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We introduce and analyze a hybrid extragradient-like viscosity iterative algorithm for finding a common solution of a systems
of generalized equilibrium problems and a generalized mixed equilibrium problem with the constraints of two problems: a finite
family of variational inclusions for maximal monotone and inverse strongly monotone mappings and a fixed point problem of
infinitely many nonexpansive mappings in a real Hilbert space. Under some suitable conditions, we prove the strong convergence
of the sequence generated by the proposed algorithm to a common solution of these problems.

1. Introduction

Let 𝐻 be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and
norm ‖ ⋅ ‖, 𝐶 be a nonempty closed convex subset of 𝐻 and
𝑃
𝐶
be the metric projection of𝐻 onto 𝐶. Let 𝑆 : 𝐶 → 𝐻 be a

nonlinear mapping on𝐶. We denote by Fix(𝑆) the set of fixed
points of 𝑆 and by R the set of all real numbers. A mapping
𝑉 is called strongly positive on 𝐻 if there exists a constant
𝛾 ∈ (0, 1] such that

⟨𝑉𝑥, 𝑥⟩ ≥ 𝛾‖𝑥‖
2
, ∀𝑥 ∈ 𝐻. (1)

A mapping 𝑆 : 𝐶 → 𝐻 is called 𝐿-Lipschitz continuous if
there exists a constant 𝐿 ≥ 0 such that

𝑆𝑥 − 𝑆𝑦
 ≤ 𝐿

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝐶. (2)

In particular, if 𝐿 = 1 then 𝑆 is called a nonexpansive
mapping; if 𝐿 ∈ [0, 1) then 𝐴 is called a contraction.

Let 𝐴 : 𝐶 → 𝐻 be a nonlinear mapping on 𝐶. We
consider the following variational inequality problem (VIP)
[1] which is to find a point 𝑥 ∈ 𝐶 such that

⟨𝐴𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (3)

The solution set of VIP (3) is denoted by VI(𝐶, 𝐴).

Let 𝜑 : 𝐶 → R be a real-valued function,𝐴 : 𝐻 → 𝐻 be
a nonlinear mapping andΘ : 𝐶 × 𝐶 → R be a bifunction. In
2008, Peng and Yao [2] introduced the following generalized
mixed equilibrium problem (GMEP) of finding 𝑥 ∈ 𝐶 such
that

Θ(𝑥, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑥) + ⟨𝐴𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶.

(4)

We denote the set of solutions of GMEP (4) by
GMEP(Θ, 𝜑, 𝐴). The system of equilibrium problems
or generalized equilibrium problems is a tool to study
Nash eequilibrium problems, see for example [3–8]. In
fact, the GMEP (4) is very general in the sense that it
includes, as special cases, optimization problems, variational
inequalities, minimax problems, Nash equilibrium problems
in noncooperative games and others. The GMEP is further
considered and studied; see for example, [9–15]. Here we also
consider a system of two generalized equilibrium problem
that could be usefull to study the Two players game problem,
see [16].

Throughout this paper, it is assumed as in [2] thatΘ : 𝐶×

𝐶 → R is a bifunction satisfying conditions (H1)–(H4) and
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𝜑 : 𝐶 → R is a lower semicontinuous and convex function
with restriction (H5), where

(H1) Θ(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐶;
(H2) Θ is monotone, that is, Θ(𝑥, 𝑦) + Θ(𝑦, 𝑥) ≤ 0 for any

𝑥, 𝑦 ∈ 𝐶;
(H3) Θ is upper-hemicontinuous, that is, for each 𝑥, 𝑦, 𝑧 ∈

𝐶,

lim sup
𝑡→0
+

Θ(𝑡𝑧 + (1 − 𝑡) 𝑥, 𝑦) ≤ Θ (𝑥, 𝑦) ; (5)

(H4) Θ(𝑥, ⋅) is convex and lower semicontinuous for each
𝑥 ∈ 𝐶;

(H5) for each 𝑥 ∈ 𝐻 and 𝑟 > 0, there exists a bounded
subset𝐷

𝑥
⊂ 𝐶 and𝑦

𝑥
∈ 𝐶 such that for any 𝑧 ∈ 𝐶\𝐷

𝑥
,

Θ(𝑧, 𝑦
𝑥
) + 𝜑 (𝑦𝑥) − 𝜑 (𝑧) +

1

𝑟
⟨𝑦𝑥 − 𝑧, 𝑧 − 𝑥⟩ < 0. (6)

Given a positive number 𝑟 > 0. Let 𝑆(Θ,𝜑)
𝑟

: 𝐻 → 𝐶 is the
solution set of the auxiliary mixed equilibrium problem, that
is, for each 𝑥 ∈ 𝐻,

𝑆
(Θ,𝜑)

𝑟
(𝑥) := {𝑦 ∈ 𝐶 : Θ (𝑦, 𝑧) + 𝜑 (𝑧) − 𝜑 (𝑦)

+
1

𝑟
⟨𝐾

(𝑦) − 𝐾


(𝑥) , 𝑧 − 𝑦⟩ ≥ 0, ∀𝑧 ∈ 𝐶} .

(7)

In particular, whenever 𝐾(𝑥) = (1/2)‖𝑥‖
2
, ∀𝑥 ∈ 𝐻, 𝑆(Θ,𝜑)

𝑟
is

rewritten as 𝑇(Θ,𝜑)
𝑟

.
Let Θ

1
, Θ
2
: 𝐶 × 𝐶 → R be two bifunctions, and

𝐴1, 𝐴2 : 𝐶 → 𝐻 be two nonlinear mappings. Consider
the following system of generalized equilibrium problems
(SGEP): find (𝑥∗, 𝑦∗) ∈ 𝐶 × 𝐶 such that

Θ
1 (𝑥
∗
, 𝑥) + ⟨𝐴1𝑦

∗
, 𝑥 − 𝑥

∗
⟩ +

1

]
1

⟨𝑥
∗
− 𝑦
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0,

∀𝑥 ∈ 𝐶,

Θ
2
(𝑦
∗
, 𝑦) + ⟨𝐴

2
𝑥
∗
, 𝑦 − 𝑦

∗
⟩ +

1

]
2

⟨𝑦
∗
− 𝑥
∗
, 𝑦 − 𝑦

∗
⟩ ≥ 0,

∀𝑦 ∈ 𝐶,

(8)

where ]
1
> 0 and ]

2
> 0 are two constants. It is introduced

and studied in [17]. Whenever Θ1 ≡ Θ2 ≡ 0, the SGEP
reduces to a system of variational inequalities, which is
considered and studied in [18]. It is worth tomention that the
system of variational inequalities is a tool to solve the Nash
equilibrium problem for noncooperative games.

In 2010, Ceng and Yao [17] transformed the SGEP into a
fixed point problem in the following way.

Proposition CY (see [17]). Let Θ
1
, Θ
2
: 𝐶 × 𝐶 → R be

two bifunctions satisfying conditions (H1)–(H4) and let 𝐴
𝑘
:

𝐶 → 𝐻 be 𝜁
𝑘
-inverse-strongly monotone for 𝑘 = 1, 2. Let

]
𝑘
∈ (0, 2𝜁

𝑘
) for 𝑘 = 1, 2. Then, (𝑥∗, 𝑦∗) ∈ 𝐶 × 𝐶 is a solution

of SGEP (8) if and only if 𝑥∗ is a fixed point of the mapping
𝐺 : 𝐶 → 𝐶 defined by 𝐺 = 𝑇

Θ
1

]
1

(𝐼 − ]
1
𝐴
1
)𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)

where 𝑦∗ = 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)𝑥
∗. Here, we denote the fixed point

set of 𝐺 by SGEP(𝐺).

Let {𝑇
𝑛}
∞

𝑛=1
be an infinite family of nonexpansive map-

pings on 𝐻 and {𝜆𝑛}
∞

𝑛=1
be a sequence of nonnegative

numbers in [0, 1]. For any 𝑛 ≥ 1, define a mapping 𝑊
𝑛
on

𝐻 as follows:

𝑈
𝑛,𝑛+1

= 𝐼,

𝑈
𝑛,𝑛

= 𝜆
𝑛
𝑇
𝑛
𝑈
𝑛,𝑛+1

+ (1 − 𝜆
𝑛
) 𝐼,

𝑈
𝑛,𝑛−1

= 𝜆
𝑛−1

𝑇
𝑛−1

𝑈
𝑛,𝑛
+ (1 − 𝜆

𝑛−1
) 𝐼,

⋅ ⋅ ⋅

𝑈
𝑛,𝑘

= 𝜆
𝑘
𝑇
𝑘
𝑈
𝑛,𝑘+1

+ (1 − 𝜆
𝑘
) 𝐼,

𝑈
𝑛,𝑘−1

= 𝜆
𝑘−1

𝑇
𝑘−1

𝑈
𝑛,𝑘
+ (1 − 𝜆

𝑘−1
) 𝐼,

⋅ ⋅ ⋅

𝑈
𝑛,2 = 𝜆2𝑇2𝑈𝑛,3 + (1 − 𝜆2) 𝐼,

𝑊
𝑛
= 𝑈
𝑛,1

= 𝜆
1
𝑇
1
𝑈
𝑛,2
+ (1 − 𝜆

1
) 𝐼.

(9)

Such a mapping 𝑊
𝑛
is called the 𝑊-mapping generated by

𝑇
𝑛
, 𝑇
𝑛−1

, . . . , 𝑇
1
and 𝜆

𝑛
, 𝜆
𝑛−1

, . . . , 𝜆
1
.

In 2011, for the case where𝐶 = 𝐻, Yao et al. [14] proposed
the following hybrid iterative algorithm

Θ(𝑦
𝑛
, 𝑧) + 𝜑 (𝑧) − 𝜑 (𝑦𝑛)

+
1

𝑟
⟨𝐾

(𝑦
𝑛
) − 𝐾

(𝑥
𝑛
) , 𝑧 − 𝑦

𝑛
⟩ ≥ 0, 𝑧 ∈ 𝐻,

𝑥
𝑛+1

= 𝛼
𝑛
(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) + 𝛽

𝑛
𝑥
𝑛

+ ((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
(𝐼 + 𝜇𝑉))𝑊

𝑛
𝑦
𝑛
, ∀𝑛 ≥ 1,

(10)

where 𝑓 : 𝐻 → 𝐻 be a contraction, 𝐾 : 𝐻 → R is
differentiable and strongly convex, {𝛼

𝑛
}, {𝛽
𝑛
} ⊂ (0, 1) and

𝑥
0
, 𝑢 ∈ 𝐻 are given, for finding a common element of the set

MEP(Θ, 𝜑) and the fixed point set ∩∞
𝑛=1

Fix(𝑇
𝑛
) of an infinite

family of nonexpansive mappings {𝑇
𝑛
}
∞

𝑛=1
on𝐻. They proved

the strong convergence of the sequence generated by the
hybrid iterative algorithm (10) to a point 𝑥∗ ∈ ∩∞

𝑛=1
Fix(𝑇
𝑛
) ∩

MEP(Θ, 𝜑) under some appropriate conditions.This point 𝑥∗
also solves the following optimization problem:

min
𝑥∈∩
∞

𝑛=1
Fix(𝑇
𝑛
)∩MEP(Θ,𝜑)

𝜇

2
⟨𝑉𝑥, 𝑥⟩ +

1

2
‖𝑥 − 𝑢‖

2
− ℎ (𝑥) , (OP0)

where ℎ : 𝐻 → R is the potential function of 𝛾𝑓.
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Let 𝑓 : 𝐻 → 𝐻 be a contraction and 𝑉 be a strongly
positive bounded linear operator on 𝐻. Assume that 𝜑 :

𝐻 → R is a lower semicontinuous and convex functional,
that Θ,Θ

1
, Θ
2
: 𝐻 × 𝐻 → R satisfy conditions (H1)–

(H4), and that 𝐴,𝐴
1
, 𝐴
2
: 𝐻 → 𝐻 are inverse-strongly

monotone. Let the mapping 𝐺 be defined as in Proposition
CY. Very recently, Ceng et al. [11] introduced the following
hybrid extragradient-like iterative algorithm

𝑧
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝑥
𝑛
− 𝑟
𝑛
𝐴𝑥
𝑛
) ,

𝑥𝑛+1 = 𝛼𝑛 (𝑢 + 𝛾𝑓 (𝑥𝑛)) + 𝛽𝑛𝑥𝑛

+ ((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
(𝐼 + 𝜇𝑉))𝑊

𝑛
𝐺𝑧
𝑛
, ∀𝑛 ≥ 0,

(11)

for finding a common solution of GMEP (4), SGEP (8) and
the fixed point problem of an infinite family of nonexpansive
mappings {𝑇𝑛}

∞

𝑛=1
on 𝐻, where {𝑟

𝑛
} ⊂ (0,∞), {𝛼

𝑛
}, {𝛽
𝑛
} ⊂

(0, 1), ]𝑘 ∈ (0, 2𝜁𝑘), 𝑘 = 1, 2, and 𝑥0, 𝑢 ∈ 𝐻 are given.
The authors proved the strong convergence of the sequence
generated by the hybrid iterative algorithm (11) to a point
𝑥
∗
∈ ∩
∞

𝑛=1
Fix(𝑇𝑛) ∩ GMEP(Θ, 𝜑, 𝐴) ∩ SGEP(𝐺) under some

suitable conditions. This point 𝑥∗ also solves the following
optimization problem:

min
𝑥∈∩
∞

𝑛=1
Fix(𝑇
𝑛
)∩GMEP(Θ,𝜑,𝐴)∩SGEP(𝐺)

𝜇

2
⟨𝑉𝑥, 𝑥⟩

+
1

2
‖𝑥 − 𝑢‖

2
− ℎ (𝑥) ,

(OP1)

where ℎ : 𝐻 → R is the potential function of 𝛾𝑓.
On the other hand, let 𝐵 be a single-valued mapping of

𝐶 into 𝐻 and 𝑅 be a set-valued mapping with 𝐷(𝑅) = 𝐶.
Consider the following variational inclusion: find a point 𝑥 ∈
𝐶 such that

0 ∈ 𝐵𝑥 + 𝑅𝑥. (12)

We denote by 𝐼(𝐵, 𝑅) the solution set of the variational
inclusion (12). In particular, if 𝐵 = 𝑅 = 0, then 𝐼(𝐵, 𝑅) =

𝐶. If 𝐵 = 0, then problem (12) becomes the inclusion
problem introduced by Rockafellar [19]. It is known that
problem (12) provides a convenient framework for the unified
study of optimal solutions in many optimization related
areas including mathematical programming, complemen-
tarity problems, variational inequalities, optimal control,
mathematical economics, equilibria and game theory, and so
forth. Let a set-valued mapping 𝑅 : 𝐷(𝑅) ⊂ 𝐻 → 2

𝐻 be
maximal monotone. We define the resolvent operator 𝐽

𝑅,𝜆
:

𝐻 → 𝐷(𝑅) associated with 𝑅 and 𝜆 as follows:

𝐽
𝑅,𝜆

= (𝐼 + 𝜆𝑅)
−1
, ∀𝑥 ∈ 𝐻, (13)

where 𝜆 is a positive number.
In this paper, we will introduce and analyze an iterative

algorithm by hybrid extragradient-like viscosity method for
finding a common solution of a systems of generalized
equilibrium problems and a generalized mixed equilibrium
problem with the constraints of two problems: a finite family
of variational inclusions for maximal monotone and inverse

strongly monotone mappings and a fixed point problem of
infinitely many nonexpansive mappings in a real Hilbert
space. Under some suitable conditions, we prove the strong
convergence of the sequence generated by the proposed algo-
rithm to a common solution of these problems. Such solution
also solves an optimization problem. Several special cases are
also discussed. The results presented in this paper are the
supplement, extension, improvement and generalization of
the previously known results in this area.

2. Preliminaries

Throughout this paper, we assume that 𝐻 is a real Hilbert
space whose inner product and norm are denoted by ⟨⋅, ⋅⟩
and ‖ ⋅ ‖, respectively. Let 𝐶 be a nonempty closed convex
subset of 𝐻. We write 𝑥

𝑛
⇀ 𝑥 to indicate that the sequence

{𝑥
𝑛
} converges weakly to 𝑥 and 𝑥

𝑛
→ 𝑥 to indicate that

the sequence {𝑥
𝑛
} converges strongly to 𝑥. Moreover, we use

𝜔
𝑤
(𝑥
𝑛
) to denote the weak 𝜔-limit set of the sequence {𝑥

𝑛
},

that is,

𝜔
𝑤
(𝑥
𝑛
) := {𝑥 ∈ 𝐻 : 𝑥

𝑛
𝑖

⇀ 𝑥

for some subsequence {𝑥𝑛
𝑖

} of {𝑥𝑛}} .
(14)

Definition 1. A mapping 𝐴 : 𝐶 → 𝐻 is called
(i) monotone if

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐶, (15)

(ii) 𝜂-strongly monotone if there exists a constant 𝜂 > 0

such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 𝜂
𝑥 − 𝑦



2
, ∀𝑥, 𝑦 ∈ 𝐶, (16)

(iii) 𝜁-inverse-stronglymonotone if there exists a constant
𝜁 > 0 such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 𝜁
𝐴𝑥 − 𝐴𝑦



2
, ∀𝑥, 𝑦 ∈ 𝐶. (17)

It is easy to see that the projection 𝑃
𝐶
is 1-ism. Inverse

strongly monotone (also referred to as co-coercive) operators
have been applied widely in solving practical problems in
various fields.

