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We prove the Hyers-Ulam stability of the generalized Fibonacci functional equation 𝐹(𝑥) − 𝑔(𝑥)𝐹(ℎ(𝑥)) = 0, where 𝑔 and h are
given functions.

1. Introduction

In 1940, Ulam [1] gave a wide ranging talk before the
mathematics club of the University of Wisconsin in which he
discussed a number of important unsolved problems. Among
them was the question concerning the stability of group
homomorphisms.

Let 𝐺
1
be a group and let 𝐺

2
be a metric group with the

metric 𝑑(⋅, ⋅). Given 𝜀 > 0, does there exist a 𝛿 > 0 such
that if a function ℎ : 𝐺

1
→ 𝐺

2
satisfies the inequality

𝑑(ℎ(𝑥𝑦), ℎ(𝑥)ℎ(𝑦)) < 𝛿, for all 𝑥, 𝑦 ∈ 𝐺
1
, then there exists

a homomorphism 𝐻 : 𝐺
1
→ 𝐺
2
with 𝑑(ℎ(𝑥),𝐻(𝑥)) < 𝜀, for

all 𝑥 ∈ 𝐺
1
?

The case of approximately additive functions was solved
byHyers [2] under the assumption that𝐺

1
and𝐺

2
are Banach

spaces. Indeed, he proved the following theorem.

Theorem 1. Let 𝑓 : 𝐺
1
→ 𝐺
2
be a function between Banach

spaces such that

𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)
 ≤ 𝜀, (1)

for some 𝜀 > 0 and for all 𝑥, 𝑦 ∈ 𝐺
1
. Then, the limit

𝐴 (𝑥) = lim
𝑛→∞

2
−𝑛
𝑓 (2
𝑛
𝑥) (2)

exists for each 𝑥 ∈ 𝐺
1
, and𝐴 : 𝐺

1
→ 𝐺
2
is the unique additive

function such that
𝑓 (𝑥) − 𝐴 (𝑥)

 ≤ 𝜀, (3)

for any 𝑥 ∈ 𝐺
1
. Moreover, if 𝑓(𝑡𝑥) is continuous in 𝑡, for each

fixed 𝑥 ∈ 𝐺
1
, then the function 𝐴 is linear.

Hyers proved that each solution of the inequality ‖𝑓(𝑥 +
𝑦) − 𝑓(𝑥) − 𝑓(𝑦)‖ ≤ 𝜀 can be approximated by an exact
solution; say an additive function. In this case, the Cauchy
additive functional equation, 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦), is said
to have the Hyers-Ulam stability.

Since then, the stability problems of a large variety of
functional equations have been extensively investigated by
several mathematicians (cf. [3–14]).

In this paper, we investigate the Hyers-Ulam stability of
the functional equation

𝐹 (𝑥) − 𝑔 (𝑥) 𝐹 (ℎ (𝑥)) = 0, (4)

where 𝑔 and ℎ are given functions.
In Section 2, we prove that the functional equation (4)

has a large class of nontrivial solutions. Section 3 is devoted
to the investigation of the Hyers-Ulam stability problems for
(4). In the last section, we prove the Hyers-Ulam stability of
(4) when 𝑔 is a constant function, which is a generalization

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 546046, 6 pages
http://dx.doi.org/10.1155/2014/546046

http://dx.doi.org/10.1155/2014/546046


2 Abstract and Applied Analysis

of the papers [4, 7, 14]. More precisely, Jung [7] proved the
Hyers-Ulam stability of the generalized Fibonacci functional
equation

𝑓 (𝑥) = 𝑝𝑓 (𝑥 − 1) − 𝑞𝑓 (𝑥 − 2) (5)

in the class of functions 𝑓 : R → 𝑋, where 𝑋 is a real (or
complex) Banach space.

