that 𝑤 ∈ 𝐶0,𝛽(Ω) for some 0 < 𝛽 < 1
and satisfies the Euler-Lagrange equation:

div (𝑦𝑎∇𝑤) = 0 𝑖𝑛 Ω,

−𝑑
𝑠
lim
𝑦↓0
+

𝑦
𝑎
𝜕𝑤

𝜕𝑦
+ 𝐴𝑤 = 𝑔 (𝑥) 𝑜𝑛 𝜕Ω ∩ 𝜕R

2

+
,

𝑤 = 𝑤
0
𝑜𝑛 𝜕Ω ∩R2

+
.

(24)

Proof. One has

Ẽloc (𝑤,Ω)

=
1

2
∫
Ω

𝑦
𝑎

|∇𝑤|
2

+
𝐴

2
∫
𝜕Ω∩𝜕R2

+

𝑤
2

− ∫
𝜕Ω∩𝜕R2

+

𝑔 (𝑥)𝑤

≥
1

2
∫
Ω

𝑦
𝑎

|∇𝑤|
2

+
𝐴

2
∫
𝜕Ω∩𝜕R2

+

𝑤
2

−
𝐴

4
∫
𝜕Ω∩𝜕R2

+

𝑤
2

−
1

𝐴

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝐿
∞ ⋅
󵄨󵄨󵄨󵄨󵄨
𝜕Ω ∩ 𝜕R

2

+

󵄨󵄨󵄨󵄨󵄨

=
1

2
∫
Ω

𝑦
𝑎

|∇𝑤|
2

+
𝐴

4
∫
𝜕Ω∩𝜕𝑅

2

+

𝑤
2

−
1

𝐴

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝐿
∞ ⋅
󵄨󵄨󵄨󵄨󵄨
𝜕Ω ∩ 𝜕R

2

+

󵄨󵄨󵄨󵄨󵄨
.

(25)

Obviously, 𝑤 − 𝑤
0
∈ 𝐻1(𝑦𝑎, Ω); we now extend it by zeroes

outside of Ω in R2

+
, 𝑤 − 𝑤

0
∈ 𝐻1(𝑦𝑎,R2

+
) and by the trace

theorem and a compact imbedding theorem [11–13],𝑤−𝑤
0
∈

𝐻𝑠(R) 󳨅→󳨅→ 𝐿𝑝(R) for every 1 ≤ 𝑝 < ∞. Therefore, 𝐸
is well defined, bounded below, and coercive in Γ; there is a
minimizer denoted again by 𝑤. By variational calculations,

div (𝑦𝑎∇𝑤) = 0 in Ω,

−𝑑
𝑠
lim
𝑦↓0
+

𝑦
𝑎
𝜕𝑤

𝜕𝑦
+ 𝐴𝑤 = 𝑔 (𝑥) on 𝜕Ω ∩ 𝜕R2

+
,

𝑤 = 𝑤
0

on 𝜕Ω ∩R2

+
,

(26)

in weak sense. Furthermore,𝑤 ∈ 𝐶0,𝛽(Ω) for some 0 < 𝛽 < 1
by regularity discussion.

Now we come to proveTheorem 2.

Proof of Theorem 2. By Lemma 7, 𝑢 = 𝑢∗(𝑏
1/2𝑠

𝑥, 𝑏
1/2𝑠

𝑦) and
𝑢 = 𝑢∗(𝑏

1/2𝑠

𝑥, 𝑏
1/2𝑠

𝑦) are a supersolution and a subsolution
of (3) in R2

+
∩ {𝑥 > 0}, respectively. Let Ω

𝑅
= (0, 𝑅) × (0, 𝑅)

and 𝑢
0
= 𝑢. Consider the mixed-boundary problem

div (𝑦𝑎∇𝑢
1
) = 0 in Ω

𝑅
,

− 𝑑
𝑠
lim
𝑦↓0
+

𝑦
𝑎
𝜕𝑢

1

𝜕𝑦
+ 𝐴𝑢

1
= 𝑏 (𝑥) 𝑓 (𝑢

0
) + 𝐴𝑢

0

on 𝜕Ω
𝑅
∩ 𝜕R

2

+
,

𝑢
1
= 𝑢 on 𝜕Ω

𝑅
∩R2

+
,

(27)

where 𝐴 > max{0, 𝑏max
[0,1]
(−𝑓󸀠)}. By Lemma 8, there is a

solution 𝑢
1
∈ 𝐶0,𝛽(Ω

𝑅
) for some 0 < 𝛽 < 1, and further

𝑢
1
> 0 in Ω

𝑅
by the strong maximum principle and Hopf

lemma.
Denote 𝑤 = 𝑢

1
− 𝑢

0
,

div (𝑦𝑎∇𝑤) = 0 in Ω
𝑅
,

−𝑑
𝑠
lim
𝑦↓0
+

𝑦
𝑎
𝜕𝑤

𝜕𝑦
+ 𝐴𝑤 ≤ 0 on 𝜕Ω

𝑅
∩ 𝜕R

2

+
,

𝑤 = 0 on 𝜕Ω
𝑅
∩R2

+
.

(28)

Again, by the strong maximum principle and Hopf lemma,
𝑢
1
< 𝑢

0
inΩ

𝑅
.

Now we start the iteration procedure. Given 𝑢
𝑛
and 𝑢

𝑛−1

such that 0 ≤ 𝑢
𝑛
≤ 𝑢

𝑛−1
≤ 1 inΩ

𝑅
, the problem

div (𝑦𝑎∇𝑢
𝑛+1
) = 0 in Ω

𝑅
,

− 𝑑
𝑠
lim
𝑦↓0
+

𝑦
𝑎
𝜕𝑢

𝑛+1

𝜕𝑦
+ 𝐴𝑢

𝑛+1
= 𝑏 (𝑥) 𝑓 (𝑢

𝑛
) + 𝐴𝑢

𝑛

on 𝜕Ω
𝑅
∩ 𝜕R

2

+
,

𝑢
𝑛+1
= 𝑢 on 𝜕Ω

𝑅
∩R2

+

(29)
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has a solution 𝑢
𝑛+1

∈ 𝐶0,𝛽(Ω
𝑅
) for some 0 < 𝛽 < 1

by Lemma 8 and 𝑢
𝑛+1

> 0 in Ω
𝑅
by the strong maximum

principle and Hopf lemma.
Let 𝑤 = 𝑢

𝑛+1
− 𝑢

𝑛
,

div (𝑦𝑎∇𝑤) = 0 in Ω
𝑅
,

− 𝑑
𝑠
lim
𝑦↓0
+

𝑦
𝑎
𝜕𝑤

𝜕𝑦
+ 𝐴𝑤

= {𝑏 (𝑥)
𝑓 (𝑢

𝑛
) − 𝑓 (𝑢

𝑛−1
)

𝑢
𝑛
− 𝑢

𝑛−1

+ 𝐴} (𝑢
𝑛
− 𝑢

𝑛−1
)

on 𝜕Ω
𝑅
∩ 𝜕R

2

+
,

𝑤 = 0 on 𝜕Ω
𝑅
∩R2

+
.