Definition 2. A differentiable function𝐾 : 𝐻 → R is called:
(i) convex, if

𝐾(𝑦) − 𝐾 (𝑥) ≥ ⟨𝐾

(𝑥) , 𝑦 − 𝑥⟩ , ∀𝑥, 𝑦 ∈ 𝐻, (18)

where𝐾(𝑥) is the Frechet derivative of𝐾 at 𝑥;
(ii) strongly convex, if there exists a constant 𝜎 > 0 such

that

𝐾(𝑦) − 𝐾 (𝑥) − ⟨𝐾

(𝑥) , 𝑦 − 𝑥⟩ ≥

𝜎

2

𝑥 − 𝑦


2
, ∀𝑥, 𝑦 ∈ 𝐻.

(19)

It is easy to see that if 𝐾 : 𝐻 → R is a differentiable
strongly convex function with constant 𝜎 > 0 then𝐾 : 𝐻 →

𝐻 is strongly monotone with constant 𝜎 > 0.
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Themetric (or nearest point) projection from𝐻 onto𝐶 is
the mapping 𝑃

𝐶
: 𝐻 → 𝐶which assigns to each point 𝑥 ∈ 𝐻

the unique point 𝑃
𝐶
𝑥 ∈ 𝐶 satisfying the property

𝑥 − 𝑃𝐶𝑥
 = inf
𝑦∈𝐶

𝑥 − 𝑦
 =: 𝑑 (𝑥, 𝐶) . (20)

Some important properties of projections are gathered in
the following proposition.

Proposition 3. For given 𝑥 ∈ 𝐻 and 𝑧 ∈ 𝐶:

(i) 𝑧 = 𝑃
𝐶
𝑥 ⇔ ⟨𝑥 − 𝑧, 𝑦 − 𝑧⟩ ≤ 0, ∀𝑦 ∈ 𝐶;

(ii) 𝑧 = 𝑃
𝐶
𝑥 ⇔ ‖𝑥 − 𝑧‖

2
≤ ‖𝑥 − 𝑦‖

2
− ‖𝑦 − 𝑧‖

2, ∀𝑦 ∈ 𝐶;
(iii) ⟨𝑃

𝐶
𝑥 − 𝑃
𝐶
𝑦, 𝑥 − 𝑦⟩ ≥ ‖𝑃

𝐶
𝑥 − 𝑃
𝐶
𝑦‖
2, ∀𝑦 ∈ 𝐻. (This

implies that 𝑃
𝐶
is nonexpansive and monotone.)

By using the technique of [20], we can readily obtain the
following elementary result.

Proposition 4 (see [11, Lemma 1 and Proposition 1]). Let 𝐶
be a nonempty closed convex subset of a real Hilbert space 𝐻
and let 𝜑 : 𝐶 → R be a lower semicontinuous and convex
function. Let Θ : 𝐶 × 𝐶 → R be a bifunction satisfying the
conditions (H1)–(H4). Assume that

(i) 𝐾 : 𝐻 → R is strongly convex with constant 𝜎 > 0

and the function 𝑥 → ⟨𝑦 − 𝑥,𝐾

(𝑥)⟩ is weakly upper

semicontinuous for each 𝑦 ∈ 𝐻;
(ii) for each 𝑥 ∈ 𝐻 and 𝑟 > 0, there exists a bounded subset

𝐷
𝑥
⊂ 𝐶 and 𝑦

𝑥
∈ 𝐶 such that for any 𝑧 ∈ 𝐶 \ 𝐷

𝑥
,

Θ(𝑧, 𝑦
𝑥) + 𝜑 (𝑦𝑥) − 𝜑 (𝑧) +

1

𝑟
⟨𝐾

(𝑧) − 𝐾


(𝑥) , 𝑦𝑥 − 𝑧⟩ < 0.

(21)

Then the following hold:

(a) for each 𝑥 ∈ 𝐻, 𝑆(Θ,𝜑)
𝑟

(𝑥) ̸= 0;

(b) 𝑆(Θ,𝜑)
𝑟

is single-valued;

(c) 𝑆(Θ,𝜑)
𝑟

is nonexpansive if𝐾 is Lipschitz continuous with
constant ] > 0 and

⟨𝐾

(𝑥1) − 𝐾


(𝑥2) , 𝑢1 − 𝑢2⟩

≥ ⟨𝐾

(𝑢
1
) − 𝐾

(𝑢
2
) , 𝑢
1
− 𝑢
2
⟩ , ∀ (𝑥

1
, 𝑥
2
) ∈ 𝐻 × 𝐻,

(22)

where 𝑢
𝑖
= 𝑆
(Θ,𝜑)

𝑟
(𝑥
𝑖
) for 𝑖 = 1, 2;

(d) for all 𝑠, 𝑡 > 0 and 𝑥 ∈ 𝐻

⟨𝐾

(S(Θ,𝜑)
𝑠

𝑥) − 𝐾

(𝑆
(Θ,𝜑)

𝑡
𝑥) , 𝑆
(Θ,𝜑)

𝑠
𝑥 − 𝑆
(Θ,𝜑)

𝑡
𝑥⟩

≤
𝑠 − 𝑡

𝑠
⟨𝐾

(𝑆
(Θ,𝜑)

𝑠
𝑥) − 𝐾


(𝑥) , 𝑆

(Θ,𝜑)

𝑠
𝑥 − 𝑆
(Θ,𝜑)

𝑡
𝑥⟩ ;

(23)

(e) Fix(𝑆(Θ,𝜑)
𝑟

) = MEP(Θ, 𝜑);
(f) MEP(Θ, 𝜑) is closed and convex.

In particular, whenever Θ : 𝐶 × 𝐶 → R is a
bifunction satisfying the conditions (H1)–(H4) and 𝐾(𝑥) =

(1/2)‖𝑥‖
2
, ∀𝑥 ∈ 𝐻, then that is, for any 𝑥, 𝑦 ∈ 𝐻,


𝑆
(Θ,𝜑)

𝑟
𝑥 − 𝑆
(Θ,𝜑)

𝑟
𝑦


2

≤ ⟨𝑆
(Θ,𝜑)

𝑟
𝑥 − 𝑆
(Θ,𝜑)

𝑟
𝑦, 𝑥 − 𝑦⟩ (24)

(𝑆(Θ,𝜑)
𝑟

is firmly nonexpansive) and


𝑆
(Θ,𝜑)

𝑠
𝑥 − 𝑆
(Θ,𝜑)

𝑡
𝑥

≤
|𝑠 − 𝑡|

𝑠


𝑆
(Θ,𝜑)

𝑠
𝑥 − 𝑥


,

∀𝑠, 𝑡 > 0, 𝑥 ∈ 𝐻.

(25)

In this case, 𝑆(Θ,𝜑)
𝑟

is rewritten as 𝑇(Θ,𝜑)
𝑟

. If, in addition, 𝜑 ≡ 0,
then 𝑇(Θ,𝜑)

𝑟
is rewritten as 𝑇Θ

𝑟
.

Remark 5. Suppose 𝐾 : 𝐻 → R is strongly convex with
constant𝜎 > 0 and𝐾 : 𝐻 → 𝐻 is Lipschitz continuouswith
constant ] > 0. Then 𝐾 : 𝐻 → 𝐻 is 𝜎-strongly monotone
and ]-Lipschitz continuous with positive constants 𝜎, ] > 0.
Utilizing Proposition 4 (d) we can show that for all 𝑠, 𝑡 > 0

and 𝑥 ∈ 𝐻,


𝑆
(Θ,𝜑)

𝑠
𝑥 − 𝑆
(Θ,𝜑)

𝑡
𝑥

≤
|𝑠 − 𝑡|

𝑠
⋅
]
𝜎


𝑆
(Θ,𝜑)

𝑠
𝑥 − 𝑥


. (26)

We need some facts and tools in a real Hilbert space 𝐻
which are listed as lemmas below.

Lemma 6. Let 𝑋 be a real inner product space. Then there
holds the following inequality

𝑥 + 𝑦


2
≤ ‖𝑥‖

2
+ 2 ⟨𝑦, 𝑥 + 𝑦⟩ , ∀𝑥, 𝑦 ∈ 𝑋. (27)

Lemma 7. Let 𝐻 be a real Hilbert space. Then the following
hold:

(a) ‖𝑥 − 𝑦‖2 = ‖𝑥‖2 − ‖𝑦‖2 − 2⟨𝑥 − 𝑦, 𝑦⟩ for all 𝑥, 𝑦 ∈ 𝐻;
(b) ‖𝜆𝑥 + 𝜇𝑦‖2 = 𝜆‖𝑥‖2+𝜇‖𝑦‖2−𝜆𝜇‖𝑥 − 𝑦‖2 for all 𝑥, 𝑦 ∈

𝐻 and 𝜆, 𝜇 ∈ [0, 1] with 𝜆 + 𝜇 = 1;
(c) If {𝑥

𝑛
} is a sequence in𝐻 such that 𝑥

𝑛
⇀ 𝑥, it follows

that

lim sup
𝑛→∞

𝑥𝑛 − 𝑦


2
= lim sup
𝑛→∞

𝑥𝑛 − 𝑥


2
+
𝑥 − 𝑦



2
, ∀𝑦 ∈ 𝐻.

(28)

We have the following crucial lemmas concerning the 𝑊-
mappings defined by (9).

Lemma 8 (see [21, Lemma 3.2]). Let {𝑇
𝑛
}
∞

𝑛=1
be a sequence

of nonexpansive self-mappings on𝐻 such that ∩∞
𝑛=1

Fix(𝑇
𝑛
) ̸= 0

and let {𝜆
𝑛
} be a sequence in (0, 𝑏] for some 𝑏 ∈ (0, 1).Then, for

every 𝑥 ∈ 𝐻 and 𝑘 ≥ 1 the limit lim
𝑛→∞

𝑈
𝑛,𝑘
𝑥 exists, where

𝑈
𝑛,𝑘

is defined by (9).

Remark 9 (see [22, Remark 3.1]). It can be known from
Lemma 8 that if 𝐷 is a nonempty bounded subset of𝐻, then
for 𝜖 > 0 there exists 𝑛

0
≥ 𝑘 such that for all 𝑛 > 𝑛

0

sup
𝑥∈𝐷

𝑈𝑛,𝑘𝑥 − 𝑈𝑘𝑥
 ≤ 𝜖. (29)
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Remark 10 (see [22, Remark 3.2]). Utilizing Lemma 8, we
define a mapping𝑊: 𝐻 → 𝐻 as follows:

𝑊𝑥 = lim
𝑛→∞

𝑊
𝑛
𝑥 = lim
𝑛→∞

𝑈
𝑛,1
𝑥, ∀𝑥 ∈ 𝐻. (30)

Such a𝑊 is called the𝑊-mapping generated by𝑇
1
, 𝑇
2
, . . . and

𝜆
1
, 𝜆
2
, . . .. Since 𝑊

𝑛
is nonexpansive, 𝑊 : 𝐻 → 𝐻 is also

nonexpansive. Indeed, observe that for each 𝑥, 𝑦 ∈ 𝐻
𝑊𝑥 −𝑊𝑦

 = lim
𝑛→∞

𝑊𝑛𝑥 −𝑊𝑛𝑦
 ≤

𝑥 − 𝑦
 . (31)

If {𝑥
𝑛
} is a bounded sequence in 𝐻, then we put 𝐷 = {𝑥

𝑛
:

𝑛 ≥ 1}. Hence, it is clear from Remark 5 that for an arbitrary
𝜖 > 0 there exists𝑁

0
≥ 1 such that for all 𝑛 > 𝑁

0

𝑊𝑛𝑥𝑛 −𝑊𝑥𝑛
 =

𝑈𝑛,1𝑥𝑛 − 𝑈1𝑥𝑛
 ≤ sup
𝑥∈𝐷

𝑈𝑛,1𝑥 − 𝑈1𝑥
 ≤ 𝜖.

(32)

This implies that

lim
𝑛→∞

𝑊𝑛𝑥𝑛 −𝑊𝑥𝑛
 = 0. (33)

Lemma 11 (see [21, Lemma 3.3]). Let {𝑇
𝑛}
∞

𝑛=1
be a sequence of

nonexpansive self-mappings on 𝐻 such that ∩∞
𝑛=1

Fix(𝑇𝑛) ̸= 0,
and let {𝜆𝑛} be a sequence in (0, 𝑏] for some 𝑏 ∈ (0, 1). Then,
Fix(𝑊) = ∩

∞

𝑛=1
Fix(𝑇𝑛).

Lemma 12 (see [23, Demiclosedness principle]). Let 𝐶 be a
nonempty closed convex subset of a real Hilbert space𝐻. Let 𝑇
be a nonexpansive self-mapping on𝐶.Then 𝐼−𝑇 is demiclosed.
That is, whenever {𝑥

𝑛
} is a sequence in 𝐶 weakly converging to

some 𝑥 ∈ 𝐶 and the sequence {(𝐼 − 𝑇)𝑥
𝑛
} strongly converges

to some 𝑦, it follows that (𝐼 − 𝑇)𝑥 = 𝑦. Here 𝐼 is the identity
operator of𝐻.

Lemma 13. Let 𝐴 : 𝐶 → 𝐻 be a monotone mapping. In the
context of the variational inequality problem the characteriza-
tion of the projection (see Proposition 3 (i)) implies

𝑢 ∈ VI (𝐶, 𝐴) ⇐⇒ 𝑢 = 𝑃
𝐶 (𝑢 − 𝜆𝐴𝑢) , 𝜆 > 0. (34)

Lemma 14 (see [24]). Let {𝑥
𝑛
} and {𝑤

𝑛
} be bounded sequences

in a real Banach space 𝑋 and {𝛽
𝑛
} be a sequence in [0, 1] with

0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1. Suppose

𝑥
𝑛+1

= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑤
𝑛
, ∀𝑛 ≥ 0,

lim sup
𝑛→∞

(
𝑤𝑛+1 − 𝑤𝑛

 −
𝑥𝑛+1 − 𝑥𝑛

) ≤ 0.
(35)

Then, lim
𝑛→∞‖𝑤𝑛 − 𝑥𝑛‖ = 0.

Lemma 15 (see [25]). Assume that {𝑎𝑛} is a sequence of
nonnegative real numbers such that

𝑎
𝑛+1

≤ (1 − 𝛾
𝑛
) 𝑎
𝑛
+ 𝜎
𝑛
𝛾
𝑛
, ∀𝑛 ≥ 1, (36)

where {𝛾𝑛} is a sequence in [0, 1] and {𝜎
𝑛
} is a real sequence

such that

(i) ∑∞
𝑛=1

𝛾
𝑛
= ∞;

(ii) lim sup
𝑛→∞

𝜎
𝑛
≤ 0 or ∑∞

𝑛=1
|𝜎
𝑛
𝛾
𝑛
| < ∞.

Then lim
𝑛→∞𝑎𝑛 = 0.

Recall that a set-valued mapping 𝑇 : 𝐷(𝑇) ⊂ 𝐻 → 2
𝐻

is called monotone if for all 𝑥, 𝑦 ∈ 𝐷(𝑇), 𝑓 ∈ 𝑇𝑥 and 𝑔 ∈ 𝑇𝑦
imply

⟨𝑓 − 𝑔, 𝑥 − 𝑦⟩ ≥ 0. (37)

A set-valued mapping 𝑇 is called maximal monotone if 𝑇 is
monotone and (𝐼 + 𝜆𝑇)𝐷(𝑇) = 𝐻 for each 𝜆 > 0, where 𝐼
is the identity mapping of 𝐻. We denote by 𝐺(𝑇) the graph
of 𝑇. It is known that a monotone mapping 𝑇 is maximal if
and only if, for (𝑥, 𝑓) ∈ 𝐻 × 𝐻, ⟨𝑓 − 𝑔, 𝑥 − 𝑦⟩ ≥ 0 for every
(𝑦, 𝑔) ∈ 𝐺(𝑇) implies 𝑓 ∈ 𝑇𝑥. Next we provide an example to
illustrate the concept of maximal monotone mapping.

Let 𝐴 : 𝐶 → 𝐻 be a monotone, 𝑘-Lipschitz-continuous
mapping and let𝑁𝐶V be the normal cone to 𝐶 at V ∈ 𝐶, that
is,

𝑁
𝐶
V = {𝑤 ∈ 𝐻 : ⟨V − 𝑢, 𝑤⟩ ≥ 0, ∀𝑢 ∈ 𝐶} . (38)

Define

𝑇V = {
𝐴V + 𝑁

𝐶
V, if V ∈ 𝐶,

0, if V ∉ 𝐶.
(39)

Then, 𝑇 is maximal monotone and 0 ∈ 𝑇V if and only if V ∈
VI(𝐶, 𝐴); see [19].

Assume that 𝑅 : 𝐷(𝑅) ⊂ 𝐻 → 2
𝐻 is a maximal

monotone mapping. Let 𝜆 > 0. In terms of Huang [26] (see
also [27]), there holds the following property for the resolvent
operator 𝐽

𝑅,𝜆
: 𝐻 → 𝐷(𝑅).

