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This paper deals with the issue of the likelihood inference for nonlinear models with a flexible skew-t-normal (FSTN) distribution,
which is proposed within a general framework of flexible skew-symmetric (FSS) distributions by combining with skew-t-normal
(STN) distribution. In comparison with the common skewed distributions such as skew normal (SN), and skew-t (ST) as well as
scale mixtures of skew normal (SMSN), the FSTN distribution can accommodate more flexibility and robustness in the presence
of skewed, heavy-tailed, especially multimodal outcomes. However, for this distribution, a usual approach of maximum likelihood
estimates based on EM algorithm becomes unavailable and an alternative way is to return to the original Newton-Raphson type
method. In order to improve the estimation as well as the way for confidence estimation and hypothesis test for the parameters
of interest, a modified Newton-Raphson iterative algorithm is presented in this paper, based on profile likelihood for nonlinear
regression models with FSTN distribution, and, then, the confidence interval and hypothesis test are also developed. Furthermore,
a real example and simulation are conducted to demonstrate the usefulness and the superiority of our approach.

1. Introduction

The common assumption of distribution for random error is
normal in statistical modeling.This assumption may lack the
robustness against departures from normality and/or outliers
and may result in misleading inferential results [1, 2]. For the
past few years, there is an increasing interest in developing
more flexible parametric families capable of adopting as
closely as possible real data, which exhibit quite substantial
nonnormal characteristics such as skewness and heavy tails.
In a variety of applications, one popular option is to modify a
symmetric probability density function of a variable, thereby
introducing skewness. An important advantage of this sort
of approach compared with other approaches to robustness
is an explicit statement of the probabilistic setting, leading to
a clear interpretation of the results [3]. Following this idea,
the skw-normal (SN) distribution was firstly introduced by
[4], and, then, the skew-t (ST) distribution was introduced
by [5]; the skew-t-normal (STN) was introduced by [6];
moreover, some extensions to these multivariate cases were
studied by [7, 8] and so on. Since then, several authors

have tried to extend these results to more general forms
of skew-symmetric distributions, of which here we would
like to mention [9], in this paper; they proposed a general
framework of distributions which is called flexible skew-
symmetric (FSS) distribution. As pointed out by [10] that this
distribution family enjoys a sufficient flexibility in that with
different choice of submodel settings, the FSS distribution
includes several known distributions such as the SN and ST
as its special cases.

However, in many practical applications, it is not rare
at all to encounter a multimodality, sometimes with an
even irregular shape, and, for this case, all the distributions
mentioned above appear to be unsufficient to describe the
multimodal feature of the data. A solution to this problem
is to use finite mixture models. In [11], the authors worked
with a mixture model with component densities belonging
to the STN distribution and a computationally feasible EM-
type algorithm was developed for calculating the maximum
likelihood (ML) estimates of parameters. Unfortunately,
although the proposed methodology is useful for analyzing
multimodal asymmetric data, it suffers from the problem of
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“model identification” as the number of the parameters to
be estimated is usually large. As a result, in this paper, we
deal with a new extension of the class of FSS distributions,
which is referred to as flexible skew-t-normal (FSTN) distri-
bution. This new distribution is proposed within the general
framework of the FSS distributions in combination with the
definition of STN distribution. In practical applications, it is
able to regulate the density in a more flexible way to offer
robustness and it can be treated as an appealing option for
accommodating data with skewness and heavy tails as well as
multimodality jointly.

On the other hand, nonlinear regression models are
widely applied in the fields of economics, engineering,
biomedical research, and so forth, where the nonlinear
function of unknown parameters is used to explain or
investigate the nonlinear relationship of random phenomena
under study. More recently, several authors have used a
class of skewed distributions in the context of nonlinear
regression models, and some valuable results were obtained.
For example, [12] developed the robust estimation and the
local influence analysis for regression model with SMSN
distribution. From Bayesian point of view, [13] considered
the Bayesian estimation and the case influence diagnostics
for nonlinear regression models with SMSN distributions.
More related literature could be found in [14–17]. Generally
speaking, for model fitting of the nonlinear regression with
skewed distributions, a popular approach is to consider
the hierarchical representation of variables with a specific
distribution, inwhich the postulated distribution is expressed
as several conditional distributions of simpler forms such
as normal and Student’s 𝑡 and Gamma. Based on that, EM
algorithm or Bayesian hierarchical approach then can be
implemented effectively for conducting model estimation
and statistical inference.