(30)

Again by the strong maximum principle and Hopf lemma,
𝑢
𝑛+1
< 𝑢

𝑛
in Ω

𝑅
.

Assume that 𝑢
𝑛
≥ 𝑢 in Ω

𝑅
for some 𝑛 ∈ 𝑍+. Let 𝑤 =

𝑢
𝑛+1
− 𝑢,

div (𝑦𝑎∇𝑤) = 0 in Ω
𝑅
,

− 𝑑
𝑠
lim
𝑦↓0
+

𝑦
𝑎
𝜕𝑤

𝜕𝑦
+ 𝐴𝑤

= {𝑏 (𝑥)
𝑓 (𝑢

𝑛
) − 𝑓 (𝑢)

𝑢
𝑛
− 𝑢

+ 𝐴} (𝑢
𝑛
− 𝑢)

on 𝜕Ω
𝑅
∩ 𝜕R

2

+
,

𝑤 = 𝑢 − 𝑢 ≥ 0 on 𝜕Ω
𝑅
∩R2

+
;

(31)

𝑢
𝑛+1
> 𝑢 inΩ

𝑅
by maximum principle and Hopf lemma.

Thus there is a sequence {𝑢
𝑛
}, 𝑢 = 𝑢

0
> 𝑢

1
> 𝑢

2
> ⋅ ⋅ ⋅ >

𝑢
𝑛
> ⋅ ⋅ ⋅ > 𝑢, 𝑢

𝑛
→ 𝑢

𝑅
by monotone convergence theorem

and

div (𝑦𝑎∇𝑢
𝑅
) = 0 in Ω

𝑅
,

−𝑑
𝑠
lim
𝑦↓0
+

𝑦
𝑎
𝜕𝑢

𝑅

𝜕𝑦
= 𝑏 (𝑥) 𝑓 (𝑢

𝑅
) on 𝜕Ω

𝑅
∩ 𝜕R

2

+
,

𝑢
𝑅
= 𝑢 on 𝜕Ω

𝑅
∩R2

+
;

(32)

𝑢 ≤ 𝑢
𝑅
≤ 𝑢 in Ω

𝑅
and ‖𝑢

𝑅
‖
𝐶
0,𝛽

(Ω
𝑅
)
≤ 𝐶 where 𝐶 does not

depend on 𝑅 by regularity discussion.
Up to a subsequence 𝑢

𝑅
→ 𝑢 in 𝐶0

loc(R
2

+
∩ {𝑥 > 0}),

𝑦𝑎(𝑢
𝑅
)
𝑦
→ 𝑦𝑎𝑢

𝑦
in 𝐶0

loc(R
2

+
∩ {𝑥 > 0}) as 𝑅 → ∞, and

div (𝑦𝑎∇𝑢) = 0 in R
2

+
∩ {𝑥 > 0} ,

−𝑑
𝑠
lim
𝑦↓0
+

𝑦
𝑎
𝜕𝑢

𝜕𝑦
= 𝑏 (𝑥) 𝑓 (𝑢) on 𝜕R2

+
∩ {𝑥 > 0} ,

𝑢 (0, 𝑦) = 0 for 𝑦 ≥ 0;

(33)

𝑢 < 𝑢 < 𝑢 in R2

+
∩ {𝑥 > 0} by the strong maximum

principle and Hopf lemma. Therefore 𝑢 → 1 as 𝑥 → ∞

from asymptotic behavior of 𝑢 and 𝑢 as 𝑥 → ∞.

We define 𝑢(𝑥, 𝑦) = −𝑢(−𝑥, 𝑦) for 𝑥 < 0 and 𝑦 ≥ 0; then

div (𝑦𝑎∇𝑢) = 0 in R
2

+
,

−𝑑
𝑠
lim
𝑦↓0
+

𝑦
𝑎
𝜕𝑢

𝜕𝑦
= 𝑏 (𝑥) 𝑓 (𝑢) on 𝜕R2

+
,

(34)

and 𝑢 → ±1 as 𝑥 → ±∞. The desired solution is achieved.
We complete the proof.

3. Nonsymmetric Nonlinearities

In this section, we deal with more general situations; that is,
𝐺 ∈ 𝐶2,𝛾(R) (𝛾 > max{0, 1 − 2𝑠}):

(1) 𝐺󸀠(1) = 𝐺󸀠(−1) = 0, 𝐺(1) = 𝐺(−1) < 𝐺(𝜏) for 𝜏 ∈
(−1, 1);

(2) 𝐺󸀠󸀠(1) > 0, 𝐺󸀠󸀠(−1) > 0.

For simplicity we can assume that 𝐺(±1) = 0 by adding a
constant.

Consider the nonlocal energy functional defined on an
open interval 𝐼 ⊂ R,

Enon (𝑤, 𝐼) =
1

2
∬

𝐼

󵄨󵄨󵄨󵄨𝑤 (𝑥) − 𝑤 (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

𝑑𝑦𝑑𝑥

+ ∫
𝐼

∫
R\𝐼

󵄨󵄨󵄨󵄨𝑤 (𝑥) − 𝑤 (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

𝑑𝑦𝑑𝑥

+ ∫
𝐼

𝑏 (𝑥) 𝐺 (𝑤) 𝑑𝑥,

(35)

where𝑤 ∈ 𝐻𝑠(𝐼)with prescribed boundary data outside of 𝐼.
Define a nondecreasing competitor

ℎ (𝑥) = {
1 if |𝑥| ≥ 1,
𝑥 if |𝑥| < 1.