Lemma 16. 𝐽
𝑅,𝜆

is single-valued and firmly nonexpansive, that
is,

⟨𝐽𝑅,𝜆𝑥 − 𝐽𝑅,𝜆𝑦, 𝑥 − 𝑦⟩ ≥
𝐽𝑅,𝜆𝑥 − 𝐽𝑅,𝜆𝑦



2
, ∀𝑥, 𝑦 ∈ 𝐻.

(40)

Consequently, 𝐽
𝑅,𝜆

is nonexpansive and monotone.

Lemma 17 (see [28]). Let 𝑅 be a maximal monotone mapping
with 𝐷(𝑅) = 𝐶. Then for any given 𝜆 > 0, 𝑢 ∈ 𝐶 is a solution
of problem (12) if and only if 𝑢 ∈ 𝐶 satisfies

𝑢 = 𝐽
𝑅,𝜆 (𝑢 − 𝜆𝐵𝑢) . (41)

Lemma 18 (see [27]). Let 𝑅 be a maximal monotone mapping
with 𝐷(𝑅) = 𝐶 and let 𝐵 : 𝐶 → 𝐻 be a strongly monotone,
continuous and single-valued mapping. Then for each 𝑧 ∈ 𝐻,
the equation 𝑧 ∈ (𝐵+𝜆𝑅)𝑥 has a unique solution 𝑥

𝜆
for 𝜆 > 0.

Lemma 19 (see [28]). Let 𝑅 be a maximal monotone mapping
with 𝐷(𝑅) = 𝐶 and 𝐵 : 𝐶 → 𝐻 be a monotone, continuous
and single-valued mapping.Then (𝐼+𝜆(𝑅+𝐵))𝐶 = 𝐻 for each
𝜆 > 0. In this case, 𝑅 + 𝐵 is maximal monotone.

Lemma 20 (see [29]). Let 𝐶 be a nonempty closed convex
subset of a real Hilbert space 𝐻, and 𝑔 : 𝐶 → R ∪ +∞ be
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a proper lower semicontinuous differentiable convex function.
If 𝑥∗ is a solution the minimization problem

𝑔 (𝑥
∗
) = inf
𝑥∈𝐶

𝑔 (𝑥) , (42)

then,

⟨𝑔

(𝑥) , 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ 𝐶. (43)

In particular, if 𝑥∗ solves (OP), then

⟨𝑢 + (𝛾𝑓 − (𝐼 + 𝜇𝑉)) 𝑥
∗
, 𝑥 − 𝑥

∗
⟩ ≤ 0. (44)

3. Main Results

In this section, we introduce and analyze an iterative algo-
rithm by hybrid extragradient-like viscosity method for
finding a common solution of a systems of generalized
equilibrium problems and a generalized mixed equilibrium
problem with the constraints of two problems: a finite family
of variational inclusions for maximal monotone and inverse
strongly monotone mappings and a fixed point problem of
infinitely many nonexpansive mappings in a real Hilbert
space. Under appropriate conditions imposed on the param-
eter sequences we will prove strong convergence of the
proposed algorithm.

Theorem 21. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space 𝐻. Let 𝑁 be an integer. Let Θ,Θ

1
, Θ
2

be three bifunctions from 𝐶 × 𝐶 to R satisfying (H1)–(H4)
and 𝜑 : 𝐶 → R be a lower semicontinuous and convex
functional. Let 𝑅

𝑖
: 𝐶 → 2

𝐻 be a maximal monotone
mapping and let 𝐴,𝐴

𝑘
: 𝐻 → 𝐻 and 𝐵

𝑖
: 𝐶 → 𝐻 be 𝜁-

inverse strongly monotone, 𝜁
𝑘
-inverse strongly monotone and

𝜂
𝑖
-inverse strongly monotone, respectively, where 𝑘 ∈ {1, 2} and

𝑖 ∈ {1, 2, . . . , 𝑁}. Let {𝑇
𝑛
}
∞

𝑛=1
be a sequence of nonexpansive

mappings on 𝐻 and {𝜆𝑛} be a sequence in (0, 𝑏] for some
𝑏 ∈ (0, 1). Let 𝑉 be a 𝛾-strongly positive bounded linear
operator and 𝑓 : 𝐻 → 𝐻 be an 𝑙-Lipschitzian mapping
with 𝛾𝑙 < (1 + 𝜇)𝛾. Let𝑊𝑛 be the𝑊-mapping defined by (9).
Assume thatΩ := ∩

∞

𝑛=1
Fix(𝑇𝑛)∩GMEP(Θ, 𝜑, 𝐴)∩SGEP(𝐺)∩

∩
𝑁

𝑖=1
I(𝐵
𝑖
, 𝑅
𝑖
) ̸= 0 where 𝐺 is defined as in Proposition CY. Let

{𝛼
𝑛
}, {𝛽
𝑛
} and {𝛿

𝑛
} be three sequences in [0, 1]. Assume that:

(i) 𝐾 : 𝐻 → R is strongly convexwith constant𝜎 > 0 and
its derivative 𝐾 is Lipschitz continuous with constant
] > 0 such that the function 𝑥 → ⟨𝑦 − 𝑥,𝐾


(𝑥)⟩ is

weakly upper semicontinuous for each 𝑦 ∈ 𝐻;
(ii) for each 𝑥 ∈ 𝐻, there exist a bounded subset 𝐷

𝑥
⊂ 𝐶

and 𝑧
𝑥
∈ 𝐶 such that for any 𝑦 ∉ 𝐷

𝑥
,

Θ(𝑦, 𝑧
𝑥
) + 𝜑 (𝑧

𝑥
) − 𝜑 (𝑦)

+
1

𝑟
⟨𝐾

(𝑦) − 𝐾


(𝑥) , 𝑧𝑥 − 𝑦⟩ < 0;

(45)

(iii) lim
𝑛→∞

𝛼
𝑛
= 0,∑

∞

𝑛=1
𝛼
𝑛
= ∞, 0 < lim inf

𝑛→∞
𝛽
𝑛
≤

lim sup
𝑛→∞

𝛽
𝑛

< 1 and 0 < lim inf
𝑛→∞

𝛿
𝑛

≤

lim sup
𝑛→∞

𝛿
𝑛
< 1;

(iv) ]
𝑘
∈ (0, 2𝜁

𝑘
), 𝑘 ∈ {1, 2}, 𝜇

𝑖
∈ (0, 2𝜂

𝑖
), 𝑖 ∈ {1, 2, . . . , 𝑁},

and {r
𝑛
} ⊂ [0, 2𝜁] satisfies

0 < lim inf
𝑛→∞

𝑟
𝑛
≤ lim sup
𝑛→∞

𝑟
𝑛
< 2𝜁; (46)

(v) lim
𝑛→∞

(|𝛿
𝑛+1

− 𝛿
𝑛
| + |𝑟
𝑛+1

− 𝑟
𝑛
|) = 0.

Given 𝑥
1 ∈ 𝐻 arbitrarily, then the sequence {𝑥𝑛} generated

iteratively by

𝑢
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
,

𝑧
𝑛
= 𝐽
𝑅
𝑁
,𝜇
𝑁

(𝐼 − 𝜇
𝑁
𝐵
𝑁
) 𝐽
𝑅
𝑁−1
,𝜇
𝑁−1

× (𝐼 − 𝜇
𝑁−1

𝐵
𝑁−1

) ⋅ ⋅ ⋅ 𝐽
𝑅
1
,𝜇
1

(𝐼 − 𝜇
1
𝐵
1
) 𝑢
𝑛
,

𝑦
𝑛
= 𝛿
𝑛
𝐺𝑧
𝑛
+ (1 − 𝛿

𝑛
)𝑊
𝑛
𝑧
𝑛
,

𝑥𝑛+1 = 𝛼𝑛 (𝑢 + 𝛾𝑓 (𝑥𝑛)) + 𝛽𝑛𝑥𝑛

+ ((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
(𝐼 + 𝜇𝑉))𝑊

𝑛
𝑦
𝑛
, ∀𝑛 ≥ 1,

(47)

converges strongly to 𝑥
∗

∈ Ω which solves the following
optimization problem provided 𝑆(Θ,𝜑)

𝑟
is firmly nonexpansive:

min
𝑥∈Ω

𝜇

2
⟨𝐴𝑥, 𝑥⟩ +

1

2
‖𝑥 − 𝑢‖

2
− ℎ (𝑥) , (OP2)

where ℎ is the potential function of 𝛾𝑓.

Proof. Since lim
𝑛→∞

𝛼
𝑛
= 0 and 0 < lim inf

𝑛→∞
𝛽
𝑛
≤

lim sup
𝑛→∞

𝛽
𝑛

< 1, we may assume, without loss of
generality, that 𝛼

𝑛
≤ (1 − 𝛽

𝑛
)(1 + 𝜇‖𝑉‖)

−1. Since 𝑉 is a 𝛾-
strongly positive bounded linear operator on𝐻, we know that

‖𝑉‖ = sup {⟨𝑉𝑢, 𝑢⟩ : 𝑢 ∈ 𝐻, ‖𝑢‖ = 1} . (48)

Observe that

⟨((1 − 𝛽
𝑛) 𝐼 − 𝛼𝑛 (𝐼 + 𝜇𝑉)) 𝑢, 𝑢⟩ = 1 − 𝛽𝑛 − 𝛼𝑛 − 𝛼𝑛𝜇 ⟨𝑉𝑢, 𝑢⟩

≥ 1 − 𝛽
𝑛
− 𝛼
𝑛
− 𝛼
𝑛
𝜇 ‖𝑉‖

≥ 0

(49)

that is, (1 − 𝛽
𝑛)𝐼 − 𝛼𝑛(𝐼 + 𝜇𝑉) is positive. It follows that

(1 − 𝛽𝑛) 𝐼 − 𝛼𝑛 (𝐼 + 𝜇𝑉)


= sup {⟨((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
(𝐼 + 𝜇𝑉)) 𝑢, 𝑢⟩ : 𝑢 ∈ 𝐻, ‖𝑢‖ = 1}

= sup {1 − 𝛽
𝑛
− 𝛼
𝑛
− 𝛼
𝑛
𝜇 ⟨𝑉𝑢, 𝑢⟩ : 𝑢 ∈ 𝐻, ‖𝑢‖ = 1}

≤ 1 − 𝛽
𝑛
− 𝛼
𝑛
− 𝛼
𝑛
𝜇𝛾.

(50)

Put

Λ
𝑖
= 𝐽
𝑅
𝑖
,𝜇
𝑖

(𝐼 − 𝜇
𝑖
𝐵
𝑖
) 𝐽
𝑅
𝑖−1
,𝜇
𝑖−1

× (𝐼 − 𝜇
𝑖−1
𝐵
𝑖−1
) ⋅ ⋅ ⋅ 𝐽
𝑅
1
,𝜇
1

(𝐼 − 𝜇
1
𝐵
1
)

(51)
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for all 𝑖 ∈ {1, 2, . . . , 𝑁}, and Λ0 = 𝐼, where 𝐼 is the identity
mapping on𝐻. Then we have that 𝑧

𝑛
= Λ
𝑁
𝑢
𝑛
.

We divide the rest of the proof into several steps.

Step 1. We show that {𝑥
𝑛
} is bounded. Indeed, take 𝑝 ∈ Ω

arbitrarily. Since 𝑝 = 𝑆(Θ,𝜑)
𝑟
𝑛

(𝑝 − 𝑟
𝑛
𝐴𝑝), 𝐴 is 𝜁-inverse strongly

monotone and 0 ≤ 𝑟
𝑛
≤ 2𝜁, we have, for any 𝑛 ≥ 1,

𝑢𝑛 − 𝑝


2
=

𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
− 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴)𝑝



2

≤
(𝐼 − 𝑟𝑛𝐴) 𝑥𝑛 − (𝐼 − 𝑟𝑛𝐴)𝑝



2

=
(𝑥𝑛 − 𝑝) − 𝑟𝑛 (𝐴𝑥𝑛 − 𝐴𝑝)



2

=
𝑥𝑛 − 𝑝



2
− 2𝑟
𝑛
⟨𝑥
𝑛
− 𝑝, 𝐴𝑥

𝑛
− 𝐴𝑝⟩

+ 𝑟
2

𝑛

𝐴𝑥𝑛 − 𝐴𝑝


2

≤
𝑥𝑛 − 𝑝



2
− 2𝑟
𝑛
𝜁
𝐴𝑥𝑛 − 𝐴𝑝



2
+ 𝑟
2

𝑛

𝐴𝑥𝑛 − 𝐴𝑝


2

=
𝑥𝑛 − 𝑝



2
+ 𝑟
𝑛
(𝑟
𝑛
− 2𝜁)

𝐴𝑥𝑛 − 𝐴𝑝


2

≤
𝑥𝑛 − 𝑝



2
.

(52)

Since 𝑝 = 𝐽
𝑅
𝑖
,𝜇
𝑖

(𝐼 − 𝜇𝑖𝐵𝑖)𝑝, Λ
𝑖
𝑝 = 𝑝 and 𝐵𝑖 is 𝜂𝑖-inverse

strongly monotone, where 𝜇𝑖 ∈ (0, 2𝜂𝑖), 𝑖 ∈ {1, 2, . . . , 𝑁}, by
Lemma 16 we deduce that for each 𝑛 ≥ 1

𝑧𝑛 − 𝑝


2

=

𝐽
𝑅
𝑁
,𝜇
𝑁

(𝐼 − 𝜇
𝑁
𝐵
𝑁
) Λ
𝑁−1

𝑢
𝑛

−𝐽
𝑅
𝑁
,𝜇
𝑁

(𝐼 − 𝜇
𝑁
𝐵
𝑁
) Λ
𝑁−1

𝑝


2

≤

(𝐼 − 𝜇

𝑁
𝐵
𝑁
) Λ
𝑁−1

𝑢
𝑛
− (𝐼 − 𝜇

𝑁
𝐵
𝑁
) Λ
𝑁−1

𝑝


2

=

(Λ
𝑁−1

𝑢𝑛 − Λ
𝑁−1

𝑝) − 𝜇𝑁 (𝐵𝑁Λ
𝑁−1

𝑢𝑛 − 𝐵𝑁Λ
𝑁−1

𝑝)


2

≤

Λ
𝑁−1

𝑢
𝑛
− Λ
𝑁−1

𝑝


2

+ 𝜇
𝑁
(𝜇
𝑁
− 2𝜂
𝑁
)

𝐵
𝑁
Λ
𝑁−1

𝑢
𝑛
− 𝐵
𝑁
Λ
𝑁−1

𝑝


2

≤

Λ
𝑁−1

𝑢
𝑛
− Λ
𝑁−1

𝑝


2

⋅ ⋅ ⋅

≤

Λ
0
𝑢
𝑛
− Λ
0
𝑝


2

=
𝑢𝑛 − 𝑝



2
.

(53)

Combining (52) and (53), we have

𝑧𝑛 − 𝑝
 ≤

𝑥𝑛 − 𝑝
 . (54)

Since 𝑝 = 𝐺𝑝 = 𝑇
Θ
1

]
1

(𝐼 − ]
1
𝐴
1
)𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)𝑝, 𝐴

𝑘
is 𝜁
𝑘
-

inverse-strongly monotone for 𝑘 = 1, 2, and 0 ≤ ]
𝑘
≤ 2𝜁
𝑘
for

𝑘 = 1, 2, we deduce that, for any 𝑛 ≥ 1,

𝐺𝑧𝑛 − 𝑝


2

=

𝑇
Θ
1

]
1

(𝐼 − ]
1
𝐴
1
) 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑧
𝑛

−𝑇
Θ
1

]
1

(𝐼 − ]
1
𝐴
1
) 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑝


2

≤

(𝐼 − ]

1
𝐴
1
) 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑧
𝑛

−(𝐼 − ]
1
𝐴
1
)𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)𝑝


2

=

[𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑧
𝑛
− 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑝]

−]
1[𝐴1𝑇

Θ
2

]
2

(𝐼 − ]2𝐴2)𝑧𝑛 − 𝐴1𝑇
Θ
2

]
2

(𝐼 − ]2𝐴2)𝑝]


2

≤

𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)𝑧
𝑛
− 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)𝑝


2

+ ]
1
(]
1
− 2𝜁
1
)

×

𝐴
1
𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)𝑧
𝑛
− 𝐴
1
𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)𝑝


2

≤

𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)𝑧
𝑛
− 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)𝑝


2

≤
(𝐼 − ]

2
𝐴
2
)𝑧
𝑛
− (𝐼 − ]

2
𝐴
2
)𝑝


2

=
(𝑧𝑛 − 𝑝) − ]

2
(𝐴
2
𝑧
𝑛
− 𝐴
2
𝑝)


2

≤
𝑧𝑛 − 𝑝



2
+ ]
2
(]
2
− 2𝜁
2
)
𝐴2𝑧𝑛 − 𝐴2𝑝



2
≤
𝑧𝑛 − 𝑝



2
.