Theorem 2 (see [7, Theorem 3.1]). Assume that the quadratic
equation 𝑥2 − 𝑝𝑥 + 𝑞 = 0 has real solutions 𝑎 and 𝑏 with 0 <
|𝑏| < 1 < |𝑎|. If a function 𝑓 : R → 𝑋 satisfies the inequality

𝑓 (𝑥) − 𝑝𝑓 (𝑥 − 1) + 𝑞𝑓 (𝑥 − 2)
 ≤ 𝜀 (6)

for all 𝑥 ∈ R and for some 𝜀 > 0, then there exists a unique
solution 𝐹 : R → 𝑋 of (5) such that

𝑓 (𝑥) − 𝐹 (𝑥)
 ≤

|𝑎| − |𝑏|

|𝑎 − 𝑏|
⋅

𝜀

(|𝑎| − 1) (1 − |𝑏|)
(7)

for all 𝑥 ∈ R.

A similar case for 0 < |𝑏| < 1 < |𝑎| with |𝑏| ̸= 1/2 was
investigated by Brzdęk et al. [4] and Trif [14] who obtained
the estimate

𝑓 (𝑥) − 𝐹 (𝑥)
 ≤

4𝜀

|2 |𝑏| − 1| ⋅ (2 |𝑎| − 1)
. (8)

If either 0 < |𝑏| < 1/2 and |𝑎| > 3/2 − |𝑏| or 1/2 < |𝑏| < 3/4

and |𝑎| > (5−6|𝑏|)/(6−8|𝑏|), then the inequality (7) is sharper
than that of (8).

In Section 4 of this paper, we improve the results of papers
[4, 7, 14] in the sense that we estimate ‖𝑓(𝑥) − 𝐹(𝑥)‖ even
when both |𝑎| and |𝑏| are larger or smaller than 1. Moreover,
we deal with a functional equation (4) that is regarded as a
more generalized form of the Fibonacci functional equation
(5).

In this paper, R, Z, and N stand for the sets of real
numbers, integers, and positive integers, respectively.

2. Solutions of (4)
Evidently, (4) admits the trivial solution 𝐹 = 0. In order to
avoid the trivial case, we search in this section for a class of
nontrivial solutions of (4).

Let 𝐷 be a subset of R. A function ℎ : 𝐷 → 𝐷 is said to
be of disjoint iterated images, shortly (DII)-function, if

(i) there exists a partition

𝐷 =∐

𝑛≥1

𝐷
𝑛
; (9)

(ii) ℎmaps bijectively𝐷
𝑛
onto𝐷

𝑛+1
for each integer 𝑛 ≥ 1.

As an example for a (DII)-function, we introduce a
function ℎ : (0, 1] → (0, 1] defined by

ℎ (𝑥) =
1

𝑛 + 2
(𝑛𝑥 +

1

𝑛 + 1
) , 𝑥 ∈ 𝐷

𝑛
:= (

1

𝑛 + 1
,
1

𝑛
] ,

(10)

for all 𝑛 ∈ N. For every 𝑛 ∈ N, this function is linear on 𝐷
𝑛

and it transforms each𝐷
𝑛
onto𝐷

𝑛+1
.

We are now in a position to prove that the set of all
solutions of (4) is not empty but it is an infinite set.

Theorem3. Let ℎ : 𝐷 → 𝐷 be a (DII)-function and 𝑔 : 𝐷 →

R \ {0}. There is a one-to-one correspondence between the set
of all solutions 𝐹 : 𝐷 → R of the functional equation (4) and
the set of all functions 𝜑 : 𝐷

1
→ R.

Proof. Given a 𝜑 : 𝐷
1
→ R, we define a function 𝐹 on 𝐷

1

as

𝐹 (𝑥) = 𝜑 (𝑥) , (11)

for all 𝑥 ∈ 𝐷
1
. Assume that 𝐹 is defined on 𝐷

𝑛−1
for some

𝑛 ≥ 2. If 𝑥 ∈ 𝐷
𝑛
, then ℎ−1(𝑥) ∈ 𝐷

𝑛−1
and we put

𝐹 (𝑥) =
1

𝑔 (ℎ−1 (𝑥))
𝐹 (ℎ
−1
(𝑥)) , (12)