(36)

If |𝐼| > 4, by direct calculations,

Enon (ℎ, 𝐼) ≤

{{{{{{{{

{{{{{{{{

{

𝐶
𝑠
(1 + |𝐼|

1−2𝑠

) if 𝑠 ∈ (0, 1
2
) ,

𝐶
𝑠
(1 + log |𝐼|) if 𝑠 = 1

2
,

𝐶
𝑠

if 𝑠 ∈ (1
2
, 1) ,

(37)

where 𝐶
𝑠
is a positive constant depending only on 𝑠 (see [6]).

In order to proveTheorem 3, we first give several lemmas.

Lemma 9. Let 𝐼 = (𝑎, 𝑏) with 𝑏 − 𝑎 > 4. Let Γ
𝐼
= {𝑤 ∈ 𝐻𝑠(𝐼),

𝑤 = −1 for 𝑥 ≤ 𝑎 and 𝑤 = 1 for 𝑥 ≥ 𝑏, |𝑤| ≤ 1}. Then, for
every 𝑠 ∈ (0, 1), there is a minimizer 𝑢

(𝑎,𝑏)
∈ Γ

𝐼
of E

𝑛𝑜𝑛
,

(−Δ)
𝑠

𝑢
(𝑎,𝑏)

= 𝑏 (𝑥) 𝑓 (𝑢
(𝑎,𝑏)
) 𝑖𝑛 (𝑎, 𝑏) (38)

and 𝑢
(𝑎,𝑏)

∈ 𝐶2,𝛼(𝑎, 𝑏) for some 0 < 𝛼 < 1.
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Proof. We can change the values of 𝐺 for |𝑥| > 1 such that 𝐺
has the linear growth there which is denoted by 𝐺. Given the
admissible set

Γ̃
𝐼
= {𝑤 ∈ 𝐻

𝑠

(𝐼) , 𝑤 = −1 for 𝑥 ≤ 𝑎, 𝑤 = 1 for 𝑥 ≥ 𝑏} .
(39)

Clearly Γ
𝐼
⊂ Γ̃

𝐼
and ℎ(𝑥 − ((𝑎 + 𝑏)/2)) is an element of them.

Consider the energy functional

Ẽnon (𝑤, 𝐼) =
1

2
∬

𝐼

󵄨󵄨󵄨󵄨𝑤 (𝑥) − 𝑤 (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

𝑑𝑦𝑑𝑥

+ ∫
𝐼

∫
R\𝐼

󵄨󵄨󵄨󵄨𝑤 (𝑥) − 𝑤 (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

𝑑𝑦𝑑𝑥

+ ∫
𝐼

𝑏 (𝑥) 𝐺 (𝑤) 𝑑𝑥.

(40)

If the minimizer 𝑤 of Ẽnon in Γ̃𝐼 satisfies |𝑤| ≤ 1, then 𝑤 ∈ Γ𝐼
and Ẽnon(𝑤, 𝐼) = Enon(𝑤, 𝐼); that is, 𝑤 is also a minimizer of
Enon in Γ𝐼.

Obviously, the energy is nonincreasing by cutting𝑤 at ±1
and

Ẽnon (𝑤, 𝐼) =
1

2
‖𝑤‖

2

𝐻̇
𝑠
(𝐼)
+ ∫

𝐼

𝑏 (𝑥) 𝐺 (𝑤) 𝑑𝑥 (41)

is well defined, bounded below, and coercive in Γ̃
𝐼
.Thus, there

is a minimizer 𝑢
(𝑎,𝑏)

∈ Γ
𝐼
,

(−Δ)
𝑠

𝑢
(𝑎,𝑏)

= 𝑏 (𝑥) 𝑓 (𝑢
(𝑎,𝑏)
) in (𝑎, 𝑏) ,

Enon (𝑢(𝑎,𝑏), (𝑎, 𝑏))

≤

{{{{{{

{{{{{{

{

𝐶
𝑠
(1 + |𝑏 − 𝑎|

1−2𝑠

) if 𝑠 ∈ (0, 1
2
) ,

𝐶
𝑠
(1 + log |𝑏 − 𝑎|) if 𝑠 = 1

2
,

𝐶
𝑠

if 𝑠 ∈ (1
2
, 1)

(42)

by (37).

Lemma 10. Let 𝑠 ∈ (1/2, 1). Let 𝑢
(0,𝑅)

be the minimizer of
E

𝑛𝑜𝑛
(⋅, (0, 𝑅)) with 𝑅 > 4; then

E
𝑛𝑜𝑛
(𝑢

(0,𝑅)
, (−𝑙, 𝑙)) ≤ E

𝑛𝑜𝑛
(𝑢

(0,𝑅)
+ 𝜙, (−𝑙, 𝑙)) + 𝛼

𝑙
(𝑅) (43)

for any 𝜙 ∈ 𝐶∞

0
(−𝑙, 𝑙) and 𝑙 ∈ 𝑍+, where 𝛼

𝑙
→ 0 as 𝑙 → ∞.

Proof. Denote 𝑍
𝑅
(𝑥) = 𝑢

(−𝑙,𝑅+𝑙)
(((𝑅 + 2𝑙)/𝑅)𝑥 − 𝑙). Clearly,

𝑍
𝑅
= 1 as 𝑥 ≥ 𝑅 and 𝑍

𝑅
= −1 as 𝑥 ≤ 0.

One has

Enon (𝑍𝑅
, (0, 𝑅))

=
1

2
∬

𝑅

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢
(−𝑙,𝑅+𝑙)

(
𝑅 + 2𝑙

𝑅
𝑥 − 𝑙)−𝑢

(−𝑙,𝑅+𝑙)
(
𝑅 + 2𝑙

𝑅
𝑦 − 𝑙)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

× (
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨
1+2𝑠

)
−1

+ ∫
𝑅

0

∫
(−∞,0)∪(𝑅,+∞)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢
(−𝑙,𝑅+𝑙)

(
𝑅 + 2𝑙

𝑅
𝑥 − 𝑙)

−𝑢
(−𝑙,𝑅+𝑙)

(
𝑅 + 2𝑙

𝑅
𝑦 − 𝑙)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

× (
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨
1+2𝑠

)
−1

+ ∫
𝑅

0

𝑏 (𝑥) 𝐺(𝑢
(−𝑙,𝑅+𝑙)

(
𝑅 + 2𝑙

𝑅
𝑥 − 𝑙))

= (
𝑅

𝑅 + 2𝑙
)
1−2𝑠 1

2
∬

𝑅+𝑙

−𝑙

󵄨󵄨󵄨󵄨𝑢(−𝑙,𝑅+𝑙) (𝑥) − 𝑢(−𝑙,𝑅+𝑙) (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