In this paper, our aim is to develop an approach to like-
lihood inference of nonlinear regression models with FSTN
assumption. As there is no stochastic representation for FSTN
distribution, all the methods cited above become unavailable
for our considered problem and an alternativeway is to return
to the original Newton-Raphson iterative procedure for
model estimation. Under the nonlinear regression paradigm,
the accuracy of estimates is affected by the strength of
nonlinearity and the corresponding confidence interval and
hypothesis test require the assumption of normality of the
estimators or distribution, which is too restrictive. Besides,
considering that in many practical applications, rather than
the total parameters, we are usually interested in a proper
subset of them. By taking all these factors into account,
in this paper we focus on the parameters of interest and
propose a modified Newton-Raphson iterative algorithm for
calculating the ML estimates based on profile likelihood.
Furthermore, the confidence interval and hypothesis test for
the parameters of interest are also considered. We conduct
an application and a simulation study to compare the algo-
rithm effectiveness and distribution robustness for nonlinear
regression model in terms of fitting performance and model
selection. The results from the numerical examples illustrate
the usefulness and the superiority of our methodology.

The remainder of this paper is organized as follows.
In Section 2, we briefly discuss the FSS distribution and
FSTN distributions. In Section 3, we present the likelihood
inference including the quantities of the first- and the second-
order derivatives as well as the standard Newton-Raphson
iterative formula. In Section 4, we give an introduction
of profile inference for our proposed model, where the
confidence estimation and hypothesis test are presented too.
Section 5 gives numerical examples using both simulated
and real data to illustrate the performance of the proposed
methodology. Finally, some concluding remarks are given in
Section 6.

2. Models and Notation

The class of skewed distributions such as SN, ST, and STN
perform to be plausible for modeling skewness or (and)
heavy tails underlying the observations. The actual situation
is that it is not rare at all to encounter multimodality,
sometimes with an even more irregular shape, and, for this
case, the aforementioned distributions become unsufficient.
In this paper, with the adoption of a sufficiently flexible
class of distributions, we consider one of these extensions,
referred to as the family of flexible skew-symmetric (FSS)
distributions which is introduced by [9] with the following
density function of type:

𝑓 (𝑦; 𝜇, 𝜔,𝛼) = 2𝜔
−1

𝑓
0

(𝑧) 𝐺 {𝑃
𝐾

(𝑧)} , (1)

where 𝑓
0

and 𝐺 are symmetric univariate density and dis-
tribution function, respectively, that is, 𝑓
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(𝑥 − 𝜇), 𝜇 ∈ 𝑅 is the
location parameter, 𝜔 > 0 is the scale parameter, and 𝛼 =
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∈ 𝑅 are shape param-
eters.

In general, the density function of STN distribution can
be represented as 2𝜔

−1

𝑡(𝑧; V)Φ(𝛼𝑧), where 𝑡 and Φ, respec-
tively, denote the univariate standard Student’s 𝑡 density
function and the univariate standard normal distribution
function and V is the degrees of freedom. The skewness is
regulated by the shape parameter 𝛼 and the tail thickness of
the distribution is controlled by V. Commonly, in comparison
with the SN distribution, the STN distribution exhibits
obvious feature of heavy tails when V ≤ 10.

In this paper, we work with one version of (1) and the
specific definition can be presented as follows. Let 𝑓

0

(𝑧) =

𝑡(𝑧; V) and 𝐺(𝑥) = Φ(𝑥), where Φ(𝑥) is defined as before and

𝑡 (𝑧; V) =
Γ (V + 1) /2

𝜔 (V𝜋)
1/2

Γ (V/2)

(1 +
𝑧
2

V
)

−((V+1)/𝑑)

, (2)

that is, the density function of univariate Student’s 𝑡 distribu-
tion with 0 location, 𝜔 scale, and V degrees of freedom. The
above extension of (1) is referred to as flexible skew-t-normal
(FSTN) distribution, denoted by FSTN(𝜇, 𝜔,𝛼, V).