(55)

(This shows that 𝐺 is nonexpansive.) Thus, from (54), we get

𝑦𝑛 − 𝑝
 =

𝛿𝑛 (𝐺𝑧𝑛 − 𝑝) + (1 − 𝛿
𝑛
) (𝑊
𝑛
𝑧
𝑛
− 𝑝)



≤ 𝛿
𝑛

𝐺𝑧𝑛 − 𝑝
 + (1 − 𝛿𝑛)

𝑊𝑛𝑧𝑛 − 𝑝


≤ 𝛿
𝑛

𝑧𝑛 − 𝑝
 + (1 − 𝛿𝑛)

𝑧𝑛 − 𝑝


=
𝑧𝑛 − 𝑝

 ≤
𝑥𝑛 − 𝑝

 .

(56)

Set 𝑉 = 𝐼 + 𝜇𝑉. Then from (47) we have

𝑥𝑛+1 − 𝑝


=
𝛼𝑛 (𝑢 + 𝛾𝑓 (𝑥𝑛)) + 𝛽𝑛𝑥𝑛

+ ((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
(𝐼 + 𝜇𝑉))𝑊

𝑛
𝑦
𝑛
− 𝑝



=

𝛼
𝑛
𝑢 + 𝛼
𝑛
(𝛾𝑓 (𝑥

𝑛
) − 𝑉𝑝) + 𝛽

𝑛
(𝑥
𝑛
− 𝑝)

+ ((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
𝑉) (𝑊

𝑛
𝑦
𝑛
− 𝑝)
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≤

(1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝑉


𝑊𝑛𝑦𝑛 − 𝑝


+ 𝛽
𝑛

𝑥𝑛 − 𝑝
 + 𝛼𝑛 ‖𝑢‖ + 𝛼𝑛


𝛾𝑓 (𝑥
𝑛
) − 𝑉𝑝



≤ (1 − 𝛽
𝑛
− 𝛼
𝑛
− 𝛼
𝑛
𝜇𝛾)

𝑦𝑛 − 𝑝


+ 𝛽
𝑛

𝑥𝑛 − 𝑝
 + 𝛼𝑛 ‖𝑢‖ + 𝛼𝑛


𝛾𝑓 (𝑥
𝑛) − 𝑉𝑝



≤ (1 − 𝛼
𝑛
− 𝛼
𝑛
𝜇𝛾)

𝑥𝑛 − 𝑝
 + 𝛼𝑛 ‖𝑢‖

+ 𝛼
𝑛
(𝛾
𝑓 (𝑥𝑛) − 𝑓 (𝑝)

 +

𝛾𝑓 (𝑝) − 𝑉𝑝


)

≤ (1 − 𝛼
𝑛
− 𝛼
𝑛
𝜇𝛾)

𝑥𝑛 − 𝑝
 + 𝛼𝑛 ‖𝑢‖

+ 𝛼
𝑛
(𝛾𝑙

𝑥𝑛 − 𝑝
 +


𝛾𝑓 (𝑝) − 𝑉𝑝


)

≤ [1 − ((1 + 𝜇) 𝛾 − 𝛾𝑙) 𝛼
𝑛
]
𝑥𝑛 − 𝑝



+ 𝛼
𝑛
(

𝛾𝑓 (𝑝) − 𝑉𝑝


+ ‖𝑢‖)

= [1 − ((1 + 𝜇) 𝛾 − 𝛾𝑙) 𝛼
𝑛
]
𝑥𝑛 − 𝑝

 + ((1 + 𝜇) 𝛾 − 𝛾𝑙) 𝛼𝑛

×


𝛾𝑓 (𝑝) − 𝑉𝑝


+ ‖𝑢‖

(1 + 𝜇) 𝛾 − 𝛾𝑙

≤ max{𝑥𝑛 − 𝑝
 ,


𝛾𝑓 (𝑝) − 𝑉𝑝


+ ‖𝑢‖

(1 + 𝜇) 𝛾 − 𝛾𝑙
} .

(57)

By induction, we get

𝑥𝑛 − 𝑝
 ≤ max{𝑥0 − 𝑝

 ,


𝛾𝑓 (𝑝) − 𝑉𝑝


+ ‖𝑢‖

(1 + 𝜇) 𝛾 − 𝛾𝑙
} . (58)

Therefore, {𝑥
𝑛
} is bounded and so are the sequences

{𝑢
𝑛
}, {𝑧
𝑛
}, {𝑦
𝑛
}, {𝑓(𝑥

𝑛
)} and {𝑊

𝑛
𝑦
𝑛
}.

Step 2.We show that ‖𝑥
𝑛+1

− 𝑥
𝑛
‖ → 0 as 𝑛 → ∞.

Indeed, define

𝑥
𝑛+1

= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽𝑛) 𝑤𝑛, ∀𝑛 ≥ 1. (59)

Then from the definition of 𝑤
𝑛
, we obtain

𝑤
𝑛+1

− 𝑤
𝑛

=
𝑥
𝑛+2

− 𝛽
𝑛+1

𝑥
𝑛+1

1 − 𝛽
𝑛+1

−
𝑥
𝑛+1

− 𝛽
𝑛
𝑥
𝑛

1 − 𝛽
𝑛

=

𝛼
𝑛+1

(𝑢 + 𝛾𝑓 (𝑥
𝑛+1

)) + ((1 − 𝛽
𝑛+1

) 𝐼 − 𝛼
𝑛+1

𝑉)𝑊
𝑛+1

𝑦
𝑛+1

1 − 𝛽
𝑛+1

−

𝛼
𝑛
(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) + ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝑉)𝑊
𝑛
𝑦
𝑛

1 − 𝛽
𝑛

=
𝛼
𝑛+1

1 − 𝛽𝑛+1

(𝑢 + 𝛾𝑓 (𝑥
𝑛+1

))

−
𝛼𝑛

1 − 𝛽
𝑛

(𝑢 + 𝛾𝑓 (𝑥
𝑛
)) + 𝑊

𝑛+1
𝑦
𝑛+1

−𝑊
𝑛
𝑦
𝑛

+
𝛼
𝑛

1 − 𝛽
𝑛

𝑉𝑊𝑛𝑦𝑛 −
𝛼
𝑛+1

1 − 𝛽
𝑛+1

𝑉𝑊𝑛+1𝑦𝑛+1

=
𝛼
𝑛+1

1 − 𝛽𝑛+1

[𝑢 + 𝛾𝑓 (𝑥
𝑛+1

) − 𝑉𝑊
𝑛+1

𝑦
𝑛+1

]

+
𝛼
𝑛

1 − 𝛽𝑛

[𝑉𝑊
𝑛
𝑦
𝑛
− 𝑢 − 𝛾𝑓 (𝑥

𝑛
)]

+ 𝑊𝑛+1𝑦𝑛+1 −𝑊𝑛+1𝑦𝑛 +𝑊𝑛+1𝑦𝑛 −𝑊𝑛𝑦𝑛.

(60)

It follows that

𝑤𝑛+1 − 𝑤𝑛
 −

𝑥𝑛+1 − 𝑥𝑛


≤
𝛼
𝑛+1

1 − 𝛽𝑛+1

(‖𝑢‖ +
𝛾𝑓 (𝑥𝑛+1)

 +

𝑉𝑊
𝑛+1

𝑦
𝑛+1


)

+
𝛼
𝑛

1 − 𝛽𝑛

(

𝑉𝑊
𝑛
𝑦
𝑛


+ ‖𝑢‖ +

𝛾𝑓 (𝑥𝑛)
)

+
𝑊𝑛+1𝑦𝑛+1 −𝑊𝑛+1𝑦𝑛

 +
𝑊𝑛+1𝑦𝑛 −𝑊𝑛𝑦𝑛



−
𝑥𝑛+1 − 𝑥𝑛



≤
𝛼
𝑛+1

1 − 𝛽
𝑛+1

(‖𝑢‖ +
𝛾𝑓 (𝑥𝑛+1)

 +

𝑉𝑊
𝑛+1

𝑦
𝑛+1


)

+
𝛼
𝑛

1 − 𝛽
𝑛

(

𝑉𝑊
𝑛
𝑦
𝑛


+ ‖𝑢‖ +

𝛾𝑓 (𝑥𝑛)
)

+
𝑊𝑛+1𝑦𝑛 −𝑊𝑛𝑦𝑛

 +
𝑦𝑛+1 − 𝑦𝑛

 −
𝑥𝑛+1 − 𝑥𝑛

 .

(61)

From (9), since𝑊
𝑛
, 𝑇
𝑛
and𝑈

𝑛,𝑖
are all nonexpansive, we have

𝑊𝑛+1𝑧𝑛 −𝑊𝑛𝑧𝑛
 =

𝜆1𝑇1𝑈𝑛+1,2𝑧𝑛 − 𝜆1𝑇1𝑈𝑛,2𝑧𝑛


≤ 𝜆
1

𝑈𝑛+1,2𝑧𝑛 − 𝑈𝑛,2𝑧𝑛


= 𝜆
1

𝜆2𝑇2𝑈𝑛+1,3𝑧𝑛 − 𝜆2𝑇2𝑈𝑛,3𝑧𝑛


≤ 𝜆
1𝜆2

𝑈𝑛+1,3𝑧𝑛 − 𝑈𝑛,3𝑧𝑛


⋅ ⋅ ⋅

≤ 𝜆
1𝜆2 ⋅ ⋅ ⋅ 𝜆𝑛

𝑈𝑛+1,𝑛+1𝑧𝑛 − 𝑈𝑛,𝑛+1𝑧𝑛


≤ 𝑀

𝑛

∏

𝑖=1

𝜆
𝑖
,

(62)
𝑊𝑛+1𝑦𝑛 −𝑊𝑛𝑦𝑛

 =
𝜆1𝑇1𝑈𝑛+1,2𝑦𝑛 − 𝜆1𝑇1𝑈𝑛,2𝑦𝑛



≤ 𝜆
1

𝑈𝑛+1,2𝑦𝑛 − 𝑈𝑛,2𝑦𝑛


= 𝜆
1

𝜆2𝑇2𝑈𝑛+1,3𝑦𝑛 − 𝜆2𝑇2𝑈𝑛,3𝑦𝑛


≤ 𝜆
1
𝜆
2

𝑈𝑛+1,3𝑦𝑛 − 𝑈𝑛,3𝑦𝑛
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⋅ ⋅ ⋅

≤ 𝜆
1
𝜆
2
⋅ ⋅ ⋅ 𝜆
𝑛

𝑈𝑛+1,𝑛+1𝑦𝑛 − 𝑈𝑛,𝑛+1𝑦𝑛


≤ 𝑀

𝑛

∏

𝑖=1

𝜆
𝑖
,

(62)


where𝑀 is a constant such that

sup
𝑛≥1

{
𝑈𝑛+1,𝑛+1𝑧𝑛

 +
𝑈𝑛,𝑛+1𝑧𝑛

} ≤ 𝑀,

sup
𝑛≥1

{
𝑈𝑛+1,𝑛+1𝑦𝑛

 +
𝑈𝑛,𝑛+1𝑦𝑛

} ≤ 𝑀.

(63)

On the other hand, we estimate ‖𝑦
𝑛+1

− 𝑦
𝑛
‖. Taking into

account that 0 < lim inf
𝑛→∞

𝛽
𝑛

≤ lim sup
𝑛→∞

𝛽
𝑛

<

1, 0 < lim inf
𝑛→∞

𝛿
𝑛

≤ lim sup
𝑛→∞

𝛿
𝑛

< 1 and 0 <

lim inf
𝑛→∞

𝑟
𝑛

≤ lim sup
𝑛→∞

𝑟
𝑛

< 2𝜁, we may assume,
without loss of generality, that {𝑟

𝑛
} ⊂ [𝑐, 𝑑] ⊂ (0, 2𝜁) and

{𝛽
𝑛
}, {𝛿
𝑛
} ⊂ [𝑐, 𝑑] ⊂ (0, 1). Utilizing Remark 5 and Lemma 16,

we have

𝑧𝑛+1 − 𝑧𝑛


2

=

𝐽
𝑅
𝑁
,𝜇
𝑁

(𝐼 − 𝜇
𝑁
𝐵
𝑁
) Λ
𝑁−1

𝑢
𝑛+1

−𝐽
𝑅
𝑁
,𝜇
𝑁

(𝐼 − 𝜇
𝑁
𝐵
𝑁
) Λ
𝑁−1

𝑢
𝑛



2

≤

(𝐼 − 𝜇

𝑁
𝐵
𝑁
)Λ
𝑁−1

𝑢
𝑛+1

− (𝐼 − 𝜇
𝑁
𝐵
𝑁
)Λ
𝑁−1

𝑢
𝑛



2

=

(Λ
𝑁−1

𝑢
𝑛+1

− Λ
𝑁−1

𝑢
𝑛
)

−𝜇
𝑁
(𝐵
𝑁
Λ
𝑁−1

𝑢
𝑛+1

− 𝐵
𝑁
Λ
𝑁−1

𝑢
𝑛
)


2

≤

Λ
𝑁−1

𝑢
𝑛+1

− Λ
𝑁−1

𝑢
𝑛



2

+ 𝜇
𝑁
(𝜇
𝑁
− 2𝜂
𝑁
)

𝐵
𝑁
Λ
𝑁−1

𝑢
𝑛+1

− 𝐵
𝑁
Λ
𝑁−1

𝑢
𝑛



2

≤

Λ
𝑁−1

𝑢
𝑛+1

− Λ
𝑁−1

𝑢
𝑛



2

⋅ ⋅ ⋅

≤

Λ
0
𝑢
𝑛+1

− Λ
0
𝑢
𝑛



2

=
𝑢𝑛+1 − 𝑢𝑛



2
,

(64)

(𝐼 − 𝑟𝑛+1𝐴) 𝑥𝑛+1 − (𝐼 − 𝑟𝑛𝐴) 𝑥𝑛


=
𝑥𝑛+1 − 𝑥𝑛 − 𝑟𝑛+1 (𝐴𝑥𝑛+1 − 𝐴𝑥𝑛) + (𝑟𝑛 − 𝑟𝑛+1) 𝐴𝑥𝑛



≤
𝑥𝑛+1 − 𝑥𝑛 − 𝑟𝑛+1 (𝐴𝑥𝑛+1 − 𝐴𝑥𝑛)

 +
𝑟𝑛+1 − 𝑟𝑛



𝐴𝑥𝑛


≤
𝑥𝑛+1 − 𝑥𝑛

 +
𝑟𝑛+1 − 𝑟𝑛



𝐴𝑥𝑛
 ,

(65)

𝑢𝑛+1 − 𝑢𝑛


=

𝑆
(Θ,𝜑)

𝑟
𝑛+1

(𝐼 − 𝑟
𝑛+1

𝐴) 𝑥
𝑛+1

− 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛



=

𝑆
(Θ,𝜑)

𝑟
𝑛+1

(𝐼 − 𝑟𝑛+1𝐴) 𝑥𝑛+1 − 𝑆
(Θ,𝜑)

𝑟
𝑛+1

(𝐼 − 𝑟𝑛𝐴) 𝑥𝑛

+ 𝑆
(Θ,𝜑)

𝑟
𝑛+1

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
− 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛



≤

𝑆
(Θ,𝜑)

𝑟
𝑛+1

(𝐼 − 𝑟
𝑛+1

𝐴) 𝑥
𝑛+1

− 𝑆
(Θ,𝜑)

𝑟
𝑛+1

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛



+

𝑆
(Θ,𝜑)

𝑟
𝑛+1

(𝐼 − 𝑟𝑛𝐴) 𝑥𝑛 − 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟𝑛𝐴) 𝑥𝑛



≤
(𝐼 − 𝑟𝑛+1𝐴) 𝑥𝑛+1 − (𝐼 − 𝑟𝑛𝐴) 𝑥𝑛



+

𝑆
(Θ,𝜑)

𝑟
𝑛+1

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
− 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛



≤
𝑥𝑛+1 − 𝑥𝑛

 +
𝑟𝑛+1 − 𝑟𝑛



𝐴𝑥𝑛


+

𝑆
(Θ,𝜑)

𝑟
𝑛+1

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
− 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛



≤
𝑥𝑛+1 − 𝑥𝑛

 +
𝑟𝑛+1 − 𝑟𝑛



𝐴𝑥𝑛
 +

𝑟𝑛+1 − 𝑟𝑛


𝑟
𝑛+1

⋅
]
𝜎


𝑆
(Θ,𝜑)

𝑟
𝑛+1

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
− (𝐼 − 𝑟

𝑛
𝐴) 𝑥
𝑛



≤
𝑥𝑛+1 − 𝑥𝑛

 +
𝑟𝑛+1 − 𝑟𝑛



× (
𝐴𝑥𝑛

 +
]
𝑐𝜎


𝑆
(Θ,𝜑)

𝑟
𝑛+1

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
− (𝐼 − 𝑟

𝑛
𝐴) 𝑥
𝑛


)

≤
𝑥𝑛+1 − 𝑥𝑛

 +
𝑟𝑛+1 − 𝑟𝑛

𝑀1,

(66)

where sup
𝑛≥1

{‖𝐴𝑥
𝑛
‖ + (]/𝑐𝜎)‖𝑆(Θ,𝜑)

𝑟
𝑛+1

(𝐼 − 𝑟
𝑛
𝐴)𝑥
𝑛
− (𝐼 −

𝑟𝑛𝐴)𝑥𝑛‖} ≤ 𝑀1 for some𝑀1 > 0.
Note that

𝑦
𝑛+1 − 𝑦𝑛

= 𝛿
𝑛
(𝐺𝑧
𝑛+1

− 𝐺𝑧
𝑛
) + (𝛿

𝑛+1
− 𝛿
𝑛
) (𝐺𝑧
𝑛+1

−𝑊
𝑛+1

𝑧
𝑛+1

)

+ (1 − 𝛿𝑛) (𝑊𝑛+1𝑧𝑛+1 −𝑊𝑛𝑧𝑛) .