+ (
𝑅

𝑅 + 2𝑙
)
1−2𝑠

× ∫
𝑅+𝑙

−𝑙

∫
(−∞,−𝑙)∪(𝑅+𝑙,+∞)

󵄨󵄨󵄨󵄨𝑢(−𝑙,𝑅+𝑙) (𝑥) − 𝑢(−𝑙,𝑅+𝑙) (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

+
𝑅

𝑅 + 2𝑙
∫
𝑅+𝑙

−𝑙

𝑏 (
𝑅

𝑅 + 2𝑙
(𝑥 + 𝑙))𝐺 (𝑢

(−𝑙,𝑅+𝑙)
)

≤ (
𝑅

𝑅 + 2𝑙
)
1−2𝑠

𝐸non (𝑢(−𝑙,𝑅+𝑙), (−𝑙, 𝑅 + 𝑙))

+ (
𝑅

𝑅 + 2𝑙
)
1−2𝑠

× ∫
𝑅+𝑙

−𝑙

{𝑏 (
𝑅

𝑅 + 2𝑙
(𝑥 + 𝑙)) − 𝑏 (𝑥)}𝐺 (𝑢

(−𝑙,𝑅+𝑙)
) .

(44)

Denote

𝛽
𝑙
(𝑅) = (

𝑅

𝑅 + 2𝑙
)
1−2𝑠

× ∫
𝑅+𝑙

−𝑙

{𝑏 (
𝑅

𝑅 + 2𝑙
(𝑥 + 𝑙)) − 𝑏 (𝑥)}𝐺 (𝑢

(−𝑙,𝑅+𝑙)
)

≤ (
𝑅

𝑅 + 2𝑙
)
1−2𝑠

𝐶
𝑠
sup
R

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑏 ((

𝑅

𝑅 + 2𝑙
) (𝑥 + 𝑙)) − 𝑏 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󳨀→ 0;

(45)
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here we use the periodic of 𝑏;

𝛾
𝑙
(𝑅) = {(

𝑅

𝑅 + 2𝑙
)
1−2𝑠

− 1}Enon (𝑢(−𝑙,𝑅+𝑙), (−𝑙, 𝑅 + 𝑙))

≤ 𝐶
𝑠
{(

𝑅

𝑅 + 2𝑙
)
1−2𝑠

− 1} 󳨀→ 0

(46)

as 𝑅 → ∞.
Therefore,

Enon (𝑍𝑅
, (0, 𝑅)) ≤ Enon (𝑢(−𝑙,𝑅+𝑙), (−𝑙, 𝑅 + 𝑙))

+ 𝛾
𝑙
(𝑅) + 𝛽

𝑙
(𝑅) .

(47)

Since 𝑢
(0,𝑅)

is the minimizer of Enon(⋅, (0, 𝑅)),

Enon (𝑢(0,𝑅), (0, 𝑅)) ≤ Enon (𝑢(−𝑙,𝑅+𝑙), (−𝑙, 𝑅 + 𝑙))

+ 𝛾
𝑙
(𝑅) + 𝛽

𝑙
(𝑅) .

(48)

Let

𝜂
𝑙
(𝑅) = Enon (𝑢(0,𝑅), (−𝑙, 𝑅 + 𝑙)) −Enon (𝑢(0,𝑅), (0, 𝑅))

= ∫
0

−𝑙

∫
∞

𝑅

󵄨󵄨󵄨󵄨𝑢(0,𝑅) (𝑥) − 𝑢(0,𝑅) (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

+ ∫
𝑅+𝑙

𝑅

∫
−𝑙

−∞

󵄨󵄨󵄨󵄨𝑢(0,𝑅) (𝑥) − 𝑢(0,𝑅) (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

≤ 4∫
0

−𝑙

∫
∞

𝑅

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
−1−2𝑠

𝑑𝑦𝑑𝑥

+ 4∫
𝑅+𝑙

𝑅

∫
−𝑙

−∞

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
−1−2𝑠

𝑑𝑦𝑑𝑥

=
2

𝑠 (2𝑠 − 1)
{𝑅

1−2𝑠

− (𝑅 + 2𝑙)
1−2𝑠

} 󳨀→ 0

(49)

as 𝑅 → ∞.
By (48)-(49) and the fact that 𝑢

(−𝑙,𝑅+𝑙)
is the minimizer in

(−𝑙, 𝑅 + 𝑙),

Enon (𝑢(0,𝑅), (−𝑙, 𝑅 + 𝑙))

≤ Enon (𝑢(−𝑙,𝑅+𝑙), (−𝑙, 𝑅 + 𝑙)) + 𝛾𝑙 (𝑅) + 𝛽𝑙 (𝑅) + 𝜂𝑙 (𝑅)

≤ Enon (𝑢(0,𝑅) + 𝜙, (−𝑙, 𝑅 + 𝑙)) + 𝛾𝑙 (𝑅) + 𝛽𝑙 (𝑅) + 𝜂𝑙 (𝑅) ;

Enon (𝑢(0,𝑅) + 𝜙, (−𝑙, 𝑅 + 𝑙)) −Enon (𝑢(0,𝑅), (−𝑙, 𝑅 + 𝑙))

=
1

2
∬

𝑙

−𝑙

󵄨󵄨󵄨󵄨(𝑢(0,𝑅) + 𝜙) (𝑥) − (𝑢(0,𝑅) + 𝜙) (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

−
1

2
∬

𝑙

−𝑙

󵄨󵄨󵄨󵄨𝑢(0,𝑅) (𝑥) − 𝑢(0,𝑅) (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

+ ∫
𝑙

−𝑙

∫
+∞

𝑙

󵄨󵄨󵄨󵄨(𝑢(0,𝑅) + 𝜙) (𝑥) − (𝑢(0,𝑅) + 𝜙) (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

− ∫
𝑙

−𝑙

∫
+∞

𝑙

󵄨󵄨󵄨󵄨𝑢(0,𝑅) (𝑥) − 𝑢(0,𝑅) (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

+ ∫
𝑙

−𝑙

∫
−𝑙

−∞

󵄨󵄨󵄨󵄨(𝑢(0,𝑅) + 𝜙) (𝑥) − (𝑢(0,𝑅) + 𝜙) (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

− ∫
𝑙

−𝑙

∫
−𝑙

−∞

󵄨󵄨󵄨󵄨𝑢(0,𝑅) (𝑥) − 𝑢(0,𝑅) (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

+ ∫
𝑙

−𝑙

𝑏 (𝑥) {𝐺 (𝑢
(0,𝑅)

+ 𝜙) − 𝐺 (𝑢
(0,𝑅)
)}

= Enon (𝑢(0,𝑅) + 𝜙, (−𝑙, 𝑙)) −Enon (𝑢(0,𝑅), (−𝑙, 𝑙)) .