for all 𝑥 ∈ 𝐷
𝑛
. By this inductive procedure, 𝐹 is completely

defined.
We now show that𝐹 is a solution of (4). Let 𝑧 be any point

of 𝐷 and let 𝑛 ≥ 2 be an integer such that ℎ(𝑧) ∈ 𝐷
𝑛
. Put

𝑥 = ℎ(𝑧) in (12) to get

𝐹 (ℎ (𝑧)) =
1

𝑔 (𝑧)
𝐹 (𝑧) , (13)

which is (4).
Conversely, we associate to every solution 𝐹 of (4) the

function 𝜑 = 𝐹|
𝐷
1

.

We notice that a (DII)-function ℎ is injective as we see the
following: if 𝑥, 𝑦 ∈ 𝐷

𝑛
for some 𝑛 ∈ N with 𝑥 ̸= 𝑦 but ℎ(𝑥) =

ℎ(𝑦), then ℎ(𝑥) = ℎ(𝑦) ∈ 𝐷
𝑛+1

and, hence, 𝑥 = 𝑦 because
ℎ maps bijectively 𝐷

𝑛
onto 𝐷

𝑛+1
, a contradiction. If 𝑥 ∈ 𝐷

𝑚

and 𝑦 ∈ 𝐷
𝑛
for some𝑚, 𝑛 ∈ N with𝑚 ̸= 𝑛, it is then obvious

that ℎ(𝑥) ̸= ℎ(𝑦) because ℎ(𝑥) ∈ 𝐷
𝑚+1

, ℎ(𝑦) ∈ 𝐷
𝑛+1

, and
𝐷
𝑚+1

∩𝐷
𝑛+1

= 0. But ℎ is not surjective, since I𝑚ℎ = 𝐷 \𝐷
1
.

We now study the set of solutions of (4) under the
assumption that ℎ : 𝐷 → 𝐷 is a bijection. For any pair of
points 𝑥, 𝑦 ∈ 𝐷, we use the notation 𝑥 ≍ 𝑦 if there exists a
𝑘 ∈ Z with 𝑦 = ℎ

𝑘
(𝑥). Since “≍” is an equivalence relation in

𝐷, let

𝐷 =∐

𝑖∈𝐼

Δ
𝑖 (14)

be the corresponding partition in “≍-equivalence classes”
Δ
𝑖
= 𝑥
𝑖
(𝑖 ∈ 𝐼); that is,

Δ
𝑖
= {ℎ
𝑘
(𝑥
𝑖
) | 𝑘 ∈ Z} . (15)

Theorem 4. Given a subset 𝐷 of R, let ℎ : 𝐷 → 𝐷 be a
bijective function and 𝑔 : 𝐷 → R \ {0}. Assume that

𝐷 =∐

𝑖∈𝐼

Δ
𝑖 (16)
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is a partition of 𝐷 corresponding to the equivalence relation
≍ with the property (15). Then, there exists a one-to-one
correspondence between the set of all solutions 𝐹 : 𝐷 → R

of the functional equation (4) and the set of all real sequences
{𝑦
𝑖
}
𝑖∈𝐼
.

Proof. For any real sequence {𝑦
𝑖
}
𝑖∈𝐼
, we define 𝐹(𝑥

𝑖
) = 𝑦

𝑖

for all 𝑖 ∈ 𝐼, where 𝐼 is the index set for the partition
corresponding to the equivalence relation≍with the property
(15). We further define the function 𝐹 : 𝐷 → R by

𝐹 (ℎ (𝑥
𝑖
)) =

1

𝑔 (𝑥
𝑖
)
𝐹 (𝑥
𝑖
) =

1

𝑔 (𝑥
𝑖
)
𝑦
𝑖
,

𝐹 (ℎ
−1
(𝑥
𝑖
)) = 𝑔 (ℎ

−1
(𝑥
𝑖
)) 𝐹 (𝑥

𝑖
) = 𝑔 (ℎ

−1
(𝑥
𝑖
)) 𝑦
𝑖
.