It is noted that the FSTN distribution is proposed within
the general framework of FSS distribution by combining with
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the definition of STN distribution and, as a consequence, it
shares analogous feature with these two distributions. For
all of that, the FSTN distribution presents some interesting
and peculiar features and is able to regulate the density in
a more flexible way. To be particular, except for modeling
skewness and tail thickness, the FSTN distribution allows for
multimodality, depending on the specific setting of 𝛼. For the
purpose of comparison and illustration, we assume 𝑓

0

(𝑧) =

𝜙(𝑧) and 𝐺(𝑧) = Φ(𝑧) in FSS distribution, which is denoted
by FSN, and, then, we set 𝐾 = 2 in 𝑃

𝐾

(𝑧), that is, 𝑃
𝐾

(𝑥) =

𝛼
1

𝑥 + 𝛼
3

𝑥
3 in STN distribution, and, for this case, different

selections of 𝛼
1

and 𝛼
3

determine whether the density is
unimodal or bimodal. Moreover, the same assumption for 𝐺

and 𝑃 in FSTN distribution is made.
Figure 1 displays the density functions of FSN and STN

as well as FSTN distributions with four different situations
considered, namely, 𝛼

1

= 1, 𝛼
3

= 0, and V = 10; 𝛼
1

= 𝛼
3

= 1

and V = 6; 𝛼
1

= 1, 𝛼
3

= −1, and V = 4; 𝛼
1

= −1,
𝛼
3

= 1, and V = 4, respectively, with 𝜇 = 1, 𝜔 = 1.5 for all
cases. By examination of Figure 1, we can detect how these
three densities change with different combinations of 𝛼 and
V. For instance, in Figure 1(a), FSN, STN, and FSTN appear
to be very close, while STN and FSTN are heavy tailed to a
little extent. In Figure 1(b), both FSN and FSTN are unimodal
when 𝛼

1

and 𝛼
3

keep the same sign, and the ranking for the
degree of skewness is STN, FSTN, and FSN in turn; that is,
the STN and FSTN distributions have thicker tails compared
to FSN distribution. With opposite sign of 𝛼

1

and 𝛼
3

, both
FSN and FSTN distributions are bimodal and highly skewed
in Figures 1(c) and 1(d); moreover, in the same direction,
FSTN has thicker tails than FSN distribution. Our proposed
FSTN distribution can be treated as a proper compromise
between the FSS distribution and the STN distribution. It
allows for a wider range of tail behavior compared to FSS
distributionwhereas it is able to accommodatemultimodality
which cannot be described by STN distribution. From the
applied viewpoint, the FSTN distribution is an appealing
option which can be expected to yield robust inferential
results in the presence of outlying observations.

3. Likelihood Inference

Consider 𝑛 independent observations satisfying a nonlinear
regression model as [𝑦

𝑖

] ∼ FSTN(𝜇
𝑖

, 𝜔,𝛼, V) with 𝜇
𝑖

= 𝜂(x
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,
𝛽) for 𝑖 = 1, 2, . . . , 𝑛. Here, x

𝑖

is a 𝑝-dimensional vector and 𝛽
is a 𝑝 × 1 vector of parameters. Also, let X = (x

1

, . . . , x
𝑛

)
𝑇 be

the 𝑛 × 𝑝 design matrix; 𝜂(⋅, ⋅) is a known twice differentiable
function. Then, the corresponding log-likelihood for param-
eter 𝜃 = (𝛽,𝛼, 𝜔, V) is given by
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where 𝜂
𝑖

= 𝜂(x
𝑖

,𝛽) and 𝐷𝐺(𝑥) = (𝑑[log Γ(𝑥)])/𝑑𝑥. The cor-
responding second-order derivatives of (3) can be shown as
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Figure 1: ((a)–(d)) Density functions of FSN, STN, and FSTN distributions with four different situations.
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of the above second-order derivatives. To obtain the ML
estimate of 𝜃, the Newton-Raphson iteration algorithm is
defined by

�̂�

(𝑘+1)

= �̂�
(𝑘)

− [𝐻(𝜃)]