(50)

Therefore,

Enon (𝑢(0,𝑅), (−𝑙, 𝑙)) ≤ Enon (𝑢(0,𝑅) + 𝜙, (−𝑙, 𝑙)) + 𝛼𝑙 (𝑅) , (51)

where 𝛼
𝑙
(𝑅) = 𝛾

𝑙
(𝑅) + 𝛽

𝑙
(𝑅) + 𝜂

𝑙
(𝑅) → 0 as 𝑅 → ∞. The

proof of Lemma 10 is completed.

It is noticed that ‖𝑢
(0,𝑅)
‖
𝐶
2,𝛼
≤ 𝐶 for some 𝐶 independent

of 𝑅; then by the canonical diagonal process, up to a
subsequence, 𝑢

(0,𝑅)
→ 𝑢

∞
in 𝐶2

loc(R) as 𝑅 → ∞ and

(−𝜕
𝑥𝑥
)
𝑠

𝑢
∞
= 𝑏 (𝑥) 𝑓 (𝑢

∞
) in (0,∞) ,

𝑢
∞
= −1 in (−∞, 0] .

(52)

For 𝑢
∞
, we have the following.

Lemma 11. 𝑢
∞
is a localminimizer of the nonlocal energy; that

is, for every 𝑙 > 0 and for any 𝜙 ∈ 𝐶∞

0
(−𝑙, 𝑙),

E
𝑛𝑜𝑛
(𝑢

∞
, (−𝑙, 𝑙)) ≤ E

𝑛𝑜𝑛
(𝑢

∞
+ 𝜙, (−𝑙, 𝑙)) . (53)

Proof. Since 𝑢
(0,𝑅)

→ 𝑢
∞

in 𝐶2

loc(R),

1

2
∬

𝑙

−𝑙

󵄨󵄨󵄨󵄨𝑢(0,𝑅) (𝑥) − 𝑢(0,𝑅) (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

󳨀→
1

2
∬

𝑙

−𝑙

󵄨󵄨󵄨󵄨𝑢∞ (𝑥) − 𝑢∞ (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

,

∫
𝑙

−𝑙

𝑏 (𝑥) 𝐺 (𝑢
(0,𝑅)
) − ∫

𝑙

−𝑙

𝑏 (𝑥) 𝐺 (𝑢
∞
) .

(54)

For |𝑦| ≥ 2𝑙 and |𝑥| ≤ 𝑙, |𝑥 − 𝑦| ≥ |𝑦| − |𝑥| ≥ |𝑦|/2,

∫
𝑙

−𝑙

∫
R\(−2𝑙,2𝑙)

󵄨󵄨󵄨󵄨𝑢(0,𝑅) (𝑥) − 𝑢(0,𝑅) (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

≤ 4∫
𝑙

−𝑙

∫
R\(−2𝑙,2𝑙)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
−1−2𝑠

≤ 4∫
𝑙

−𝑙

𝑑𝑥∫
R\(−2𝑙,2𝑙)

21+2𝑠

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

𝑑𝑦 ≤
16

𝑠
𝑙
1−2𝑠

.

(55)
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Thus, by the Dominated convergence theorem and locally
uniformly convergence,

∫
𝑙

−𝑙

∫
R\(−𝑙,𝑙)

󵄨󵄨󵄨󵄨𝑢(0,𝑅) (𝑥) − 𝑢(0,𝑅) (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

= ∫
𝑙

−𝑙

∫
R\(−2𝑙,2𝑙)

󵄨󵄨󵄨󵄨𝑢(0,𝑅) (𝑥) − 𝑢(0,𝑅) (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

+ ∫
𝑙

−𝑙

∫
(−2𝑙,2𝑙)\(−𝑙,𝑙)

󵄨󵄨󵄨󵄨𝑢(0,𝑅) (𝑥) − 𝑢(0,𝑅) (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

󳨀→ ∫
𝑙

−𝑙

∫
R\(−𝑙,𝑙)

󵄨󵄨󵄨󵄨𝑢∞ (𝑥) − 𝑢∞ (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

.

(56)

By (54) and the above,

Enon (𝑢(0,𝑅), (−𝑙, 𝑙)) 󳨀→ Enon (𝑢∞, (−𝑙, 𝑙)) (57)

as 𝑅 → ∞. The same discussion leads to the fact that

Enon (𝑢(0,𝑅) + 𝜙, (−𝑙, 𝑙)) 󳨀→ Enon (𝑢∞ + 𝜙, (−𝑙, 𝑙)) (58)

as 𝑅 → ∞ and for any 𝜙 ∈ 𝐶∞

0
(−𝑙, 𝑙).

Therefore, (53) follows from Lemma 10, and

(−𝜕
𝑥𝑥
)
𝑠

𝑢
∞
= 𝑏 (𝑥) 𝑓 (𝑢

∞
) , −1 ≤ 𝑢

∞
≤ 1 in R,

𝑢
∞
= −1 in (−∞, 0] .

(59)

Furthermore𝑢
∞
≡ −1 by the strongmaximumprinciple.

Let 𝑢
(−𝑅,𝑅)

be the minimizer of Enon(⋅, (−𝑅, 𝑅)) in Γ(−𝑅,𝑅).
By continuity, there is a 𝑃

𝑅
= sup{𝑥 ∈ (−𝑅, 𝑅), 𝑢

(−𝑅,𝑅)
≤ 0}

such that 𝑢
(−𝑅,𝑅)

(𝑃
𝑅
) = 0 and 𝑢

(−𝑅,𝑅)
> 0 for 𝑥 > 𝑃

𝑅
.

Lemma 12. One has 𝑅 − |𝑃
𝑅
| → ∞ as 𝑅 → ∞.

Proof. To check this, we suppose by contradiction that |𝑅 +
𝑃
𝑅
| < +∞ for some sequence 𝑅 → ∞. Up to a subsequence,

𝑅 + 𝑃
𝑅
→ 𝑘 as 𝑅 → ∞ for some constant 𝑘.