(17)

In general, if 𝐹 is defined at ℎ𝑘(𝑥
𝑖
) and ℎ

−𝑘
(𝑥
𝑖
), then 𝐹 is

defined at ℎ𝑘+1(𝑥
𝑖
) and ℎ−𝑘−1(𝑥

𝑖
) by

𝐹 (ℎ
𝑘+1

(𝑥
𝑖
)) =

1

𝑔 (ℎ𝑘 (𝑥
𝑖
))
𝐹 (ℎ
𝑘
(𝑥
𝑖
)) ,

𝐹 (ℎ
−𝑘−1

(𝑥
𝑖
)) = 𝑔 (ℎ

−𝑘−1
(𝑥
𝑖
)) 𝐹 (ℎ

−𝑘
(𝑥
𝑖
)) .

(18)

For each 𝑖 ∈ 𝐼, we can use such an inductive procedure to
define the function 𝐹 on Δ

𝑖
and we see that 𝐹|

Δ
𝑖

is uniquely
determined by the value of 𝑦

𝑖
.

Conversely, every solution 𝐹 : 𝐷 → R of (4) can be
associated to the real sequence {𝐹(𝑥

𝑖
)}
𝑖∈𝐼
.

Corollary 5. Given a subset 𝐷 of R, let ℎ : 𝐷 → 𝐷 be a
bijective function and 𝛼 ∈ R \ {0}. Assume that

𝐷 =∐

𝑖∈𝐼

Δ
𝑖 (19)

is a partition of 𝐷 corresponding to the equivalence relation
≍ with the property (15). Then there exists a one-to-one
correspondence between the set of all solutions 𝐹 : 𝐷 → R

of the functional equation

𝐹 (𝑥) − 𝛼𝐹 (ℎ (𝑥)) = 0 (20)

and the set of all real numbers {𝑦
𝑖
}
𝑖∈𝐼
.

3. Hyers-Ulam Stability of (4)
The above conditions imposed on the function ℎ were
necessary for showing that the functional equations (4) and
(20) have large classes of nontrivial solutions. The stability
results presented in the sequel are valid also under weaker
conditions as we shall see in the following theorems.

Theorem 6. Given real numbers 𝑎 and 𝑏 with 𝑎 < 𝑏, let ℎ :

(𝑎, 𝑏) → (𝑎, 𝑏) and 𝑔 : (𝑎, 𝑏) → 𝐼 be given functions, where
𝐼 ⊂ (0, 1) is an interval of length 𝑙. Assume that a bounded
function 𝑓 : (𝑎, 𝑏) → R satisfies the inequality

𝑓 (𝑥) − 𝑔 (𝑥) 𝑓 (ℎ (𝑥))
 ≤ 𝜀 (21)

for all 𝑥 ∈ (𝑎, 𝑏) and for some 𝜀 > 0. Then, for every 𝛼 ∈ 𝐼,
there exists a solution 𝐹 : (𝑎, 𝑏) → R of (20) such that

𝑓 (𝑥) − 𝐹 (𝑥)
 ≤

𝜀 + 𝑙
𝑓
∞

1 − 𝛼
, (22)

for any 𝑥 ∈ (𝑎, 𝑏), where |𝑓|
∞
= sup

𝑥∈(𝑎,𝑏)
|𝑓(𝑥)|.

Proof. First, we prove that
𝑓 (𝑥) − 𝛼𝑓 (ℎ (𝑥))

 ≤ 𝜆, (23)
for all 𝑥 ∈ (𝑎, 𝑏), where we set 𝜆 = 𝜀+𝑙|𝑓|

∞
. Indeed, it follows

from (21) that
𝑓 (𝑥) − 𝛼𝑓 (ℎ (𝑥))



≤
𝑓 (𝑥) − 𝑔 (𝑥) 𝑓 (ℎ (𝑥))

 +
𝑔 (𝑥) 𝑓 (ℎ (𝑥)) − 𝛼𝑓 (ℎ (𝑥))



≤ 𝜀 +
𝑔 (𝑥) − 𝛼

 ⋅
𝑓 (ℎ (𝑥))



≤ 𝜀 + 𝑙
𝑓
∞

= 𝜆,

(24)
for every 𝑥 ∈ (𝑎, 𝑏).