−1

𝜃=

̂

𝜃

(𝑘) [𝑈(𝜃)]
𝜃=

̂

𝜃

(𝑘) .
(6)
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It is noted that the above iterative procedure is an unpar-
titioned algorithm; that is, all the parameters including
nonlinear regression coefficients 𝛽, scale parameter 𝜔, and
shape parameter 𝛼 as well as tail thickness parameter V are
estimated simultaneously. For our considered problem, there
are at least two difficulties that may be encountered for (6);
the first one is that once the number of the parameters to be
estimated becomes large, the corresponding computational
burden turns to be heavy with an unacceptable estimation
error, and the second one is as follows: when the strength of
nonlinearity of the link function 𝜂(⋅, ⋅) changes, the iterative
processmay becomeunstable or even nonconvergent, leading
to the poor estimation results. Considering the needs of
practical problems, rather than the total parameter set, we
are usually interested in a proper subset of it. To improve
the efficiency of the algorithm and to facilitate statistical
inference of the nonlinearmodels with FSTNdistribution, we
put forward the following profile likelihoodmethod based on
(3) and (6).

4. Profile Likelihood Inference

4.1. Profile Estimation Algorithm. Let 𝜃 = (𝛽
𝑇

, 𝛾
𝑇

) be a parti-
tion of 𝜃, where 𝛽 is a parameter vector of nonlinear regres-
sion, an interest parameter, and 𝛾 is a 𝑞-dimension (𝑞 = 𝐾+

2) nuisance parameter with 𝛾 = (𝛼, 𝜔, V)𝑇. Similarly, the
partition of 𝐻 and 𝑈 is given as 𝐻(𝜃) = (

𝐻11 𝐻12

𝐻21 𝐻22
), where

𝐻
11

= (𝜕
2

𝑙(𝜃)/𝜕𝛽𝜕𝛽
𝑇

), 𝐻
12

= (𝜕
2

𝑙(𝜃)/𝜕𝛽𝜕𝛾
𝑇

) = (𝜕
2

𝑙(𝜃)/

𝜕𝛽𝜕𝜔, 𝜕
2

𝑙(𝜃)/𝜕𝛽𝜕V, 𝜕2𝑙(𝜃)/𝜕𝛽𝜕𝛼
1

, . . . , 𝜕
2

𝑙(𝜃)/𝜕𝛽𝜕𝛼
2𝑘−1

), 𝐻
12

= [𝐻
21

]
𝑇, and 𝐻

22

= (𝜕
2

𝑙(𝜃)/ 𝜕𝛾𝜕𝛾
𝑇

), and the diagonal
elements of 𝐻

22

are given by 𝜕
2

𝑙(𝜃)/ 𝜕𝜔
2

, 𝜕
2

𝑙(𝜃)/𝜕V2,
𝜕
2

𝑙(𝜃)/𝜕𝛼
2

1

, . . . , 𝜕
2

𝑙(𝜃)/𝜕𝛼
2

2𝑘−1

, respectively, and the off-
diagonal elements in 𝐻

22

can be obtained similarly. Let
𝑈(𝜃) = (𝑈

1

, 𝑈
2

), corresponding to the partition of 𝜃.
In the subsequent context, we focus on the estimation of
𝜃 based on profile likelihood method [18]. Firstly, suppose 𝛽
is known and we rewrite the original likelihood function (3)
as

𝑙 (𝜃) = 𝑙 (𝛽, 𝛾) = 𝑙
𝛽

(𝛾) , (7)

where notation 𝑙
𝛽

(𝛾) denotes that 𝛽 is fixed but 𝛾 varies. For
each 𝛽, to estimate 𝛾 we can obtain

�̂�
𝛽

= argmax
𝛾

𝑙
𝛽

(𝛾) . (8)

Alternatively, to estimate 𝛽, we evaluate the maximum value
of 𝑙
𝛽

(𝛾) over �̂�
𝛽

and have

�̂�
𝑝

= argmax
𝛽

𝑙
𝛽

(�̂�
𝛽

) = argmax
𝛽

𝑙 (𝛽, �̂�
𝛽

) , (9)

where 𝑙(𝛽, �̂�
𝛽

) and �̂�
𝑝

are referred to as the profile likelihood
function and the profile ML estimation, respectively.