(67)

Since 𝐺 is nonexpansive, from (62), (64) and (66) it follows
that

𝑦𝑛+1 − 𝑦𝑛


≤ 𝛿
𝑛

𝐺𝑧𝑛+1 − 𝐺𝑧𝑛
 +

𝛿𝑛+1 − 𝛿𝑛


𝐺𝑧𝑛+1 −𝑊𝑛+1𝑧𝑛+1


+ (1 − 𝛿
𝑛
)
𝑊𝑛+1𝑧𝑛+1 −𝑊𝑛𝑧𝑛



≤ 𝛿
𝑛

𝑧𝑛+1 − 𝑧𝑛
 +

𝛿𝑛+1 − 𝛿𝑛


𝐺𝑧𝑛+1 −𝑊𝑛+1𝑧𝑛+1


+ (1 − 𝛿
𝑛
) (
𝑊𝑛+1𝑧𝑛+1 −𝑊𝑛+1𝑧𝑛
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+
𝑊𝑛+1𝑧𝑛 −𝑊𝑛𝑧𝑛

)

≤ 𝛿
𝑛

𝑧𝑛+1 − 𝑧𝑛
 +

𝛿𝑛+1 − 𝛿𝑛


𝐺𝑧𝑛+1 −𝑊𝑛+1𝑧𝑛+1


+ (1 − 𝛿
𝑛
)(

𝑧𝑛+1 − 𝑧𝑛
 + 𝑀

𝑛

∏

𝑖=1

𝜆
𝑖
)

≤
𝑧𝑛+1 − 𝑧𝑛

 +
𝛿𝑛+1 − 𝛿𝑛



𝐺𝑧𝑛+1 −𝑊𝑛+1𝑧𝑛+1


+ 𝑀

𝑛

∏

𝑖=1

𝜆
𝑖

≤
𝑢𝑛+1 − 𝑢𝑛

 +
𝛿𝑛+1 − 𝛿𝑛



𝐺𝑧𝑛+1 −𝑊𝑛+1𝑧𝑛+1


+ 𝑀

𝑛

∏

𝑖=1

𝜆𝑖

≤
𝑥𝑛+1 − 𝑥𝑛

 +
𝑟𝑛+1 − 𝑟𝑛

𝑀1

+
𝛿𝑛+1 − 𝛿𝑛



𝐺𝑧𝑛+1 −𝑊𝑛+1𝑧𝑛+1
 +𝑀

𝑛

∏

𝑖=1

𝜆
𝑖
.

(68)

Utilizing (61), (62) and (68), we have

𝑤𝑛+1 − 𝑤𝑛
 −

𝑥𝑛+1 − 𝑥𝑛


≤
𝛼
𝑛+1

1 − 𝛽
𝑛+1

(‖𝑢‖ +
𝛾𝑓 (𝑥𝑛+1)

 +

𝑉𝑊
𝑛+1

𝑦
𝑛+1


)

+
𝛼
𝑛

1 − 𝛽
𝑛

(

𝑉𝑊
𝑛
𝑦
𝑛


+ ‖𝑢‖ +

𝛾𝑓 (𝑥𝑛)
)

+
𝑊𝑛+1𝑦𝑛 −𝑊𝑛𝑦𝑛

 +
𝑦𝑛+1 − 𝑦𝑛

 −
𝑥𝑛+1 − 𝑥𝑛



≤
𝛼
𝑛+1

1 − 𝛽𝑛+1

(‖𝑢‖ +
𝛾𝑓 (𝑥𝑛+1)

 +

𝑉𝑊
𝑛+1

𝑦
𝑛+1


)

+
𝛼
𝑛

1 − 𝛽𝑛

(

𝑉𝑊
𝑛
𝑦
𝑛


+ ‖𝑢‖ +

𝛾𝑓 (𝑥𝑛)
)

+𝑀

𝑛

∏

𝑖=1

𝜆
𝑖
+
𝑥𝑛+1 − 𝑥𝑛

 +
𝑟𝑛+1 − 𝑟𝑛

𝑀1

+
𝛿𝑛+1 − 𝛿𝑛



𝐺𝑧𝑛+1 −𝑊𝑛+1𝑧𝑛+1


+𝑀

𝑛

∏

𝑖=1

𝜆𝑖 −
𝑥𝑛+1 − 𝑥𝑛



≤
𝛼
𝑛+1

1 − 𝑑

(‖𝑢‖ +
𝛾𝑓 (𝑥𝑛+1)

 +

𝑉𝑊𝑛+1𝑦𝑛+1


)

+
𝛼
𝑛

1 − 𝑑

(

𝑉𝑊
𝑛
𝑦
𝑛


+ ‖𝑢‖ +

𝛾𝑓 (𝑥𝑛)
)

+ 2𝑀

𝑛

∏

𝑖=1

𝜆
𝑖
+
𝑟𝑛+1 − 𝑟𝑛

𝑀1

+
𝛿𝑛+1 − 𝛿𝑛



𝐺𝑧𝑛+1 −𝑊𝑛+1𝑧𝑛+1


≤ 𝑀2(𝛼𝑛+1 + 𝛼𝑛 +

𝑛

∏

𝑖=1

𝜆𝑖

+
𝑟𝑛+1 − 𝑟𝑛

 +
𝛿𝑛+1 − 𝛿𝑛

 )

≤ 𝑀
2
(𝛼
𝑛+1

+ 𝛼
𝑛
+ 𝑏
𝑛
+
𝑟𝑛+1 − 𝑟𝑛

 +
𝛿𝑛+1 − 𝛿𝑛

) ,

(69)

where sup
𝑛≥1

{(1/(1−𝑑))(‖𝑢‖+‖𝛾𝑓(𝑥
𝑛
)‖+‖𝑉𝑊

𝑛
𝑦
𝑛
‖)+‖𝐺𝑧

𝑛
−

𝑊
𝑛
𝑧
𝑛
‖ + 𝑀

1
+ 2𝑀} ≤ 𝑀

2
for some 𝑀

2
> 0. Since 𝑏 ∈

(0, 1), lim
𝑛→∞

𝛼
𝑛
= 0 and lim

𝑛→∞
(|𝛿
𝑛+1

−𝛿
𝑛
|+|𝑟
𝑛+1

−𝑟
𝑛
|) = 0,

we deduce from (69) that

lim sup
𝑛→∞

(
𝑤𝑛+1 − 𝑤𝑛

 −
𝑥𝑛+1 − 𝑥𝑛

) = 0. (70)

Since 𝑥
𝑛+1

= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
)𝑤
𝑛
for all 𝑛 ≥ 1, by Lemma 14 we

obtain from 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1 that

lim
𝑛→∞

𝑤𝑛 − 𝑥𝑛
 = 0, (71)

which immediately yields

lim
𝑛→∞

𝑥𝑛+1 − 𝑥𝑛
 = lim
𝑛→∞

(1 − 𝛽𝑛)
𝑤𝑛 − 𝑥𝑛

 = 0. (72)

Step 3. ‖𝑦
𝑛
− 𝐺𝑧
𝑛
‖ → 0 as 𝑛 → ∞.

Indeed, utilizing Lemmas 6 and 7(b) we obtain from (47)
and (54) that

𝑥𝑛+1 − 𝑝


2

=

𝛼
𝑛
((𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛
)

+𝛽
𝑛 (𝑥𝑛 − 𝑝) + (1 − 𝛽𝑛) (𝑊𝑛𝑦𝑛 − 𝑝)



2

≤
𝛽𝑛 (𝑥𝑛 − 𝑝) + (1 − 𝛽𝑛) (𝑊𝑛𝑦𝑛 − 𝑝)



2

+ 2𝛼
𝑛
⟨(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛
, 𝑥
𝑛+1

− 𝑝⟩

= 𝛽𝑛
𝑥𝑛 − 𝑝



2
+ (1 − 𝛽𝑛)

𝑊𝑛𝑦𝑛 − 𝑝


2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑥𝑛 −𝑊𝑛𝑦𝑛



2

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝


≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽

𝑛
)
𝑦𝑛 − 𝑝



2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑥𝑛 −𝑊𝑛𝑦𝑛



2

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝


≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽

𝑛
)
𝑥𝑛 − 𝑝



2

− 𝛽𝑛 (1 − 𝛽𝑛)
𝑥𝑛 −𝑊𝑛𝑦𝑛



2

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝


=
𝑥𝑛 − 𝑝



2
− 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑥𝑛 −𝑊𝑛𝑦𝑛



2

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝
 ,

(73)
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which leads to

𝑐 (1 − 𝑑)
𝑥𝑛 −𝑊𝑛𝑦𝑛



2

≤ 𝛽𝑛 (1 − 𝛽𝑛)
𝑥𝑛 −𝑊𝑛𝑦𝑛



2

≤
𝑥𝑛 − 𝑝



2
−
𝑥𝑛+1 − 𝑝



2

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝


≤
𝑥𝑛 − 𝑥𝑛+1

 (
𝑥𝑛 − 𝑝

 +
𝑥𝑛+1 − 𝑝

)

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝
 .

(74)

Since lim
𝑛→∞

‖𝑥
𝑛
−𝑥
𝑛+1

‖ = 0 and lim
𝑛→∞

𝛼
𝑛
= 0, we deduce

from the boundedness of {𝑥
𝑛
}, {𝑦
𝑛
}, {𝑓(𝑥

𝑛
)} and {𝑊

𝑛
𝑦
𝑛
} that

lim
𝑛→∞

𝑥𝑛 −𝑊𝑛𝑦𝑛
 = 0. (75)

Also, by Lemma 7(b) we deduce from (47) and (54) that

𝑦𝑛 − 𝑝


2
= 𝛿
𝑛

𝐺𝑧𝑛 − 𝑝


2
+ (1 − 𝛿

𝑛
)
𝑊𝑛𝑧𝑛 − 𝑝



2

− 𝛿
𝑛
(1 − 𝛿

𝑛
)
𝐺𝑧𝑛 −𝑊𝑛𝑧𝑛



2

≤ 𝛿
𝑛

𝑧𝑛 − 𝑝


2
+ (1 − 𝛿

𝑛
)
𝑧𝑛 − 𝑝



2

− 𝛿𝑛 (1 − 𝛿𝑛)
𝐺𝑧𝑛 −𝑊𝑛𝑧𝑛



2

=
𝑧𝑛 − 𝑝



2
− 𝛿
𝑛
(1 − 𝛿

𝑛
)
𝐺𝑧𝑛 −𝑊𝑛𝑧𝑛



2

≤
𝑥𝑛 − 𝑝



2
− 𝛿𝑛 (1 − 𝛿𝑛)

𝐺𝑧𝑛 −𝑊𝑛𝑧𝑛


2
.

(76)

From (73) and (76) we get

𝑥𝑛+1 − 𝑝


2

≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽

𝑛
)
𝑦𝑛 − 𝑝



2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑥𝑛 −𝑊𝑛𝑦𝑛



2

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝


≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽

𝑛
)
𝑦𝑛 − 𝑝



2

+ 2𝛼𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛)) − 𝑉𝑊𝑛𝑦𝑛



𝑥𝑛+1 − 𝑝


≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽𝑛)

× [
𝑥𝑛 − 𝑝



2
− 𝛿
𝑛
(1 − 𝛿

𝑛
)
𝐺𝑧𝑛 −𝑊𝑛𝑧𝑛



2
]

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝


=
𝑥𝑛 − 𝑝



2
− (1 − 𝛽

𝑛
) 𝛿
𝑛
(1 − 𝛿

𝑛
)
𝐺𝑧𝑛 −𝑊𝑛𝑧𝑛



2

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝
 ,

(77)

which immediately implies that

𝑐(1 − 𝑑)
2𝐺𝑧𝑛 −𝑊𝑛𝑧𝑛



2

≤ (1 − 𝛽𝑛) 𝛿𝑛 (1 − 𝛿𝑛)
𝐺𝑧𝑛 −𝑊𝑛𝑧𝑛



2

≤
𝑥𝑛 − 𝑝



2
−
𝑥𝑛+1 − 𝑝



2

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝


≤
𝑥𝑛 − 𝑥𝑛+1

 (
𝑥𝑛 − 𝑝

 +
𝑥𝑛+1 − 𝑝

)

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛)) − 𝑉𝑊𝑛𝑦𝑛



𝑥𝑛+1 − 𝑝
 .

(78)

Since lim
𝑛→∞

𝛼
𝑛
= 0 and lim

𝑛→∞
‖𝑥
𝑛+1

−𝑥
𝑛
‖ = 0, we deduce

from the boundedness of {𝑥
𝑛
}, {𝑦
𝑛
}, {𝑓(𝑥

𝑛
)} and {𝑊

𝑛
𝑦
𝑛
} that

lim
𝑛→∞

𝐺𝑧𝑛 −𝑊𝑛𝑧𝑛
 = 0. (79)

So, it follows that

lim
𝑛→∞

𝑦𝑛 − 𝐺𝑧𝑛
 = lim
𝑛→∞

(1 − 𝛿
𝑛
)
𝑊𝑛𝑧𝑛 − 𝐺𝑧𝑛

 = 0.

(80)

Step 4. ‖𝑥
𝑛
− 𝑢
𝑛
‖ → 0, ‖𝑢

𝑛
− 𝑧
𝑛
‖ → 0, ‖𝑧

𝑛
− 𝐺𝑧
𝑛
‖ → 0 and

‖𝑧𝑛 −𝑊𝑧𝑛‖ → 0 as 𝑛 → ∞.
Indeed, for 𝑝 ∈ Ω, we find that

𝑢𝑛 − 𝑝


2

=

𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
− 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴)𝑝



2

≤
(𝐼 − 𝑟𝑛𝐴)𝑥𝑛 − (𝐼 − 𝑟𝑛𝐴)𝑝



2

=
𝑥𝑛 − 𝑝 − 𝑟𝑛 (𝐴𝑥𝑛 − 𝐴𝑝)



2

≤
𝑥𝑛 − 𝑝



2
+ 𝑟
𝑛
(𝑟
𝑛
− 2𝜁)

𝐴𝑥𝑛 − 𝐴𝑝


2
.

(81)

From (47), (53) and (81), we obtain

𝑦𝑛 − 𝑝


2
≤ 𝛿
𝑛

𝐺𝑧𝑛 − 𝑝


2
+ (1 − 𝛿

𝑛
)
𝑊𝑛𝑧𝑛 − 𝑝



2

≤
𝑧𝑛 − 𝑝



2
≤
𝑢𝑛 − 𝑝



2

≤
𝑥𝑛 − 𝑝



2
+ 𝑟
𝑛
(𝑟
𝑛
− 2𝜁)

𝐴𝑥𝑛 − 𝐴𝑝


2
,

(82)
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which together with (73), implies that

𝑥𝑛+1 − 𝑝


2

≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽

𝑛
)
𝑦𝑛 − 𝑝



2

− 𝛽𝑛 (1 − 𝛽𝑛)
𝑥𝑛 −𝑊𝑛𝑦𝑛



2

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝


≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽

𝑛
)
𝑦𝑛 − 𝑝



2

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝


≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽

𝑛
)

× [
𝑥𝑛 − 𝑝



2
+ 𝑟𝑛 (𝑟𝑛 − 2𝜁)

𝐴𝑥𝑛 − 𝐴𝑝


2
]

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛)) − 𝑉𝑊𝑛𝑦𝑛



𝑥𝑛+1 − 𝑝


=
𝑥𝑛 − 𝑝



2
+ (1 − 𝛽𝑛) 𝑟𝑛 (𝑟𝑛 − 2𝜁)

𝐴𝑥𝑛 − 𝐴𝑝


2

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝
 .

(83)

So, it follows that

(1 − 𝑑) 𝑐 (2𝜁 − 𝑑)
𝐴𝑥𝑛 − 𝐴𝑝



2

≤ (1 − 𝛽𝑛) 𝑟𝑛 (2𝜁 − 𝑟𝑛)
𝐴𝑥𝑛 − 𝐴𝑝



2

≤
𝑥𝑛 − 𝑝



2
−
𝑥𝑛+1 − 𝑝



2

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝


≤
𝑥𝑛 − 𝑥𝑛+1

 (
𝑥𝑛 − 𝑝

 +
𝑥𝑛+1 − 𝑝

)

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛)) − 𝑉𝑊𝑛𝑦𝑛



𝑥𝑛+1 − 𝑝
 .