By replacing 𝑥 with ℎ𝑘(𝑥) and then multiplying with 𝛼𝑘
both sides of (23), we get


𝛼
𝑘
𝑓 (ℎ
𝑘
(𝑥)) − 𝛼

𝑘+1
𝑓 (ℎ
𝑘+1

(𝑥))

≤ 𝜆𝛼
𝑘
, (25)

for all 𝑥 ∈ (𝑎, 𝑏) and 𝑘 ∈ N. Since
𝑓 (𝑥) − 𝛼

𝑛
𝑓 (ℎ
𝑛
(𝑥))



≤

𝑛−1

∑

𝑘=0


𝛼
𝑘
𝑓 (ℎ
𝑘
(𝑥)) − 𝛼

𝑘+1
𝑓 (ℎ
𝑘+1

(𝑥))


≤

𝑛−1

∑

𝑘=0

𝜆𝛼
𝑘
= 𝜆

1 − 𝛼
𝑛

1 − 𝛼
,

(26)

we have
𝑓 (𝑥) − 𝛼

𝑛
𝑓 (ℎ
𝑛
(𝑥))

 ≤ 𝜆
1 − 𝛼
𝑛

1 − 𝛼
, (27)

for any 𝑥 ∈ (𝑎, 𝑏) and 𝑛 ∈ N.
The inequality (25) shows that the sequence

{𝛼
𝑛
𝑓(ℎ
𝑛
(𝑥))}
𝑛∈N is a Cauchy sequence for every 𝑥 ∈ (𝑎, 𝑏).

Thus, we can define a function 𝐹 : (𝑎, 𝑏) → R by

𝐹 (𝑥) = lim
𝑛→∞

𝛼
𝑛
𝑓 (ℎ
𝑛
(𝑥)) , (28)

for all 𝑥 ∈ (𝑎, 𝑏). Hence, it follows from (23) that
|𝐹 (𝑥) − 𝛼𝐹 (ℎ (𝑥))|

=

lim
𝑛→∞

𝛼
𝑛
𝑓 (ℎ
𝑛
(𝑥)) − lim

𝑛→∞
𝛼
𝑛+1

𝑓 (ℎ
𝑛+1

(𝑥))


= lim
𝑛→∞


𝛼
𝑛
(𝑓 (ℎ
𝑛
(𝑥)) − 𝛼𝑓 (ℎ

𝑛+1
(𝑥)))



≤ lim
𝑛→∞

𝛼
𝑛
𝜆 = 0,

(29)

for each 𝑥 ∈ (𝑎, 𝑏), which implies that 𝐹 is a solution of (20).
Finally, inequality (22) is an immediate consequence of

(27) if we take the limit as 𝑛 → ∞.
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4. When 𝑔 Is Constant

In the case of 𝑔(𝑥) = 𝑠 ∉ {−1, +1} for all 𝑥 ∈ R, we investigate
the Hyers-Ulam stability of the functional equation

𝐹 (𝑥) − 𝑠𝐹 (ℎ (𝑥)) = 0, (30)

where ℎ : R → R and 𝐹 : R → 𝑋 are functions and 𝑋 is a
real Banach space.

Theorem 7. Let 𝑋 be a real Banach space and let 𝑠 be a real
number with |𝑠| < 1. If a function 𝑓 : R → 𝑋 satisfies the
inequality

𝑓 (𝑥) − 𝑠𝑓 (ℎ (𝑥))
 ≤ 𝜀, (31)

for all 𝑥 ∈ R and for some 𝜀 > 0, then there exists a solution
𝐹 : R → 𝑋 of (30) such that

𝑓 (𝑥) − 𝐹 (𝑥)
 ≤

𝜀

1 − |𝑠|
, (32)

for all 𝑥 ∈ R.