Following [19], we define the profile Newton-Raphson
iteration formula as follows:

�̂�

(𝑘+1)

𝑝

= �̂�
(𝑘)

𝑝

− [𝐻
𝛽|𝛾

]
−1

(𝑈
𝛽|𝛾

) ,

�̂�
(𝑘+1)

𝑝

= �̂�
(𝑘)

𝑝

− ((𝐻
22

)
−1

𝑈
1

+ (𝐻
22

)
−1

𝐻
21

[𝐻
𝛽|𝛾

]
−1

(𝑈
𝛽|𝛾

)) ,

(10)

where 𝑈
𝛽|𝛾

= 𝑈
1

− 𝐻
12

(𝐻
22

)
−1

𝑈
2

, 𝐻
𝛽|𝛾

= 𝐻
11

−

𝐻
12

(𝐻
22

)
−1

𝐻
21

, and all the matrices and the vectors on the
right hand side of (10) are evaluated at �̂�

(𝑘)

𝑝

and �̂�(𝑘)
𝑝

.
Note that, both in (6) and in (10), the strength of

nonlinearity of link function 𝜂(⋅, ⋅) is reflected by 𝜕
2

𝜂
𝑖

/𝜕𝛽𝜕𝛽
𝑇

to large extents. Therefore, by examination of the expression
of 𝜕
2

𝑙(𝜃)/𝜕𝛽𝜕𝛽
𝑇, we find that when the element of



𝜔 [
𝑡


(𝑧
𝑖

)

𝑡 (𝑧
𝑖

)
+ 𝑃


𝐾

(𝑧
𝑖

)
𝜙 {𝑃
𝐾

(𝑧
𝑖

)}

Φ {𝑃
𝐾

(𝑧
𝑖

)}
]

𝜕
2

𝜂
𝑖

𝜕𝛽𝜕𝛽
𝑇



(11)

is much less than the corresponding element of


𝜕𝜂
𝑇

𝑖

𝜕𝛽
[ℎ (𝑧
𝑖

) + 𝑃


𝐾

(𝑧
𝑖

) 𝑄 {𝑃
𝐾

(𝑧
𝑖

)} + 𝑃


𝐾

(𝑧
𝑖

)
𝜙 {𝑃
𝐾

(𝑧
𝑖

)}

Φ {𝑃
𝐾

(𝑧
𝑖

)}
]

×
𝜕𝜂
𝑖

𝜕𝛽



,

(12)

the following approximating result can be obtained as

𝐻
∗

11

=

𝑛

∑

𝑖=1

{(
𝜕𝜂
𝑖

𝜕𝛽
)

𝑇

1

𝜔
2

[ℎ (𝑧
𝑖

) + 𝑃


𝐾

(𝑧
𝑖

) 𝑄 {𝑃
𝐾

(𝑧
𝑖

)}

+ 𝑃


𝐾

(𝑧
𝑖

)
𝜙 {𝑃
𝐾

(𝑧
𝑖

)}

Φ {𝑃
𝐾

(𝑧
𝑖

)}
]

𝜕𝜂
𝑖

𝜕𝛽
} .

(13)

And then, the iteration formulas of 𝑈
∗

𝛽|𝛾

, [𝐻
∗

𝛽|𝛾

]
−1, �̂�
𝑝

, and
�̂�

∗

𝑝

can also be obtained just as before. The above estimation
procedure is referred to as profile modified Newton-Raphson
iteration algorithm.

The stopping rule for the above algorithm can be
presented as that iteration proceeds until some distance
involving two successive evaluations of the profile likeli-
hood 𝑙(𝛽, �̂�

𝛽

), such as |𝑙(�̂�
(𝑘+1)

, �̂�
̂

𝛽

(𝑘+1)) − 𝑙(�̂�
(𝑘)

, �̂�
̂

𝛽

(𝑘))| or

|𝑙(�̂�
(𝑘+1)

, �̂�
̂

𝛽

(𝑘+1))/𝑙(�̂�
(𝑘)

, �̂�
̂

𝛽

(𝑘))−1|, is small enough; for example,
𝜀 < 10

−4 is adopted in this paper.
The asymptotic covariancematrix of theML estimates for

profile likelihood can be evaluated by inverting the expected
information matrix; however, it does not have a closed
form expression; the observed information matrix 𝐽(𝛽) =