(84)

Since lim
𝑛→∞

𝛼
𝑛
= 0 and lim

𝑛→∞
‖𝑥
𝑛
− 𝑥
𝑛+1

‖ = 0, from the
boundedness of {𝑥𝑛}, {𝑦𝑛}, {𝑊𝑛𝑦𝑛} and {𝑓(𝑥𝑛)} we get

lim
𝑛→∞

𝐴𝑥𝑛 − 𝐴𝑝
 = 0. (85)

Furthermore, from the firm nonexpansivity of 𝑆(Θ,𝜑)
𝑟
𝑛

, we have

𝑢𝑛 − 𝑝


2

=

𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟𝑛𝐴) 𝑥𝑛 − 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟𝑛𝐴)𝑝


2

≤ ⟨(𝐼 − 𝑟𝑛𝐴) 𝑥𝑛 − (𝐼 − 𝑟𝑛𝐴)𝑝, 𝑢𝑛 − 𝑝⟩

=
1

2
[
(𝐼 − 𝑟𝑛𝐴) 𝑥𝑛 − (𝐼 − 𝑟𝑛𝐴)𝑝



2
+
𝑢𝑛 − 𝑝



2

−
(𝐼 − 𝑟𝑛𝐴) 𝑥𝑛 − (𝐼 − 𝑟𝑛𝐴)𝑝 − (𝑢𝑛 − 𝑝)



2
]

≤
1

2
[
𝑥𝑛 − 𝑝



2
+
𝑢𝑛 − 𝑝



2

−
𝑥𝑛 − 𝑢𝑛 − 𝑟𝑛 (𝐴𝑥𝑛 − 𝐴𝑝)



2
]

=
1

2
[
𝑥𝑛 − 𝑝



2
+
𝑢𝑛 − 𝑝



2
−
𝑥𝑛 − 𝑢𝑛



2

+ 2𝑟
𝑛
⟨𝐴𝑥
𝑛
− 𝐴𝑝, 𝑥

𝑛
− 𝑢
𝑛
⟩ − 𝑟
2

𝑛

𝐴𝑥𝑛 − 𝐴𝑝


2
] ,

(86)

which implies that

𝑢𝑛 − 𝑝


2
≤
𝑥𝑛 − 𝑝



2
−
𝑥𝑛 − 𝑢𝑛



2

+ 2𝑟
𝑛

𝐴𝑥𝑛 − 𝐴𝑝


𝑥𝑛 − 𝑢𝑛
 .

(87)

From (47) and (87), we have

𝑦𝑛 − 𝑝


2
≤ 𝛿
𝑛

𝐺𝑧𝑛 − 𝑝


2
+ (1 − 𝛿

𝑛
)
𝑊𝑛𝑧𝑛 − 𝑝



2

≤
𝑧𝑛 − 𝑝



2
≤
𝑢𝑛 − 𝑝



2

≤
𝑥𝑛 − 𝑝



2
−
𝑥𝑛 − 𝑢𝑛



2

+ 2𝑟
𝑛

𝐴𝑥𝑛 − 𝐴𝑝


𝑥𝑛 − 𝑢𝑛
 ,

(88)

which together with (73), implies that

𝑥𝑛+1 − 𝑝


2

≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽

𝑛
)
𝑦𝑛 − 𝑝



2

+ 2𝛼𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛)) − 𝑉𝑊𝑛𝑦𝑛



𝑥𝑛+1 − 𝑝


≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽𝑛)

× [
𝑥𝑛 − 𝑝



2
−
𝑥𝑛 − 𝑢𝑛



2
+ 2𝑟
𝑛

𝐴𝑥𝑛 − 𝐴𝑝


𝑥𝑛 − 𝑢𝑛
]

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝


≤
𝑥𝑛 − 𝑝



2
− (1 − 𝛽

𝑛
)
𝑥𝑛 − 𝑢𝑛



2

+ 2𝑟
𝑛

𝐴𝑥𝑛 − 𝐴𝑝


𝑥𝑛 − 𝑢𝑛


+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛)) − 𝑉𝑊𝑛𝑦𝑛



𝑥𝑛+1 − 𝑝
 .

(89)

So, it follows that

(1 − 𝑑)
𝑥𝑛 − 𝑢𝑛



2

≤ (1 − 𝛽
𝑛
)
𝑥𝑛 − 𝑢𝑛



2
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≤
𝑥𝑛 − 𝑝



2
−
𝑥𝑛+1 − 𝑝



2

+ 2𝑟𝑛
𝐴𝑥𝑛 − 𝐴𝑝



𝑥𝑛 − 𝑢𝑛


+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝


≤
𝑥𝑛 − 𝑥𝑛+1

 (
𝑥𝑛 − 𝑝

 +
𝑥𝑛+1 − 𝑝

)

+ 2𝑟
𝑛

𝐴𝑥𝑛 − 𝐴𝑝


𝑥𝑛 − 𝑢𝑛


+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛)) − 𝑉𝑊𝑛𝑦𝑛



𝑥𝑛+1 − 𝑝
 .

(90)

Since lim
𝑛→∞𝛼𝑛 = 0 and lim𝑛→∞‖𝑥𝑛 − 𝑥𝑛+1‖ = 0, from (85)

and the boundedness of {𝑥𝑛}, {𝑦𝑛}, {𝑊𝑛𝑦𝑛} and {𝑓(𝑥𝑛)}we get

lim
𝑛→∞

𝑥𝑛 − 𝑢𝑛
 = 0. (91)

Next we show that lim
𝑛→∞‖𝐴 𝑖Λ

𝑖
𝑢𝑛 − 𝐴 𝑖𝑝‖ = 0, 𝑖 =

1, 2, . . . , 𝑁. Observe that

Λ
𝑖
𝑢
𝑛
− 𝑝



2

=

𝐽
𝑅
𝑖
,𝜇
𝑖

(𝐼 − 𝜇
𝑖
𝐵
𝑖
) Λ
𝑖−1
𝑢
𝑛
− 𝐽
𝑅
𝑖
,𝜇
𝑖

(𝐼 − 𝜇
𝑖
𝐵
𝑖
) 𝑝


2

≤

(𝐼 − 𝜇

𝑖
𝐵
𝑖
) Λ
𝑖−1
𝑢
𝑛
− (𝐼 − 𝜇

𝑖
𝐵
𝑖
) 𝑝


2

≤

Λ
𝑖−1
𝑢𝑛 − 𝑝



2

+ 𝜇𝑖 (𝜇𝑖 − 2𝜂𝑖)

𝐵
𝑖Λ
𝑖−1
𝑢𝑛 − 𝐵𝑖𝑝



2

≤
𝑢𝑛 − 𝑝



2
+ 𝜇𝑖 (𝜇𝑖 − 2𝜂𝑖)


𝐵
𝑖Λ
𝑖−1
𝑢𝑛 − 𝐵𝑖𝑝



2

≤
𝑥𝑛 − 𝑝



2
+ 𝜇
𝑖
(𝜇
𝑖
− 2𝜂
𝑖
)

𝐵
𝑖
Λ
𝑖−1
𝑢
𝑛
− 𝐵
𝑖
𝑝


2

.

(92)

From (47) and (92), we have
𝑦𝑛 − 𝑝



2
≤ 𝛿
𝑛

𝐺𝑧𝑛 − 𝑝


2
+ (1 − 𝛿

𝑛
)
𝑊𝑛𝑧𝑛 − 𝑝



2

≤
𝑧𝑛 − 𝑝



2
≤

Λ
𝑖
𝑢
𝑛
− 𝑝



2

≤
𝑥𝑛 − 𝑝



2
+ 𝜇
𝑖
(𝜇
𝑖
− 2𝜂
𝑖
)

𝐵
𝑖
Λ
𝑖−1
𝑢
𝑛
− 𝐵
𝑖
𝑝


2

,

(93)

which together with (73), implies that
𝑥𝑛+1 − 𝑝



2

≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽

𝑛
)
𝑦𝑛 − 𝑝



2

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝


≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽

𝑛
)

× [
𝑥𝑛 − 𝑝



2
+ 𝜇𝑖 (𝜇𝑖 − 2𝜂𝑖)


𝐵
𝑖Λ
𝑖−1
𝑢𝑛 − 𝐵𝑖𝑝



2

]

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝


=
𝑥𝑛 − 𝑝



2
+ (1 − 𝛽𝑛) 𝜇𝑖 (𝜇𝑖 − 2𝜂𝑖)


𝐵
𝑖Λ
𝑖−1
𝑢𝑛 − 𝐵𝑖𝑝



2

+ 2𝛼𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛)) − 𝑉𝑊𝑛𝑦𝑛



𝑥𝑛+1 − 𝑝
 .

(94)

So, it follows that

(1 − 𝑑) 𝜇
𝑖
(2𝜂
𝑖
− 𝜇
𝑖
)

𝐵
𝑖
Λ
𝑖−1
𝑢
𝑛
− 𝐵
𝑖
𝑝


2

≤ (1 − 𝛽𝑛) 𝜇𝑖 (2𝜂𝑖 − 𝜇𝑖)

𝐵
𝑖Λ
𝑖−1
𝑢𝑛 − 𝐵𝑖𝑝



2

≤
𝑥𝑛 − 𝑝



2
−
𝑥𝑛+1 − 𝑝



2

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝


≤
𝑥𝑛 − 𝑥𝑛+1

 (
𝑥𝑛 − 𝑝

 +
𝑥𝑛+1 − 𝑝

)

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛)) − 𝑉𝑊𝑛𝑦𝑛



𝑥𝑛+1 − 𝑝
 .

(95)

Since 𝜇
𝑖 ∈ (0, 2𝜂𝑖), 𝑖 = 1, 2, . . . , 𝑁, lim𝑛→∞𝛼𝑛 = 0

and lim𝑛→∞‖𝑥𝑛 − 𝑥𝑛+1‖ = 0, from the boundedness of
{𝑥𝑛}, {𝑦𝑛}, {𝑊𝑛𝑦𝑛} and {𝑓(𝑥𝑛)} we get

lim
𝑛→∞


𝐵
𝑖
Λ
𝑖−1
𝑢
𝑛
− 𝐵
𝑖
𝑝

= 0, ∀𝑖 ∈ {1, 2, . . . , 𝑁} . (96)

By Lemmas 7 (a) and 16, we obtain


Λ
𝑖
𝑢
𝑛
− 𝑝



2

=

𝐽
𝑅
𝑖
,𝜇
𝑖

(𝐼 − 𝜇𝑖𝐵𝑖) Λ
𝑖−1
𝑢𝑛 − 𝐽𝑅

𝑖
,𝜇
𝑖

(𝐼 − 𝜇𝑖𝐵𝑖) 𝑝


2

≤ ⟨(𝐼 − 𝜇
𝑖
𝐵
𝑖
) Λ
𝑖−1
𝑢
𝑛
− (𝐼 − 𝜇

𝑖
𝐵
𝑖
) 𝑝, Λ
𝑖
𝑢
𝑛
− 𝑝⟩

=
1

2
(

(𝐼 − 𝜇

𝑖
𝐵
𝑖
) Λ
𝑖−1
𝑢
𝑛
− (𝐼 − 𝜇

𝑖
𝐵
𝑖
) 𝑝


2

+

Λ
𝑖
𝑢
𝑛
− 𝑝



2

−

(𝐼 − 𝜇

𝑖𝐵𝑖) Λ
𝑖−1
𝑢𝑛 − (𝐼 − 𝜇𝑖𝐵𝑖) 𝑝 − (Λ

𝑖
𝑢𝑛 − 𝑝)



2

)

≤
1

2
(

Λ
𝑖−1
𝑢𝑛 − 𝑝



2

+

Λ
𝑖
𝑢𝑛 − 𝑝



2

−

Λ
𝑖−1
𝑢
𝑛
− Λ
𝑖
𝑢
𝑛
− 𝜇
𝑖
(𝐵
𝑖
Λ
𝑖−1
𝑢
𝑛
− 𝐵
𝑖
𝑝)


2

)

≤
1

2
(
𝑢𝑛 − 𝑝



2
+

Λ
𝑖
𝑢
𝑛
− 𝑝



2

−

Λ
𝑖−1
𝑢
𝑛
− Λ
𝑖
𝑢
𝑛
− 𝜇
𝑖
(𝐵
𝑖
Λ
𝑖−1
𝑢
𝑛
− 𝐵
𝑖
𝑝)


2

)

≤
1

2
(
𝑥𝑛 − 𝑝



2
+

Λ
𝑖
𝑢
𝑛
− 𝑝



2

−

Λ
𝑖−1
𝑢
𝑛
− Λ
𝑖
𝑢
𝑛
− 𝜇
𝑖
(𝐵iΛ
𝑖−1
𝑢
𝑛
− 𝐵
𝑖
𝑝)


2

) ,

(97)
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which implies that


Λ
𝑖
𝑢𝑛 − 𝑝



2

≤
𝑥𝑛 − 𝑝



2

−

Λ
𝑖−1
𝑢
𝑛
− Λ
𝑖
𝑢
𝑛
− 𝜇
𝑖
(𝐵
𝑖
Λ
𝑖−1
𝑢
𝑛
− 𝐵
𝑖
𝑝)


2

=
𝑥𝑛 − 𝑝



2
−

Λ
𝑖−1
𝑢
𝑛
− Λ
𝑖
𝑢
𝑛



2

− 𝜇
2

𝑖


𝐵
𝑖
Λ
𝑖−1
𝑢
𝑛
− 𝐵
𝑖
𝑝


2

+ 2𝜇𝑖 ⟨Λ
𝑖−1
𝑢𝑛 − Λ

𝑖
𝑢𝑛, 𝐵𝑖Λ

𝑖−1
𝑢𝑛 − 𝐵𝑖𝑝⟩

≤
𝑥𝑛 − 𝑝



2
−

Λ
𝑖−1
𝑢
𝑛
− Λ
𝑖
𝑢
𝑛



2

+ 2𝜇
𝑖


Λ
𝑖−1
𝑢
𝑛
− Λ
𝑖
𝑢
𝑛




𝐵
𝑖
Λ
𝑖−1
𝑢
𝑛
− 𝐵
𝑖
𝑝

.

(98)

From (47) and (98), we have

𝑦𝑛 − 𝑝


2
≤ 𝛿
𝑛

𝐺𝑧𝑛 − 𝑝


2
+ (1 − 𝛿

𝑛
)
𝑊𝑛𝑧𝑛 − 𝑝



2

≤
𝑧𝑛 − 𝑝



2
≤

Λ
𝑖
𝑢𝑛 − 𝑝



2

≤
𝑥𝑛 − 𝑝



2
−

Λ
𝑖−1
𝑢
𝑛
− Λ
𝑖
𝑢
𝑛



2

+ 2𝜇
𝑖


Λ
𝑖−1
𝑢
𝑛
− Λ
𝑖
𝑢
𝑛




𝐵
𝑖
Λ
𝑖−1
𝑢
𝑛
− 𝐵
𝑖
𝑝

,

(99)

which together with (73), implies that

𝑥𝑛+1 − 𝑝


2

≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽

𝑛
)
𝑦𝑛 − 𝑝



2

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝


≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽

𝑛
)

× [
𝑥𝑛 − 𝑝



2
−

Λ
𝑖−1
𝑢
𝑛
− Λ
𝑖
𝑢
𝑛



2

+2 𝜇
𝑖


Λ
𝑖−1
𝑢
𝑛
− Λ
𝑖
𝑢
𝑛




𝐵
𝑖
Λ
𝑖−1
𝑢
𝑛
− 𝐵
𝑖
𝑝

]

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝


≤
𝑥𝑛 − 𝑝



2
− (1 − 𝛽𝑛)


Λ
𝑖−1
𝑢𝑛 − Λ

𝑖
𝑢𝑛



2

+ 2𝜇𝑖


Λ
𝑖−1
𝑢𝑛 − Λ

𝑖
𝑢𝑛




𝐵
𝑖Λ
𝑖−1
𝑢𝑛 − 𝐵𝑖𝑝



+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛)) − 𝑉𝑊𝑛𝑦𝑛



𝑥𝑛+1 − 𝑝
 .

(100)

So, it follows that

(1 − 𝑑)

Λ
𝑖−1
𝑢
𝑛
− Λ
𝑖
𝑢
𝑛



2

≤ (1 − 𝛽𝑛)

Λ
𝑖−1
𝑢𝑛 − Λ

𝑖
𝑢𝑛



2

≤
𝑥𝑛 − 𝑝



2
−
𝑥𝑛+1 − 𝑝



2

+ 2𝜇
𝑖


Λ
𝑖−1
𝑢
𝑛
− Λ
𝑖
𝑢
𝑛




𝐵
𝑖
Λ
𝑖−1
𝑢
𝑛
− 𝐵
𝑖
𝑝


+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝


≤
𝑥𝑛 − 𝑥𝑛+1

 (
𝑥𝑛 − 𝑝

 +
𝑥𝑛+1 − 𝑝

)

+ 2𝜇
𝑖


Λ
𝑖−1
𝑢
𝑛
− Λ
𝑖
𝑢
𝑛




𝐵
𝑖
Λ
𝑖−1
𝑢
𝑛
− 𝐵
𝑖
𝑝


+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝
 .