One has

−1 ←󳨀 𝑢
(0,2𝑅)

(𝑥) = 𝑢
(−𝑅,𝑅)

(𝑥 − 𝑅) > 0 (60)

for 𝑥 > 𝑘 and 𝑅 large enough. This contradiction verifies our
conclusion.

Now we start to prove our conclusion.

Proof of Theorem 3. Let 𝑢𝑅(𝑥) = 𝑢
(−𝑅,𝑅)

(𝑥 + [𝑃
𝑅
]) for 𝑥 ∈

(−𝑅 − [𝑃
𝑅
], 𝑅 − [𝑃

𝑅
]), where [𝑃

𝑅
] is denoted by the integer

part of 𝑃
𝑅
. And 𝑢𝑅(𝑥) satisfies

(−Δ)
𝑠

𝑢
𝑅

= 𝑏 (𝑥) 𝑓 (𝑢
𝑅

) in (−𝑅 − [𝑃
𝑅
] , 𝑅 − [𝑃

𝑅
]) . (61)

Up to a subsequence which is denoted again by 𝑢𝑅, 𝑢𝑅 → 𝑢

in 𝐶2

loc(R) as 𝑅 → ∞ and

(−Δ)
𝑠

𝑢 = 𝑏 (𝑥) 𝑓 (𝑢) in (−∞,∞) . (62)

Since 𝑢𝑅(𝑃
𝑅
− [𝑃

𝑅
]) = 𝑢

(−𝑅,𝑅)
(𝑃

𝑅
) = 0 and 0 ≤ 𝑃

𝑅
− [𝑃

𝑅
] < 1,

for the above subsequence, there is a sub-subsequence such
that 𝑃

𝑅
− [𝑃

𝑅
] → 𝑃 ∈ [0, 1], 𝑢(𝑃) = 0, and 𝑢 ≥ 0 for 𝑥 ≥ 𝑃.

One has

Enon (𝑢
𝑅

, (−𝑅 − [𝑃
𝑅
] , 𝑅 − [𝑃

𝑅
]))

= Enon (𝑢(−𝑅,𝑅), (−𝑅, 𝑅)) ≤ 𝐶𝑠
.

(63)

By Fatou’s lemma and Lemma 12, Enon(𝑢,R) ≤ 𝐶
𝑠
and

∫
+∞

−∞

𝑏(𝑥)𝐺(𝑢) < +∞.
We claim that |𝑢| → ±1 as |𝑥| → ∞. Indeed, if there

exists a sequence 𝑥
𝑛
→ ∞ such that lim inf

𝑥→∞
|𝑢| =

lim
𝑥
𝑛
→∞

|𝑢(𝑥
𝑛
)| ̸= 1, by the 𝐶2 regularity of 𝑢, there must be

a ball 𝐵
𝜌
(𝑥

𝑛
) such that 𝐺(𝑢) > 𝜖 in 𝐵

𝜌
(𝑥

𝑛
) for some 𝜖 > 0,

∞ > ∫
+∞

−∞

𝑏 (𝑥) 𝐺 (𝑢) ≥

∞

∑
𝑛=1

∫
𝐵
𝜌
(𝑧
𝑛
)

𝑏 (𝑥) 𝐺 (𝑢 (𝑥))

≥ 𝑏 ⋅ 𝜖

∞

∑
𝑛=1

2𝜌 = ∞.

(64)

Therefore, 𝑢 → 1 or −1 as 𝑥 → ∞. The proof as 𝑥 → −∞

is similar. Since 𝑢 ≥ 0 for 𝑥 > 𝑃 ∈ [0, 1], 𝑢 → 1 as 𝑥 → ∞.
In the following we exclude the case that 𝑢 → 1 as 𝑥 →

−∞.
Assume that 𝑢 → 1 as 𝑥 → −∞ by contradiction.

Denote 𝐶
0
= min

𝑅
𝑢 = 𝑢(𝑥

0
) for some 𝑥

0
∈ 𝑅. 𝐶

0
> −1

by the strong maximum principle.
One has

∫
R

𝑢 (𝑥
0
) − 𝑢 (𝑦)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

𝑑𝑦 = (−Δ)
𝑠

𝑢 (𝑥
0
) = 𝑏 (𝑥

0
) 𝑓 (𝑢 (𝑥

0
)) < 0,

(65)

𝑓(𝑢(𝑥
0
)) = 𝑓(𝐶

0
) < 0.Therefore𝐶

0
∉ [1−𝛿, 1] by Remark 4.

Choose a small positive constant 𝛿∗ < min{𝛿, 1 −
((|𝐶

0
| + 1)/2)} such that 𝐺(1 − 𝛿∗) < min{𝐺(1 − 𝛿), 𝐺(−1 +

𝛿), 𝐺(−(|𝐶
0
| + 1)/2)}. Denote 𝑆 = inf{𝑥 ∈ R, 𝑢 < 1 − 𝛿∗} and

𝑂 = sup{𝑥 ∈ 𝑅, 𝑢 < 1 − 𝛿∗}; 𝑆 and 𝑂 are well defined since
𝑢 → ±1 as 𝑥 → ±∞.

Denote

𝑇
𝑅
= inf {𝑥 ∈ (−𝑅, 𝑅) , 𝑢

(−𝑅,𝑅)
≥ 1 − 𝛿

∗

} ,

𝑆
𝑅
= inf {𝑥 ∈ (𝑇

𝑅
, 𝑅) , 𝑢

(−𝑅,𝑅)
< 1 − 𝛿

∗

} ,

𝑂
𝑅
= sup {𝑥 ∈ (−𝑅, 𝑅) , 𝑢

(−𝑅,𝑅)
< 1 − 𝛿

∗

} ,

𝐶
0,𝑅
= min

(𝑆
𝑅
,𝑂
𝑅
)

𝑢
(−𝑅,𝑅)

= 𝑢
(−𝑅,𝑅)

(𝑥
𝑅
) ,

𝑄
𝑅
= inf {𝑥 > 𝑃

𝑅
, 𝑢

(−𝑅,𝑅)
=

󵄨󵄨󵄨󵄨𝐶0

󵄨󵄨󵄨󵄨 + 1

2
} .