−(𝜕
2

𝑙(𝛽, �̂�
𝛽

)/𝜕𝛽𝜕𝛽
𝑇

) can be used as a replacement which is
estimated by 𝐻

11

− 𝐻
12

(𝐻
22

)
−1

𝐻
21

, where 𝐻
11

, 𝐻
12

, and 𝐻
22

can be obtained as similar as above.
The choice of the initial values plays an important role in

nonlinear regression fitting; in this paper, the specific steps
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for choosing the starting values are implemented as follows:

(i) compute the initial value �̂�
(0)

based on the nonlinear
regression model with standard normal assumption;

(ii) with �̂�
(0)

fixed, compute the initial values 𝜔
(0) and

𝛼
(0) for the SN and finite mixture SN assumptions,

respectively.

In order to simplify the estimation of parameter V, we
have fixed integral values for V from 2 to 40 by one; choose the
value of V that maximizes the profile likelihood as V(0), and,
then, the initial values of �̂�

(0)

, 𝜔(0), 𝛼(0), V(0) that are required
in the estimation procedure are all obtained.

4.2. Profile Confidence Estimation and Hypothesis Test. Con-
fidence interval and hypothesis test play an important role in
statistical inference and, in the subsequent content, we will
consider the profile confidence estimation andhypothesis test
for the parameters of interest in nonlinear regressionmodels.
Suppose 𝐽(𝜃) = 𝐸[−𝐻(𝜃)]; the following regular conditions
for likelihood inference are assumed:

(R-i) ∫(𝜕 log 𝐿(x; 𝜃)/𝜕𝜃) ⋅ 𝐿(x; 𝜃)𝑑x = 0;

(R-ii) (𝜕/𝜕𝜃) ∫ 𝐿(x; 𝜃) = ∫(𝜕𝐿(x; 𝜃)/𝜕𝜃)𝑑x = 0;

(R-iii) (𝜕/𝜕𝜃) ∫ 𝑔(x)𝐿(x; 𝜃)𝑑x = ∫ 𝑔(x)(𝜕𝐿(x; 𝜃)/𝜕𝜃)𝑑x,
where 𝑔(x) is arbitrary measurable function;

(R-iv) 𝐸(𝜕 log 𝐿(x; 𝜃)/𝜕𝜃)
2

> 0.

Apart from the above assumptions, in this paper, some
additional conditions are assumed to hold for that:

(A-i) 𝜂(x
𝑖

,𝛽) is twice continuously differentiable with
respect to 𝛽 ∈ 𝑅

𝑝;
(A-ii) 𝐷 = (𝜕𝜂

1

/𝜕𝛽, . . . , 𝜕𝜂
𝑛

/𝜕𝛽)
𝑇 is full rank for all 𝛽;

(A-iii) assume 𝜃
0

is the true value of 𝜃; then, there exist a
neighbour region 𝑁

0

of 𝜃
0

and a constant 𝑐 such that
𝜆min(𝐽(𝜃)) > 𝑐 for any 𝜃 ∈ 𝑁

0

.

Under the above assumption, following [20], we have

2 {𝑙 (�̂�
𝑝

, �̂�
̂

𝛽𝑝
) − 𝑙 (𝛽

0

, �̂�
𝛽0

)} → 𝜒
2

(𝑝) , (14)

where 𝛽
0

is the true value of 𝛽 and the convergence is under
the meaning of convergence in probability. Based on the
profile likelihood theory, the confidence region of 𝛽 with the
confidence level 100(1 − 𝛼)% is given by

𝐶 (𝑌) = {𝛽 : 2 [𝑙 (�̂�
𝑝

, �̂�
̂

𝛽𝑝
) − 𝑙 (𝛽, �̂�

𝛽

)] ≤ 𝜒
2

(𝑝, 𝛼)} , (15)

where 𝜒
2

(𝑝, 𝛼) denotes the upper 𝛼 percentile of chi-square
distribution with 𝑝 degrees of freedom. Furthermore, the
hypothesis test

𝐻
0

: 𝛽 = 𝛽
0

against 𝐻
1

: 𝛽 ̸= 𝛽
0

(16)

can also be considered and the corresponding test statistics
are presented by 2[𝑙(�̂�, �̂�

̂

𝛽

) − 𝑙(𝛽
0

, �̂�
𝛽0

)]. Unlike standard

likelihood method, profile likelihood confidence intervals
and hypothesis test do not need assumption of normality of
the estimator or distribution which is too restrictive; they are
based on an asymptotic chi-square distribution of the log pro-
file likelihood ratio test statistics and these properties bring a
lot of convenience and feasibility in practical computation.