(101)

Since lim
𝑛→∞

𝛼
𝑛
= 0 and lim

𝑛→∞
‖𝑥
𝑛
− 𝑥
𝑛+1

‖ = 0, from (96)
and the boundedness of {𝑥

𝑛
}, {𝑦
𝑛
}, {𝑊
𝑛
𝑦
𝑛
} and {𝑓(𝑥

𝑛
)}we get

lim
𝑛→∞


Λ
𝑖−1
𝑢
𝑛
− Λ
𝑖
𝑢
𝑛


= 0, ∀𝑖 ∈ {1, 2, . . . , 𝑁} . (102)

From (102) we get

𝑢𝑛 − 𝑧𝑛
 =


Λ
0
𝑢
𝑛
− Λ
𝑁
𝑢
𝑛



≤

Λ
0
𝑢
𝑛
− Λ
1
𝑢
𝑛


+

Λ
1
𝑢
𝑛
− Λ
2
𝑢
𝑛



+ ⋅ ⋅ ⋅ +

Λ
𝑁−1

𝑢
𝑛
− Λ
𝑁
𝑢
𝑛



→ 0 as 𝑛 → ∞.

(103)

By (91) and (103), we have

𝑥𝑛 − 𝑧𝑛
 ≤

𝑥𝑛 − 𝑢𝑛
 +

𝑢𝑛 − 𝑧𝑛


→ 0 as 𝑛 → ∞.

(104)

On the other hand, for simplicity, we write 𝑝 = 𝑇
Θ
2

]
2

(𝐼 −

]2𝐴2)𝑝, V𝑛 = 𝑇
Θ
2

]
2

(𝐼−]2𝐴2)𝑧𝑛 and Ṽ𝑛 = 𝐺𝑧𝑛 = 𝑇
Θ
1

]
1

(𝐼−]1𝐴1)V𝑛
for all 𝑛 ≥ 1. Then

𝑝 = 𝐺𝑝 = 𝑇
Θ
1

]
1

(𝐼 − ]1𝐴1) 𝑝

= 𝑇
Θ
1

]
1

(𝐼 − ]1𝐴1) 𝑇
Θ
2

]
2

(𝐼 − ]2𝐴2) 𝑝.
(105)



Abstract and Applied Analysis 15

We now show that lim
𝑛→∞

‖𝐺𝑧
𝑛
− 𝑧
𝑛
‖ = 0, that is,

lim
𝑛→∞

‖Ṽ
𝑛
−𝑧
𝑛
‖ = 0. As amatter of fact, for 𝑝 ∈ Ω, it follows

from (47), (54) and (55) that

𝑦𝑛 − 𝑝


2
≤ 𝛿
𝑛

𝐺𝑧𝑛 − 𝑝


2
+ (1 − 𝛿

𝑛
)
𝑊𝑛𝑧𝑛 − 𝑝



2

≤ 𝛿
𝑛

Ṽ𝑛 − 𝑝


2
+ (1 − 𝛿

𝑛
)
𝑧𝑛 − 𝑝



2

≤ 𝛿
𝑛
[
V𝑛 − 𝑝



2
+ ]
1
(]
1
− 2𝜁
1
)
𝐴1V𝑛 − 𝐴1𝑝



2
]

+ (1 − 𝛿
𝑛
)
𝑧𝑛 − 𝑝



2

≤ 𝛿
𝑛
[
𝑧𝑛 − 𝑝



2
+ ]
2
(]
2
− 2𝜁
2
)
𝐴2𝑧𝑛 − 𝐴2𝑝



2

+ ]
1
(]
1
− 2𝜁
1
)
𝐴1V𝑛 − 𝐴1𝑝



2
]

+ (1 − 𝛿
𝑛
)
𝑧𝑛 − 𝑝



2

=
𝑧𝑛 − 𝑝



2
+ 𝛿𝑛 (]2 (]2 − 2𝜁2)

𝐴2𝑧𝑛 − 𝐴2𝑝


2

+]1 (]1 − 2𝜁1)
𝐴1V𝑛 − 𝐴1𝑝



2
)

≤
𝑥𝑛 − 𝑝



2

+ 𝛿
𝑛
(]
2
(]
2
− 2𝜁
2
)
𝐴2𝑧𝑛 − 𝐴2𝑝



2

+]
1
(]
1
− 2𝜁
1
)
𝐴1V𝑛 − 𝐴1𝑝



2
) ,

(106)

which together with (73), implies that

𝑥𝑛+1 − 𝑝


2

≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽

𝑛
)
𝑦𝑛 − 𝑝



2

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝


≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽

𝑛
)

× [
𝑥𝑛 − 𝑝



2

+ 𝛿𝑛 (]2 (]2 − 2𝜁2)
𝐴2𝑧𝑛 − 𝐴2𝑝



2

+]1 (]1 − 2𝜁1)
𝐴1V𝑛 − 𝐴1𝑝



2
)]

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝


=
𝑥𝑛 − 𝑝



2

+ (1 − 𝛽
𝑛
) 𝛿
𝑛
(]
2
(]
2
− 2𝜁
2
)
𝐴2𝑧𝑛 − 𝐴2𝑝



2

+]1 (]1 − 2𝜁1)
𝐴1V𝑛 − 𝐴1𝑝



2
)

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛)) − 𝑉𝑊𝑛𝑦𝑛



𝑥𝑛+1 − 𝑝
 .

(107)

So, it follows that

(1 − 𝑑) 𝑐 (]2 (2𝜁2 − ]2)
𝐴2𝑧𝑛 − 𝐴2𝑝



2

+]1 (2𝜁1 − ]1)
𝐴1V𝑛 − 𝐴1𝑝



2
)

≤ (1 − 𝛽𝑛) 𝛿𝑛 (]2 (2𝜁2 − ]
2)
𝐴2𝑧𝑛 − 𝐴2𝑝



2

+]
1
(2𝜁
1
− ]
1
)
𝐴1V𝑛 − 𝐴1𝑝



2
)

≤
𝑥𝑛 − 𝑝



2
−
𝑥𝑛+1 − 𝑝



2

+ 2𝛼𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛)) − 𝑉𝑊𝑛𝑦𝑛



𝑥𝑛+1 − 𝑝


≤
𝑥𝑛 − 𝑥𝑛+1

 (
𝑥𝑛 − 𝑝

 +
𝑥𝑛+1 − 𝑝

)

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝
 .

(108)

Since ]
𝑘 ∈ (0, 2𝜁𝑘), 𝑘 = 1, 2, lim𝑛→∞𝛼𝑛 = 0 and

lim𝑛→∞‖𝑥𝑛 − 𝑥𝑛+1‖ = 0, from the boundedness of
{𝑥
𝑛
}, {𝑦
𝑛
}, {𝑊
𝑛
𝑦
𝑛
} and {𝑓(𝑥

𝑛
)} we get

lim
𝑛→∞

𝐴2𝑧𝑛 − 𝐴2𝑝
 = 0, lim

𝑛→∞

𝐴1V𝑛 − 𝐴1𝑝
 = 0.

(109)

Also, in terms of the firm nonexpansivity of 𝑇Θ𝑘]
𝑘

and the 𝜁
𝑘
-

inverse strong monotonicity of 𝐴
𝑘
for 𝑘 = 1, 2, we obtain

from ]
𝑘
∈ (0, 2𝜁

𝑘
), 𝑘 ∈ {1, 2} and (54)-(55) that

V𝑛 − 𝑝


2

=

𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑧
𝑛
− 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑝


2

≤ ⟨(𝐼 − ]
2
𝐴
2
) 𝑧
𝑛
− (𝐼 − ]

2
𝐴
2
) 𝑝, V
𝑛
− 𝑝⟩

=
1

2
[
(𝐼 − ]

2
𝐴
2
) 𝑧
𝑛
− (𝐼 − ]

2
𝐴
2
) 𝑝


2
+
V𝑛 − 𝑝



2

−
(𝐼 − ]

2
𝐴
2
)𝑧
𝑛
− (𝐼 − ]

2
𝐴
2
)𝑝 − (V

𝑛
− 𝑝)



2
]

≤
1

2
[
𝑧𝑛 − 𝑝



2
+
V𝑛 − 𝑝



2

−
(𝑧𝑛 − V

𝑛
) − ]
2
(𝐴
2
𝑧
𝑛
− 𝐴
2
𝑝) − (𝑝 − 𝑝)



2
]

≤
1

2
[
𝑥𝑛 − 𝑝



2
+
V𝑛 − 𝑝



2
−
(𝑧𝑛 − V

𝑛
) − (𝑝 − 𝑝)



2

+ 2]2 ⟨(𝑧𝑛 − V𝑛) − (𝑝 − 𝑝) , 𝐴2𝑧𝑛 − 𝐴2𝑝⟩

−]2
2

𝐴2𝑧𝑛 − 𝐴2𝑝


2
] ,

Ṽ𝑛 − 𝑝


2

=

𝑇
Θ
1

]
1

(𝐼 − ]
1
𝐴
1
)V
𝑛
− 𝑇
Θ
1

]
1

(𝐼 − ]
1
𝐴
1
)𝑝


2

≤ ⟨(𝐼 − ]
1
𝐴
1
) V
𝑛
− (𝐼 − ]

1
𝐴
1
) 𝑝, Ṽ
𝑛
− 𝑝⟩

=
1

2
[
(𝐼 − ]

1
𝐴
1
)V
𝑛
− (𝐼 − ]

1
𝐴
1
)𝑝


2
+
Ṽ𝑛 − 𝑝



2

−
(𝐼 − ]

1
𝐴
1
)V
𝑛
− (𝐼 − ]

1
𝐴
1
)𝑝 − (Ṽ

𝑛
− 𝑝)



2
]
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≤
1

2
[
V𝑛 − 𝑝



2
+
Ṽ𝑛 − 𝑝



2
−
(V𝑛 − Ṽ

𝑛
) + (𝑝 − 𝑝)



2

+ 2]
1
⟨𝐴
1
V
𝑛
− 𝐴
1
𝑝, (V
𝑛
− Ṽ
𝑛
) + (𝑝 − 𝑝)⟩

−]2
1

𝐴1V𝑛 − 𝐴1𝑝


2
]

≤
1

2
[
𝑥𝑛 − 𝑝



2
+
Ṽ𝑛 − 𝑝



2
−
(V𝑛 − Ṽ

𝑛
) + (𝑝 − 𝑝)



2

+2]
1
⟨𝐴
1
V
𝑛
− 𝐴
1
𝑝, (V
𝑛
− Ṽ
𝑛
) + (𝑝 − 𝑝)⟩] .

(110)

Thus, we have

V𝑛 − 𝑝


2
≤
𝑥𝑛 − 𝑝



2
−
(𝑧𝑛 − V

𝑛
) − (𝑝 − 𝑝)



2

+ 2]2 ⟨(𝑧𝑛 − V𝑛) − (𝑝 − 𝑝) , 𝐴2𝑧𝑛 − 𝐴2𝑝⟩

− ]2
2

𝐴2𝑧𝑛 − 𝐴2𝑝


2
,

(111)

Ṽ𝑛 − 𝑝


2
≤
𝑥𝑛 − 𝑝



2
−
(V𝑛 − Ṽ𝑛) + (𝑝 − 𝑝)



2

+ 2]
1

𝐴1V𝑛 − 𝐴1𝑝


(V𝑛 − Ṽ
𝑛
) + (𝑝 − 𝑝)

 .

(112)

Consequently, from (47), (54), (55) and (111) it follows that

𝑦𝑛 − 𝑝


2

≤ 𝛿
𝑛

𝐺𝑧𝑛 − 𝑝


2
+ (1 − 𝛿

𝑛
)
𝑊𝑛𝑧𝑛 − 𝑝



2

≤ 𝛿𝑛
Ṽ𝑛 − 𝑝



2
+ (1 − 𝛿𝑛)

𝑧𝑛 − 𝑝


2

≤ 𝛿
𝑛

V𝑛 − 𝑝


2
+ (1 − 𝛿

𝑛
)
𝑧𝑛 − 𝑝



2

≤ 𝛿𝑛 [
𝑥𝑛 − 𝑝



2
−
(𝑧𝑛 − V𝑛) − (𝑝 − 𝑝)



2

+2]2⟨(𝑧𝑛 − V𝑛) − (𝑝 − 𝑝) , 𝐴2𝑧𝑛 − 𝐴2𝑝⟩]

+ (1 − 𝛿𝑛)
𝑥𝑛 − 𝑝



2

≤
𝑥𝑛 − 𝑝



2
− 𝛿
𝑛

(𝑧𝑛 − V
𝑛
) − (𝑝 − 𝑝)



2

+ 2]2
(𝑧𝑛 − V𝑛) − (𝑝 − 𝑝)



𝐴2𝑧𝑛 − 𝐴2𝑝
 ,

(113)

which together with (73), implies that

𝑥𝑛+1 − 𝑝


2

≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽

𝑛
)
𝑦𝑛 − 𝑝



2

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝


≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽

𝑛
)

× [
𝑥𝑛 − 𝑝



2
− 𝛿
𝑛

(𝑧𝑛 − V
𝑛
) − (𝑝 − 𝑝)



2

+2]2
(𝑧𝑛 − V𝑛) − (𝑝 − 𝑝)



𝐴2𝑧𝑛 − 𝐴2𝑝
]

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝


≤
𝑥𝑛 − 𝑝



2
− (1 − 𝛽𝑛) 𝛿𝑛

(𝑧𝑛 − V𝑛) − (𝑝 − 𝑝)


2

+ 2]
2

(𝑧𝑛 − V
𝑛
) − (𝑝 − 𝑝)



𝐴2𝑧𝑛 − 𝐴2𝑝


+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝
 .

(114)

So, it follows that

(1 − 𝑑) 𝑐
(𝑧𝑛 − V

𝑛
) − (𝑝 − 𝑝)



2

≤ (1 − 𝛽
𝑛
) 𝛿
𝑛

(𝑧𝑛 − V
𝑛
) − (𝑝 − 𝑝)



2

≤
𝑥𝑛 − 𝑝



2
−
𝑥𝑛+1 − 𝑝



2

+ 2]
2

(𝑧𝑛 − V
𝑛
) − (𝑝 − 𝑝)



𝐴2𝑧𝑛 − 𝐴2𝑝


+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛)) − 𝑉𝑊𝑛𝑦𝑛



𝑥𝑛+1 − 𝑝


≤
𝑥𝑛 − 𝑥𝑛+1

 (
𝑥𝑛 − 𝑝

 +
𝑥𝑛+1 − 𝑝

)

+ 2]
2

(𝑧𝑛 − V
𝑛
) − (𝑝 − 𝑝)



𝐴2𝑧𝑛 − 𝐴2𝑝


+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛)) − 𝑉𝑊𝑛𝑦𝑛



𝑥𝑛+1 − 𝑝
 .

(115)

Since lim
𝑛→∞𝛼𝑛 = 0 and lim𝑛→∞‖𝑥𝑛−𝑥𝑛+1‖ = 0, from (109)

and the boundedness of {𝑥𝑛}, {𝑦𝑛}, {𝑊𝑛𝑦𝑛} and {𝑓(𝑥𝑛)}we get

lim
𝑛→∞

(𝑧𝑛 − V
𝑛
) − (𝑝 − 𝑝)

 = 0. (116)

Furthermore, from (47), (54) and (112) it follows that

𝑦𝑛 − 𝑝


2
≤ 𝛿
𝑛

𝐺𝑧𝑛 − 𝑝


2
+ (1 − 𝛿

𝑛
)
𝑊𝑛𝑧𝑛 − 𝑝



2

≤ 𝛿
𝑛

Ṽ𝑛 − 𝑝


2
+ (1 − 𝛿

𝑛
)
𝑧𝑛 − 𝑝



2

≤ 𝛿
𝑛
[
𝑥𝑛 − 𝑝



2
−
(V𝑛 − Ṽ

𝑛
) + (𝑝 − 𝑝)



2

+2]
1

𝐴1V𝑛 − 𝐴1𝑝


(V𝑛 − Ṽ
𝑛
) + (𝑝 − 𝑝)

]

+ (1 − 𝛿
𝑛
)
𝑥𝑛 − 𝑝



2

≤
𝑥𝑛 − 𝑝



2
− 𝛿𝑛

(V𝑛 − Ṽ𝑛) + (𝑝 − 𝑝)


2

+ 2]
1

𝐴1V𝑛 − 𝐴1𝑝


(V𝑛 − Ṽ
𝑛
) + (𝑝 − 𝑝)

 ,

(117)
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which together with (73), implies that
𝑥𝑛+1 − 𝑝



2

≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽

𝑛
)
𝑦𝑛 − 𝑝



2

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝


≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽

𝑛
)

× [
𝑥𝑛 − 𝑝



2
− 𝛿𝑛

(V𝑛 − Ṽ𝑛) + (𝑝 − 𝑝)


2

+2]1
𝐴1V𝑛 − 𝐴1𝑝



(V𝑛 − Ṽ𝑛) + (𝑝 − 𝑝)
]

+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝


≤
𝑥𝑛 − 𝑝



2
− (1 − 𝛽𝑛) 𝛿𝑛

(V𝑛 − Ṽ𝑛) + (𝑝 − 𝑝)


2

+ 2]
1

𝐴1V𝑛 − 𝐴1𝑝


(V𝑛 − Ṽ
𝑛
) + (𝑝 − 𝑝)



+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝
 .