(66)
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If 𝑅 is large enough, 𝑇
𝑅
, 𝑆

𝑅
, 𝑂

𝑅
, 𝐶

0,𝑅
, 𝑥

𝑅
, and 𝑄

𝑅
are

all well defined. By local uniform convergence, |𝐶
0,𝑅
| ∈

(|𝐶
0
|/2, (|𝐶

0
| + 1)/2) and |𝑂

𝑅
− 𝑆

𝑅
| < |𝑂 − 𝑆| + 1 = 𝑀:

󵄨󵄨󵄨󵄨𝐶0

󵄨󵄨󵄨󵄨 + 1

2
=
󵄨󵄨󵄨󵄨𝑢(−𝑅,𝑅) (𝑃𝑅) − 𝑢(−𝑅,𝑅) (𝑄𝑅

)
󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝑢(−𝑅,𝑅)

󵄩󵄩󵄩󵄩𝐶2,𝛽(𝑅)
󵄨󵄨󵄨󵄨𝑃𝑅 − 𝑄𝑅

󵄨󵄨󵄨󵄨 ≤ 𝐶
󵄨󵄨󵄨󵄨𝑃𝑅 − 𝑄𝑅

󵄨󵄨󵄨󵄨

(67)

for some positive constant 𝐶 independent of 𝑅, |𝑃
𝑅
− 𝑄

𝑅
| ≥

𝐿 > 0.
For simplicity, denote 𝐼

1
= [−𝑅, 𝑇

𝑅
], 𝐼

2
= [𝑇

𝑅
, 𝑆

𝑅
], 𝐼

3
=

[𝑆
𝑅
, 𝑂

𝑅
], and 𝐼

4
= [𝑂

𝑅
, 𝑅]; then [−𝑅, 𝑅] = ∪4

𝑖=1
𝐼
𝑖
.

Define

𝑢
∗

𝑅
= {

1 − 𝛿∗ if 𝑥 ∈ 𝐼
3
∩ {𝑢

(−𝑅,𝑅)
< 1 − 𝛿∗} = 𝐼∗

3
,

𝑢
(−𝑅,𝑅)

if elsewhere.
(68)

We compare the energy of 𝑢∗
𝑅
and of 𝑢

(−𝑅,𝑅)
:

Enon (𝑢(−𝑅,𝑅), (−𝑅, 𝑅)) −Enon (𝑢
∗

𝑅
, (−𝑅, 𝑅))

=
1

2
∫
𝐼
1
∪𝐼
2
∪𝐼
3
∪𝐼
4

∫
𝐼
∗

3

{

󵄨󵄨󵄨󵄨𝑢(−𝑅,𝑅) (𝑥) − 𝑢(−𝑅,𝑅) (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

−

󵄨󵄨󵄨󵄨𝑢
∗

𝑅
(𝑥) − 𝑢

∗

𝑅
(𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

}

+ ∫
𝐼
∗

3

∫
(−∞,−𝑅)∪(𝑅,+∞)

{

󵄨󵄨󵄨󵄨𝑢(−𝑅,𝑅) (𝑥) − 𝑢(−𝑅,𝑅) (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

−

󵄨󵄨󵄨󵄨𝑢
∗

𝑅
(𝑥) − 𝑢

∗

𝑅
(𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

}

+ ∫
𝐼
∗

3

𝑏 (𝑥) {𝐺 (𝑢
(−𝑅,𝑅)

) − 𝐺 (𝑢
∗

𝑅
)} .

(69)
Since 𝑢 → 1 as 𝑥 → ±∞, |𝑂

𝑅
− 𝑇

𝑅
| > |𝑆

𝑅
− 𝑇

𝑅
| → ∞ as

𝑅 → ∞.
One has

1

2
∫
𝐼
1

∫
𝐼
∗

3

󵄨󵄨󵄨󵄨𝑢(−𝑅,𝑅) (𝑥) − 𝑢(−𝑅,𝑅) (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

+ ∫
𝐼
∗

3

∫
−𝑅

−∞

󵄨󵄨󵄨󵄨𝑢(−𝑅,𝑅) (𝑥) − 𝑢(−𝑅,𝑅) (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

−
1

2
∫
𝐼
1

∫
𝐼
∗

3

󵄨󵄨󵄨󵄨𝑢
∗

𝑅
(𝑥) − 𝑢

∗

𝑅
(𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

− ∫
𝐼
∗

3

∫
−𝑅

−∞

󵄨󵄨󵄨󵄨𝑢
∗

𝑅
(𝑥) − 𝑢

∗

𝑅
(𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

≥ −4∫
𝑇
𝑅

−∞

∫
𝐼
3

1
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨
1+2𝑠

𝑑𝑦

= −
2

𝑠 (2𝑠 − 1)
(
󵄨󵄨󵄨󵄨𝑆𝑅 − 𝑇𝑅

󵄨󵄨󵄨󵄨
1−2𝑠

−
󵄨󵄨󵄨󵄨𝑂𝑅

− 𝑇
𝑅

󵄨󵄨󵄨󵄨
1−2𝑠

) 󳨀→ 0

(70)

as 𝑅 → ∞.

Since 𝑢
(−𝑅,𝑅)

≥ 1−𝛿∗ in 𝐼
2
∪𝐼

4
∪(𝐼

3
\𝐼∗

3
) and 𝑢

(−𝑅,𝑅)
< 1−𝛿∗

in 𝐼∗
3
,

1

2
∫
𝐼
2
∪𝐼
4
∪(𝐼
3
\𝐼
∗

3
)

∫
𝐼
∗

3

(

󵄨󵄨󵄨󵄨𝑢(−𝑅,𝑅) (𝑥) − 𝑢(−𝑅,𝑅) (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

−

󵄨󵄨󵄨󵄨𝑢(−𝑅,𝑅) (𝑥) − 𝑢
∗

𝑅
(𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

)

+ ∫
𝐼
∗

3

∫
∞

𝑅

󵄨󵄨󵄨󵄨𝑢(−𝑅,𝑅) (𝑥) − 1
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

− ∫
𝐼
∗

3

∫
∞

𝑅

󵄨󵄨󵄨󵄨𝑢
∗

𝑅
(𝑦) − 1

󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

≥ 0,

1

2
∬

𝐼
∗

3

󵄨󵄨󵄨󵄨𝑢(−𝑅,𝑅) (𝑥) − 𝑢(−𝑅,𝑅) (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

−
1

2
∬

𝐼
∗

3

󵄨󵄨󵄨󵄨𝑢
∗

𝑅
(𝑥) − 𝑢

∗

𝑅
(𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
1+2𝑠

> 0,

∫
𝐼
∗

3

𝑏 (𝑥) {𝐺 (𝑢
(−𝑅,𝑅)

) − 𝐺 (𝑢
∗

𝑅
)}

≥ 𝑏∫
𝑄
𝑅

𝑃
𝑅

{𝐺 (𝑢
(−𝑅,𝑅)

) − 𝐺 (𝑢
∗

𝑅
)}

≥ 𝑏𝐿{min(𝐺 (1 − 𝛿) , 𝐺 (−1 + 𝛿) , 𝐺(−
1 +
󵄨󵄨󵄨󵄨𝐶0

󵄨󵄨󵄨󵄨

2
))

−𝐺 (1 − 𝛿
∗

) }

> 0.