Proof. By replacing 𝑥with ℎ𝑘(𝑥) andmultiplyingwith 𝑠𝑘 both
sides of (31), we get


𝑠
𝑘
𝑓 (ℎ
𝑘
(𝑥)) − 𝑠

𝑘+1
𝑓 (ℎ
𝑘+1

(𝑥))

≤ 𝜀|𝑠|
𝑘
, (33)

for all 𝑥 ∈ R and 𝑘 ∈ {0, 1, 2, . . .}. By (33), we have
𝑓 (𝑥) − 𝑠

𝑛
𝑓 (ℎ
𝑛
(𝑥))



≤

𝑛−1

∑

𝑘=0


𝑠
𝑘
𝑓 (ℎ
𝑘
(𝑥)) − 𝑠

𝑘+1
𝑓 (ℎ
𝑘+1

(𝑥))


≤

𝑛−1

∑

𝑘=0

𝜀|𝑠|
𝑘
= 𝜀

1 − |𝑠|
𝑛

1 − |𝑠|
,

(34)

for all 𝑥 ∈ R and 𝑛 ∈ N. Hence, we get

𝑓 (𝑥) − 𝑠
𝑛
𝑓 (ℎ
𝑛
(𝑥))

 ≤ 𝜀
1 − |𝑠|

𝑛

1 − |𝑠|
, (35)

for any 𝑥 ∈ R and 𝑛 ∈ N.
The inequality (33) shows that the sequence

{𝑠
𝑛
𝑓(ℎ
𝑛
(𝑥))}
𝑛∈N is a Cauchy sequence for any fixed 𝑥 ∈ R.

Thus, since 𝑋 is a complete space, we can define a function
𝐹 : R → 𝑋 by

𝐹 (𝑥) = lim
𝑛→∞

𝑠
𝑛
𝑓 (ℎ
𝑛
(𝑥)) , (36)

for all 𝑥 ∈ R.
It follows from (31) that
‖𝐹 (𝑥) − 𝑠𝐹 (ℎ (𝑥))‖

=

lim
𝑛→∞

𝑠
𝑛
𝑓 (ℎ
𝑛
(𝑥)) − lim

𝑛→∞
𝑠
𝑛+1

𝑓 (ℎ
𝑛+1

(𝑥))


= lim
𝑛→∞

𝑠
𝑛 
𝑓 (ℎ
𝑛
(𝑥)) − 𝑠𝑓 (ℎ

𝑛+1
(𝑥))



≤ lim
𝑛→∞

𝑠
𝑛
𝜀 = 0,

(37)

which implies that 𝐹 is a solution of (30).
Finally, the inequality (32) immediately follows from (35)

provided that we take the limit as 𝑛 → ∞.

Assume now that ℎ : R → R is bijective. A similar
theorem can be proved when |𝑠| > 1.

Theorem 8. Let 𝑋 be a real Banach space, let ℎ : R → R be
a bijective function, and let 𝑠 ∈ R be given with |𝑠| > 1. If a
function 𝑓 : R → 𝑋 satisfies the inequality

𝑓 (𝑥) − 𝑠𝑓 (ℎ (𝑥))
 ≤ 𝜀, (38)

for all 𝑥 ∈ R and for some 𝜀 > 0, then there exists a solution
𝐹 : R → 𝑋 of (30) such that

𝑓 (𝑥) − 𝐹 (𝑥)
 ≤

𝜀

|𝑠| − 1
, (39)

for all 𝑥 ∈ R.

Proof. By replacing 𝑥with ℎ−1(𝑥) and dividing by 𝑠 both sides
of (38), we get


𝑓 (𝑥) −

1

𝑠
𝑓 (ℎ
−1
(𝑥))


≤

𝜀

|𝑠|
, (40)

for any 𝑥 ∈ R. Since the constant 1/|𝑠| is less than 1, our
assertion follows fromTheorem 7. In particular, we have

𝐹 (𝑥) = lim
𝑛→∞

𝑠
−𝑛
𝑓 (ℎ
−𝑛
(𝑥)) , (41)

for each 𝑥 ∈ R.