5. Simulation Study

To investigate the experimental performance of our method-
ology, we undertake a simulation study to compare the fitting
performance of misspecified distribution as well as under-
standing the large sample properties of the ML estimates. To
realize this purpose, we generate the artificial data from the
following two nonlinear models:

Model (1): drug responsiveness model:

𝑦
𝑖

= 𝛽
0

−
𝛽
0

1 + (𝑥
𝑖

/𝛽
1

)
𝛽2

+ 𝜀
𝑖

, (17)

Model (2): nonlinear growth-curve model:

𝑦
𝑖

=
𝛽
1

1 + 𝛽
2

exp (−𝛽
3

𝑥)
+ 𝜀
𝑖

, (18)

with two kinds of skewed distributions for random error as
follows: Case (I): 𝜀 ∼ STN(𝜇, 𝜔, 𝛼, V) and Case (II): 𝜀 ∼

FSTN(𝜇, 𝜔,𝛼, V).
The true parameter population is chosen as follows: 𝛽 =

(2, 5, −0.8) is assumed to be the same for the above two
models. In Model (1), let 𝜇 = 𝛿

1

, 𝜔 = 1.5, 𝛼 = 1.5, and V = 4

and in Model (2) let 𝜇 = 𝛿
2

, 𝜔 = 1.5, 𝛼 = (1, −0.8), and V = 4.
Note that, for the values of the degrees of freedom V, a relative
value (V = 4) can yield a heavy-tailed distribution as we need.

In this simulation, there are totally four simulated data
sets corresponding to two nonlinear models, Model (1) and
Model (2), along with two distributions, Case (I) and Case
(II), for random error. Similar to previous analysis, each
simulated data set is fitted under STN and FSN as well as
FSTN scenarios using three different estimation algorithms.
To shed light on the experimental performance of our
methodology, an interesting comparison can be made by
examining how often we can recognize the true model.

Table 1 shows the absolute value of the average bias
between the true and the estimated parameters and the
percentages of each model being ranked as the best model
based on AIC criterion out of 500 replications are also
presented in Table 1.

By examination of Table 1, we can find the following:
(i) the difference for the estimation results between drug
responsiveness model and growth-curve model is significant,
indicating that the nonlinearity of model imposes an impact
on parameter estimation; (ii) when the true distribution for
random error is STN, the three fitting distributions have
roughly the same behavior; it is hard to tell which approach
for parameter estimation is good and which approach is
bad and the similar results can be obtained for model
selection based on AIC; (iii) when the true distribution for
random error is FSTN, the FSN and the FSTN distributions
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Table 1: Results of the simulation study.

Method Model Error Fitting
model

Bias and perc.
𝛽
0

𝛽
1

𝛽
2

(%)

NR

1

Case I
STN 0.048 0.044 0.034 38.4

FSN 0.052 0.043 0.031 30.2

FSTN 0.051 0.048 0.035 31.4

Case II
STN 0.941 0.445 0.374 10.5

FSN 0.035 0.014 0.011 43.8

FSTN 0.033 0.010 0.010 45.7

2

Case I
STN 0.067 0.061 0.053 36.2

FSN 0.070 0.057 0.055 30.2

FSTN 0.073 0.072 0.048 33.6

Case II
STN 0.963 0.469 0.391 8.5

FSN 0.047 0.023 0.017 44.6

FSTN 0.043 0.022 0.021 46.9

P-NR

1

Case I
STN 0.049 0.040 0.032 32.6

FSN 0.050 0.047 0.038 40.1

FSTN 0.052 0.049 0.036 27.3

Case II
STN 1.029 0.420 0.248 11.4

FSN 0.039 0.018 0.010 39.6

FSTN 0.038 0.017 0.009 49.0

2

Case I
STN 0.070 0.050 0.047 30.3

FSN 0.067 0.057 0.056 42.3

FSTN 0.073 0.071 0.050 27.4

Case II
STN 1.052 0.446 0.265 10.2

FSN 0.053 0.031 0.020 39.6

FSTN 0.052 0.022 0.017 50.2

MP-NR

1

Case I
STN 0.045 0.049 0.033 32.3
FSN 0.051 0.047 0.036 38.3
FSTN 0.045 0.044 0.031 29.4