(71)

Therefore, Enon(𝑢(−𝑅,𝑅), (−𝑅, 𝑅)) > Enon(𝑢
∗

𝑅
, (−𝑅, 𝑅)) for 𝑅

large enough. This contradiction deduces the fact that 𝑢 →
−1 as 𝑥 → −∞. 𝑢 is the desired solution.

Appendix

In this appendix we state several regularity results involving
the nonlocal equation (1), the local equation (3), and a Hopf
lemma; their proof can be found in [2, 3, 6].

Proposition A.1. Let 𝑏 ∈ 𝐶1,𝛾(R) ∩ 𝐿∞(R) and 𝑓 ∈ 𝐶1,𝛾(R)

with 𝛾 > max(0, 1 − 2𝑠). Then, any bounded solution of (1)

(−Δ)
𝑠V (𝑥) = 𝑏 (𝑥

1
) 𝑓 (V (𝑥)) 𝑖𝑛 R

𝑛 (A.1)

is 𝐶2,𝛽(R𝑛) for some 0 < 𝛽 < 1 depending only on 𝑠 and 𝛾.
Furthermore, given 1/2 < 𝑠

0
there exists 0 < 𝛽 < 1

depending only on 𝑛, 𝑠
0
, and 𝛾 and hence independent of 𝑠—

such that, for every 𝑠 > 𝑠
0
,

‖V‖
𝐶
2,𝛽

(R𝑛) ≤ 𝐶 (A.2)
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for some 𝐶 depending only on 𝑛, 𝑠
0
, ‖𝑓‖

𝐶
1,𝛾 , ‖𝑏‖

𝐶
1,𝛾 , and ‖V‖

𝐿
∞ ,

not on 𝑠. In addition, the function 𝑢 = 𝑃
𝑠
∗ V, where 𝑃

𝑠
is the

Poisson kernel (𝑢(𝑥, 𝑦) = 𝑝
𝑛,𝑠
∫
R𝑛
(𝑦2𝑠/(𝑧2+𝑦2)

𝑛+2𝑠

)V(𝑥−𝑧)𝑑𝑧),
satisfies

‖𝑢‖
𝐶
𝛽
(R𝑛+1
+

)
+
󵄩󵄩󵄩󵄩∇𝑥𝑢

󵄩󵄩󵄩󵄩𝐶𝛽(R𝑛+1
+

)
+
󵄩󵄩󵄩󵄩󵄩
𝐷

2

𝑥
𝑢
󵄩󵄩󵄩󵄩󵄩𝐶𝛽(R𝑛+1

+
)

≤ 𝐶. (A.3)

If 𝑠 > 𝑠
0
, the constant𝐶 is independent of 𝑠 and only dependent

on the quantities as the above mentioned.
We remark that the above results are valid for solutions of

(A.1) in bounded domains.

Proposition A.2. Let 𝑎 ∈ (−1, 1) and 𝑅 > 0. Let 𝜑 ∈

𝐶
𝜎(𝜕0𝐵+

2𝑅
) for some 𝜎 ∈ (0, 1) and 𝑢 ∈ 𝐿∞(𝐵+

2𝑅
) ∩𝐻1(𝐵+

2𝑅
, 𝑦𝑎)

be a weak solution of

− div (𝑦𝑎∇𝑢 (𝑥, 𝑦)) = 0 𝑖𝑛 𝐵
+

2𝑅
⊂ R

𝑛+1

+
,

−lim
𝑦↓0
+

𝑦
𝑎

𝑢
𝑦
(𝑥, 𝑦) = 𝜑 𝑜𝑛 𝜕

0

𝐵
+

2𝑅
.

(A.4)

Then, there exists 𝛽 ∈ (0, 1) depending only on 𝑛, 𝑎, 𝑅,
‖𝑢‖

𝐿
∞
(𝐵
+

2𝑅
)
, and also ‖𝜑‖

𝐿
∞
(𝜕
0
𝐵
+

2𝑅
)
(for 𝐶1

𝑅
) and ‖𝜑‖

𝐶
𝜎
(𝜕
0
𝐵
+

2𝑅
)
(for

𝐶2

𝑅
), such that

‖𝑢‖
𝐶
0,𝛽

(𝐵
+

𝑅
)
≤ 𝐶

1

𝑅
,

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑎

𝑢
𝑦

󵄩󵄩󵄩󵄩󵄩𝐶0,𝛽(𝐵+
𝑅
)

≤ 𝐶
2

𝑅
.

(A.5)

Lemma A.3 (Hopf Principle). Let 𝑎 ∈ (−1, 1) and consider
the cylinder 𝐶

𝑅,1
= Γ0

𝑅
× (0, 1) ⊂ R𝑛+1

+
where Γ0

𝑅
is the ball of

center 0 and radius 𝑅 in R𝑛. Let 𝑢 ∈ 𝐶(𝐶
𝑅,1
) ∩ 𝐻1(𝐶

𝑅,1
, 𝑦𝑎)

satisfy

div (𝑦𝑎∇𝑢 (𝑥, 𝑦)) ≤ 0 𝑖𝑛 𝐶
𝑅,1
,

𝑢 > 0 𝑖𝑛 𝐶
𝑅,1
,

𝑢 (0, 0) = 0.

(A.6)

Then,

lim sup
𝑦↓0
+

− 𝑦
𝑎
𝑢 (0, 𝑦)

𝑦
< 0. (A.7)

In addition, if 𝑦𝑎𝑢
𝑦
∈ 𝐶(𝐶

𝑅,1
), then

lim
𝑦↓0
+

𝑦
𝑎

𝑢
𝑦
(0, 𝑦) < 0. (A.8)
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