Corollary 9. Let 𝑋 be a real Banach space, let ℎ : R → R

be a bijective function, and let 𝑠 ∈ R be given with |𝑠| ̸= 1. If a
function 𝑓 : R → 𝑋 satisfies the inequality

𝑓 (𝑥) − 𝑠𝑓 (ℎ (𝑥))
 ≤ 𝜀, (42)

for any 𝑥 ∈ R and for some 𝜀 > 0, then there exists a solution
𝐹 : R → 𝑋 of (30) such that

𝑓 (𝑥) − 𝐹 (𝑥)
 ≤

𝜀

||𝑠| − 1|
, (43)

for all 𝑥 ∈ R.

By combining the results of Theorems 7 and 8, we can
present a stability result of the following functional equation

𝐹 (𝑥) − 𝑝𝐹 (ℎ (𝑥)) + 𝑞𝐹 (ℎ (ℎ (𝑥))) = 0, (44)

where ℎ : R → R is bijective and the range space of the
function 𝐹 : R → 𝑋 is a real Banach space.

Theorem 10. Let 𝑝 and 𝑞 be given real numbers such that the
quadratic equation 𝑥2 −𝑝𝑥+𝑞 = 0 has distinct real solutions 𝑎
and 𝑏with |𝑎| ̸= 1 and |𝑏| ̸= 1. Assume that a bijective function
ℎ : R → R is given and𝑋 is a real Banach space. If a function
𝑓 : R → 𝑋 satisfies

𝑓 (𝑥) − 𝑝𝑓 (ℎ (𝑥)) + 𝑞𝑓 (ℎ (ℎ (𝑥)))
 ≤ 𝜀, (45)

for all 𝑥 ∈ R and for some 𝜀 > 0, then there exists a solution
𝐹 : R → 𝑋 of (44) such that

𝑓 (𝑥) − 𝐹 (𝑥)
 ≤

1

|𝑎 − 𝑏|
(

1


|𝑎|
−1
− 1



+
1


|𝑏|
−1
− 1



) 𝜀,

(46)

for all 𝑥 ∈ R.
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As we mentioned in the Introduction, our result extends
Jung’s result in [7], since

1

|𝑎 − 𝑏|
(

1


|𝑎|
−1
− 1



+
1


|𝑏|
−1
− 1



) 𝜀

=
|𝑎| − |𝑏|

|𝑎 − 𝑏|
⋅

𝜀

(|𝑎| − 1) (1 − |𝑏|)

(47)

when 0 < |𝑏| < 1 < |𝑎|. Moreover, Jung’s result is a particular
case of Theorem 10 when we set ℎ(𝑥) = 𝑥 − 1 in (45).

Proof of Theorem 10. If we set

𝑢 (𝑥) = 𝑓 (𝑥) − 𝑎𝑓 (ℎ (𝑥)) , (48)

then the inequality (45) yields

‖𝑢 (𝑥) − 𝑏𝑢 (ℎ (𝑥))‖ ≤ 𝜀, (49)

for all 𝑥 ∈ R. According to Corollary 9, there exists a solution
𝑈 : R → 𝑋 of

𝑈 (𝑥) − 𝑏𝑈 (ℎ (𝑥)) = 0 (50)

with

‖𝑢 (𝑥) − 𝑈 (𝑥)‖ ≤
𝜀

||𝑏| − 1|
, (51)

for any 𝑥 ∈ R.
If we set

V (𝑥) = 𝑓 (𝑥) − 𝑏𝑓 (ℎ (𝑥)) , (52)

then the inequality (45) yields

‖V (𝑥) − 𝑎V (ℎ (𝑥))‖ ≤ 𝜀, (53)

for any 𝑥 ∈ R. In view of Corollary 9 again, there exists a
solution 𝑉 : R → 𝑋 of