Case II
STN 0.773 0.373 0.266 14.5
FSN 0.031 0.018 0.011 38.4
FSTN 0.028 0.010 0.008 47.1

2

Case I
STN 0.068 0.072 0.062 28.1
FSN 0.076 0.074 0.062 41.2
FSTN 0.073 0.060 0.054 30.7

Case II
STN 0.794 0.394 0.290 11.3
FSN 0.037 0.026 0.017 39.4
FSTN 0.036 0.021 0.013 49.3

outperform the STNdistribution by producing estimateswith
lower bias and higher AIC proportion; furthermore, the PNR
and MPNR methods perform better than the traditional NR
method in general.

To study the consistence properties of ML estimate, we
focus on the situation that the true distribution for random
error is Case (II) whereas the fitting distribution is FSTN too.
For this case, two estimation algorithms, PNR and MPNR,

are adopted for parameter estimation and samples of different
sizes (𝑛 = 50, 100, and 200) are generated from Models (1)

and (2). We compute the 95% confidence interval for the
parameters of interest and the mean square error (MSE) for
different model, where MSE(𝛽) = (1/500) ∑

500

𝑖=1

‖𝛽
(𝑖)

− 𝛽‖
2.

The length of the 95% confidence interval and theMSE results
are summarized in Table 2. From Table 2 we can see that
the length of the confidence interval and the MSE tend to
decrease as the sample size increases as expected.

Tables 1 and 2 show that in general FSTN distribution
enjoys more robustness and flexibility in modeling data with
skewness and heavy tails as well asmultimodality in compari-
sonwith other skewed alternatives and the implementation of
MPNR method brings more accuracy and improvement for
model estimation in the context of nonlinear regression with
this new distribution.

6. Conclusion

We have proposed a new skewed distribution based on the
general FSS distribution framework, called the FSTN dis-
tribution, which is allowed to accommodate multimodality,
asymmetry, and heavy tails jointly to offer greater flexibility
than SN and STN counterparts.Moreover, we have developed
a modified profile of Newton-Raphson iterative algorithm
for estimating the parameters of interest of nonlinear model
with FSTN distribution and the interval estimation and
hypothesis test in a profile likelihood paradigm are also
considered.

Numerical studies reveal that, in the context of nonlinear
regression analysis, if the true distribution is STN or FSN
whereas the fitting distribution is FSTN, the estimation
results are not influenced by this misspecification of distribu-
tion assumption.However, once the true distribution is FSTN
while the fitting distribution is STN, the estimation results
appear to be somewhat disappointing, which shows the
robustness of FSTN distribution. In general, the combination
of FSTN distribution with MPNR method brings more
accuracy and improvement on the estimation of nonlinear
regression.

So far the present methodology is limited to the complete
data analysis; the extensions of this paper include missing
data version as well as Bayesian analysis of this model, which
will be reported in another paper.
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Table 2: The table shows the length of 95% confidence interval of parameters of interest and MSE of specified model.

Model Sample size Profile-NR Modified profile-NR
𝛽
0

𝛽
1

𝛽
2

MSE 𝛽
0

𝛽
1

𝛽
2

MSE

1
50 1.015 0.675 0.374 0.195 0.959 0.589 0.341 0.167
100 0.558 0.365 0.152 0.051 0.519 0.254 0.132 0.073
200 0.172 0.134 0.076 0.004 0.120 0.141 0.081 0.005

2
50 1.258 0.828 0.449 0.240 1.152 0.692 0.390 0.154
100 0.569 0.448 0.208 0.099 0.516 0.427 0.211 0.022
200 0.232 0.181 0.122 0.009 0.214 0.145 0.120 0.008
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