𝑉 (𝑥) − 𝑎𝑉 (ℎ (𝑥)) = 0 (54)

with

‖V (𝑥) − 𝑉 (𝑥)‖ ≤
𝜀

||𝑎| − 1|
, (55)

for all 𝑥 ∈ R.
We now define a function 𝐹 : R → 𝑋 by

𝐹
𝜆
(𝑥) = (1 − 𝜆)𝑈 (𝑥) + 𝜆𝑉 (𝑥) , (56)

for any 𝑥 ∈ R, where 𝜆 is a real number.Then, it follows from
(50) and (54) that

𝐹
𝜆
(𝑥) − 𝑝𝐹

𝜆
(ℎ (𝑥)) + 𝑞𝐹

𝜆
(ℎ (ℎ (𝑥)))

= 𝐹
𝜆
(𝑥) − 𝑏𝐹

𝜆
(ℎ (𝑥)) − 𝑎 (𝐹

𝜆
(ℎ (𝑥)) − 𝑏𝐹

𝜆
(ℎ (ℎ (𝑥))))

= (1 − 𝜆) (𝑈 (𝑥) − 𝑏𝑈 (ℎ (𝑥))

−𝑎 (𝑈 (ℎ (𝑥)) − 𝑏𝑈 (ℎ (ℎ (𝑥)))))

+ 𝜆 (𝑉 (𝑥) − 𝑏𝑉 (ℎ (𝑥)) − 𝑎 (𝑉 (ℎ (𝑥)) − 𝑏𝑉 (ℎ (ℎ (𝑥)))))

= 𝜆 (𝑉 (𝑥) − 𝑏𝑉 (ℎ (𝑥)) − 𝑎 (𝑉 (ℎ (𝑥)) − 𝑏𝑉 (ℎ (ℎ (𝑥)))))

= 𝜆((1 −
𝑏

𝑎
)𝑉 (𝑥) − 𝑎(1 −

𝑏

𝑎
)𝑉 (ℎ (𝑥)))

= 𝜆(1 −
𝑏

𝑎
) (𝑉 (𝑥) − 𝑎𝑉 (ℎ (𝑥))) = 0,

(57)

for all 𝑥 ∈ R, which implies that 𝐹
𝜆
is a solution of (44) for

every fixed real number 𝜆.
We now set

𝜆 =
−𝑎

𝑏 − 𝑎
(58)

and assert that the function

𝐹 (𝑥) =
𝑏

𝑏 − 𝑎
𝑈 (𝑥) −

𝑎

𝑏 − 𝑎
𝑉 (𝑥) (59)

satisfies the requirements of this theorem. Indeed, it follows
from (51) and (55) that


𝑓 (𝑥) − (
𝑏

𝑏 − 𝑎
𝑈 (𝑥) −

𝑎

𝑏 − 𝑎
𝑉 (𝑥))



=
1

|𝑏 − 𝑎|

(𝑏 − 𝑎) 𝑓 (𝑥) − (𝑏𝑈 (𝑥) − 𝑎𝑉 (𝑥))


≤
|𝑏|

|𝑏 − 𝑎|

𝑈 (𝑥) − (𝑓 (𝑥) − 𝑎𝑓 (ℎ (𝑥)))


+
|𝑎|

|𝑏 − 𝑎|

𝑉 (𝑥) − (𝑓 (𝑥) − 𝑏𝑓 (ℎ (𝑥)))


=
|𝑏|

|𝑏 − 𝑎|
‖𝑈 (𝑥) − 𝑢 (𝑥)‖ +

|𝑎|

|𝑏 − 𝑎|
‖𝑉 (𝑥) − V (𝑥)‖

≤
|𝑏|

|𝑏 − 𝑎|
⋅

𝜀

||𝑏| − 1|
+

|𝑎|

|𝑏 − 𝑎|
⋅

𝜀

||𝑎| − 1|

=
1

|𝑎 − 𝑏|
(

1


|𝑎|
−1
− 1



+
1


|𝑏|
−1
− 1



) 𝜀,

(60)

for any 𝑥 ∈ R.
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