(118)

So, it follows that

(1 − 𝑑) 𝑐
(V𝑛 − Ṽ𝑛) + (𝑝 − 𝑝)



2

≤ (1 − 𝛽𝑛) 𝛿𝑛
(V𝑛 − Ṽ𝑛) + (𝑝 − 𝑝)



2

≤
𝑥𝑛 − 𝑝



2
−
𝑥𝑛+1 − 𝑝



2

+ 2]
1

𝐴1V𝑛 − 𝐴1𝑝


(V𝑛 − Ṽ
𝑛
) + (𝑝 − 𝑝)



+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝


≤
𝑥𝑛 − 𝑥𝑛+1

 (
𝑥𝑛 − 𝑝

 +
𝑥𝑛+1 − 𝑝

)

+ 2]
1

𝐴1V𝑛 − 𝐴1𝑝


(V𝑛 − Ṽ
𝑛
) + (𝑝 − 𝑝)



+ 2𝛼
𝑛


(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) − 𝑉𝑊

𝑛
𝑦
𝑛



𝑥𝑛+1 − 𝑝
 .

(119)

Since lim
𝑛→∞𝛼𝑛 = 0 and lim𝑛→∞‖𝑥𝑛−𝑥𝑛+1‖ = 0, from (109)

and the boundedness of {𝑥𝑛}, {𝑦𝑛}, {𝑊𝑛𝑦𝑛} and {𝑓(𝑥𝑛)}we get

lim
𝑛→∞

(V𝑛 − Ṽ
𝑛
) + (𝑝 − 𝑝)

 = 0. (120)

Note that
𝑧𝑛 − Ṽ

𝑛

 ≤
(𝑧𝑛 − V

𝑛) − (𝑝 − 𝑝)
 +

(V𝑛 − Ṽ
𝑛) + (𝑝 − 𝑝)

 .

(121)

Hence from (116) and (120) we get

lim
𝑛→∞

𝑧𝑛 − Ṽ𝑛
 = lim
𝑛→∞

𝑧𝑛 − 𝐺𝑧𝑛
 = 0, (122)

which together with (79), implies that
𝑧𝑛 −𝑊𝑛𝑧𝑛

 ≤
𝑧𝑛 − 𝐺𝑧𝑛

 +
𝐺𝑧𝑛 −𝑊𝑛𝑧𝑛



→ 0 as 𝑛 → ∞.

(123)

Also, observe that
𝑧𝑛 −𝑊𝑧𝑛

 ≤
𝑧𝑛 −𝑊𝑛𝑧𝑛

 +
𝑊𝑛𝑧𝑛 −𝑊𝑧𝑛

 . (124)

From (122), Remark 10 and the boundedness of {𝑧
𝑛
} we

immediately obtain

lim
𝑛→∞

𝑧𝑛 −𝑊𝑧𝑛
 = 0. (125)

Step 5.We show that

lim sup
𝑛→∞

⟨𝑢 + (𝛾𝑓 − 𝑉) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩ ≤ 0, (126)

where 𝑥∗ is a solution of (OP2).
Indeed, we note that 𝑉 is a 𝛾-strongly positive bounded

linear operator and 𝑓 : 𝐻 → 𝐻 is an 𝑙-Lipschitzian mapping
with 𝛾𝑙 < (1 + 𝜇)𝛾. It is clear that

⟨(𝑉𝑥 − (𝑢 + 𝛾𝑓 (𝑥))) − (𝑉𝑦 − (𝑢 + 𝛾𝑓 (𝑦))) , 𝑥 − 𝑦⟩

≥ ((1 + 𝜇) 𝛾 − 𝛾𝑙)
𝑥 − 𝑦



2
, ∀𝑥, 𝑦 ∈ 𝐻.

(127)

Hencewededuce that𝑉𝑥−(𝑢+𝛾𝑓(𝑥)) is ((1+𝜇)𝛾−𝛾𝑙)-strongly
monotone. In the meantime, it is easy to see that 𝑉𝑥 − (𝑢 +
𝛾𝑓(𝑥)) is (‖𝑉‖ + 𝛾𝑙)-Lipschitzian with constant ‖𝑉‖ + 𝛾𝑙 > 0.
Thus, there exists a unique solution 𝑥∗ inΩ to the VIP

⟨𝑢 + (𝛾𝑓 − 𝑉) 𝑥
∗
, 𝑢 − 𝑥

∗
⟩ ≤ 0, ∀𝑢 ∈ Ω. (128)

Equivalently, 𝑥∗ ∈ Ω solves (OP2) (due to Lemma 20).
First, we observe that there exists a subsequence {𝑥

𝑛
𝑖

} of
{𝑥𝑛} such that

lim sup
𝑛→∞

⟨𝑢 + (𝛾𝑓 − 𝑉) 𝑥
∗
, 𝑥𝑛 − 𝑥

∗
⟩

= lim
𝑖→∞

⟨𝑢 + (𝛾𝑓 − 𝑉) 𝑥
∗
, 𝑥
𝑛
𝑖

− 𝑥
∗
⟩ .

(129)

Since {𝑥
𝑛
𝑖

} is bounded, there exists a subsequence {𝑥
𝑛
𝑖
𝑗

} of
{𝑥
𝑛
𝑖

} which converges weakly to some 𝑤. Without loss of
generality, wemay assume that𝑥

𝑛
𝑖

⇀ 𝑤. From (91) and (102)–
(104), we have that 𝑢

𝑛
𝑖

⇀ 𝑤,Λ
𝑚
𝑢
𝑛
𝑖

⇀ 𝑤 and 𝑧
𝑛
𝑖

⇀ 𝑤,
where 𝑚 ∈ {1, 2, . . . , 𝑁}. By (122) and (125) we have that
‖𝐺𝑧
𝑛
− 𝑧
𝑛
‖ → 0 and ‖𝑊𝑧

𝑛
− 𝑧
𝑛
‖ → 0 as 𝑛 → ∞.

Utilizing the similar arguments to those of (55), we know
that 𝐺 is nonexpansive. Hence, by Lemma 12 we obtain 𝑤 ∈

Fix(𝐺) = SGEP(𝐺) and 𝑤 ∈ Fix(𝑊) = ∩
∞

𝑛=1
Fix(𝑇
𝑛
) (due

to Lemma 11). Next, we prove that 𝑤 ∈ ∩
𝑁

𝑚=1
𝐼(𝐵
𝑚
, 𝑅
𝑚
). As a

matter of fact, since 𝐵
𝑚
is 𝜂
𝑚
-inverse strongly monotone, 𝐵

𝑚

is a monotone and Lipschitz continuous mapping. It follows
from Lemma 19 that 𝑅

𝑚
+ 𝐵
𝑚

is maximal monotone. Let
(V, 𝑔) ∈ 𝐺(𝑅

𝑚
+ 𝐵
𝑚
), that is, 𝑔 − 𝐵

𝑚
V ∈ 𝑅

𝑚
V. Again, since

Λ
𝑚
𝑢𝑛 = 𝐽𝑅

𝑚
,𝜇
𝑚

(𝐼 − 𝜇𝑚𝐵𝑚)Λ
𝑚−1

𝑢𝑛, 𝑛 ≥ 1,𝑚 ∈ {1, 2, . . . , 𝑁},
we have

Λ
𝑚−1

𝑢
𝑛
− 𝜇
𝑚
𝐵
𝑚
Λ
𝑚−1

𝑢
𝑛
∈ (𝐼 + 𝜇

𝑚
𝑅
𝑚
) Λ
𝑚
𝑢
𝑛
. (130)

that is,

1

𝜇
𝑚

(Λ
𝑚−1

𝑢𝑛 − Λ
𝑚
𝑢𝑛 − 𝜇𝑚𝐵𝑚Λ

𝑚−1
𝑢𝑛) ∈ 𝑅𝑚Λ

𝑚
𝑢𝑛. (131)
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In terms of the monotonicity of 𝑅
𝑚
, we get

⟨V − Λ𝑚𝑢
𝑛
, 𝑔 − 𝐵

𝑚
V

−
1

𝜇
𝑚

(Λ
𝑚−1

𝑢
𝑛
− Λ
𝑚
𝑢
𝑛
− 𝜇
𝑚
𝐵
𝑚
Λ
𝑚−1

𝑢
𝑛
)⟩

≥ 0,

(132)

and hence

⟨V − Λ𝑚𝑢𝑛, 𝑔⟩

≥ ⟨V − Λ𝑚𝑢
𝑛
, 𝐵
𝑚
V

+
1

𝜇
𝑚

(Λ
𝑚−1

𝑢
𝑛
− Λ
𝑚
𝑢
𝑛
− 𝜇
𝑚
𝐵
𝑚
Λ
𝑚−1

𝑢
𝑛
)⟩

= ⟨V − Λ𝑚𝑢
𝑛
, 𝐵
𝑚
V − 𝐵
𝑚
Λ
𝑚
𝑢
𝑛
+ 𝐵
𝑚
Λ
𝑚
𝑢
𝑛
− 𝐵
𝑚
Λ
𝑚−1

𝑢
𝑛

+
1

𝜇
𝑚

(Λ
𝑚−1

𝑢
𝑛
− Λ
𝑚
𝑢
𝑛
)⟩

≥ ⟨V − Λ𝑚𝑢
𝑛
, 𝐵
𝑚
Λ
𝑚
𝑢
𝑛
− 𝐵
𝑚
Λ
𝑚−1

𝑢
𝑛
⟩

+ ⟨V − Λ𝑚𝑢
𝑛
,
1

𝜇𝑚

(Λ
𝑚−1

𝑢
𝑛
− Λ
𝑚
𝑢
𝑛
)⟩ .

(133)

In particular,

⟨V − Λ𝑚𝑢
𝑛
𝑖

, 𝑔⟩ ≥ ⟨V − Λ𝑚𝑢
𝑛
𝑖

, 𝐵
𝑚
Λ
𝑚
𝑢
𝑛
𝑖

− 𝐵
𝑚
Λ
𝑚−1

𝑢
𝑛
𝑖

⟩

+ ⟨V − Λ𝑚𝑢
𝑛
𝑖

,
1

𝜇
𝑚

(Λ
𝑚−1

𝑢
𝑛
𝑖

− Λ
𝑚
𝑢
𝑛
𝑖

)⟩ .

(134)

Since ‖Λ𝑚𝑢
𝑛
− Λ
𝑚−1

𝑢
𝑛
‖ → 0 (due to (102)) and ‖𝐵

𝑚
Λ
𝑚
𝑢
𝑛
−

𝐵
𝑚
Λ
𝑚−1

𝑢
𝑛
‖ → 0 (due to the Lipschitz continuity of 𝐵

𝑚
),

we conclude from Λ
𝑚
𝑢
𝑛
𝑖

⇀ 𝑤 and 𝜇
𝑚

∈ (0, 2𝜂
𝑚
), 𝑚 ∈

{1, 2, . . . , 𝑁} that

lim
𝑖→∞

⟨V − Λ𝑚𝑢
𝑛
𝑖

, 𝑔⟩ = ⟨V − 𝑤, 𝑔⟩ ≥ 0. (135)

It follows from the maximal monotonicity of 𝐵
𝑚
+ 𝑅
𝑚
that

0 ∈ (𝑅
𝑚
+ 𝐵
𝑚
)𝑤, that is, 𝑤 ∈ 𝐼(𝐵

𝑚
, 𝑅
𝑚
). Therefore, 𝑤 ∈

∩
𝑁

𝑚=1
𝐼(𝐵𝑚, 𝑅𝑚).
Next, we show that 𝑤 ∈ GMEP(Θ, 𝜑, 𝐴). In fact, from

𝑢
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴)𝑥
𝑛
, we know that

Θ(𝑢
𝑛, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢𝑛) + ⟨𝐴𝑥𝑛, 𝑦 − 𝑢𝑛⟩

+
1

𝑟
𝑛

⟨𝐾

(𝑢
𝑛
) − 𝐾

(𝑥
𝑛
) , 𝑦 − 𝑢

𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶.

(136)

From (H2) it follows that

𝜑 (𝑦) − 𝜑 (𝑢𝑛) + ⟨𝐴𝑥𝑛, 𝑦 − 𝑢𝑛⟩

+
1

𝑟
𝑛

⟨𝐾

(𝑢𝑛) − 𝐾


(𝑥𝑛) , 𝑦 − 𝑢𝑛⟩ ≥ Θ (𝑦, 𝑢𝑛) ,

∀𝑦 ∈ 𝐶.

(137)

Replacing 𝑛 by 𝑛
𝑖
, we have

𝜑 (𝑦) − 𝜑 (𝑢𝑛
𝑖

) + ⟨𝐴𝑥𝑛
𝑖

, 𝑦 − 𝑢𝑛
𝑖

⟩

+ ⟨

𝐾

(𝑢
𝑛
𝑖

) − 𝐾

(𝑥
𝑛
𝑖

)

𝑟
𝑛
𝑖

, 𝑦 − 𝑢
𝑛
𝑖

⟩ ≥ Θ(𝑦, 𝑢
𝑛
𝑖

) ,

∀𝑦 ∈ 𝐶.

(138)

Put 𝑢
𝑡
= 𝑡𝑦 + (1 − 𝑡)𝑤 for all 𝑡 ∈ (0, 1] and 𝑦 ∈ 𝐶. Then, from

(138) we have

⟨𝑢
𝑡
− 𝑢
𝑛
𝑖

, 𝐴𝑢
𝑡
⟩

≥ ⟨𝑢𝑡 − 𝑢𝑛
𝑖

, 𝐴𝑢𝑡⟩ − 𝜑 (𝑢𝑡)

+ 𝜑 (𝑢
𝑛
𝑖

) − ⟨𝑢
𝑡
− 𝑢
𝑛
𝑖

, 𝐴𝑥
𝑛
𝑖

⟩

−⟨

𝐾

(𝑢𝑛
𝑖

) − 𝐾

(𝑥𝑛
𝑖

)

𝑟𝑛
𝑖

, 𝑢
𝑡
− 𝑢
𝑛
𝑖

⟩+Θ(𝑢
𝑡
, 𝑢
𝑛
𝑖

)

≥ ⟨𝑢
𝑡
− 𝑢
𝑛
𝑖

, 𝐴𝑢
𝑡
− 𝐴𝑢
𝑛
𝑖

⟩

+ ⟨𝑢𝑡 − 𝑢𝑛
𝑖

, 𝐴𝑢𝑛
𝑖

− 𝐴𝑥𝑛
𝑖

⟩ − 𝜑 (𝑢𝑡) + 𝜑 (𝑢𝑛
𝑖

)

−⟨

𝐾

(𝑢
𝑛
𝑖

) − 𝐾

(𝑥
𝑛
𝑖

)

𝑟
𝑛
𝑖

, 𝑢𝑡 − 𝑢𝑛
𝑖

⟩+Θ(𝑢𝑡, 𝑢𝑛
𝑖

) .

(139)

Since ‖𝑢
𝑛
𝑖

− 𝑥
𝑛
𝑖

‖ → 0 as 𝑖 → ∞, we deduce from the
Lipschitz continuity of 𝐴 and 𝐾 that ‖𝐴𝑢

𝑛
𝑖

− 𝐴𝑥
𝑛
𝑖

‖ → 0

and ‖𝐾(𝑢
𝑛
𝑖

) − 𝐾

(𝑥
𝑛
𝑖

)‖ → 0 as 𝑖 → ∞. Further, from the
monotonicity of 𝐴, we have ⟨𝑢

𝑡
− 𝑢
𝑛
𝑖

, 𝐴𝑢
𝑡
− 𝐴𝑢
𝑛
𝑖

⟩ ≥ 0. So,
from (H4), the weakly lower semicontinuity of 𝜑, (𝐾(𝑢

𝑛
𝑖

) −

𝐾

(𝑥
𝑛
𝑖

))/𝑟
𝑛
𝑖

→ 0 and 𝑢
𝑛
𝑖

⇀ 𝑤, we have

⟨𝑢
𝑡
− 𝑤,𝐴𝑢

𝑡
⟩ ≥ −𝜑 (𝑢

𝑡
) + 𝜑 (𝑤) + Θ (𝑢

𝑡
, 𝑤) , as 𝑖 → ∞.

(140)
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From (H1), (H4) and (140) we also have

0 = Θ (𝑢𝑡, 𝑢𝑡) + 𝜑 (𝑢𝑡) − 𝜑 (𝑢𝑡)

≤ 𝑡Θ (𝑢
𝑡
, 𝑦) + (1 − 𝑡)Θ (𝑢

𝑡
, 𝑤) + 𝑡𝜑 (𝑦)

+ (1 − 𝑡) 𝜑 (𝑤) − 𝜑 (𝑢𝑡)

= 𝑡 [Θ (𝑢𝑡, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢𝑡)]

+ (1 − 𝑡) [Θ (𝑢
𝑡
, 𝑤) + 𝜑 (𝑤) − 𝜑 (𝑤) − 𝜑 (𝑢𝑡)]

≤ 𝑡 [Θ (𝑢
𝑡
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑡
)] + (1 − 𝑡) ⟨𝑢𝑡 − 𝑤,𝐴𝑢𝑡⟩

= 𝑡 [Θ (𝑢𝑡, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢𝑡)] + (1 − 𝑡) 𝑡 ⟨𝑦 − 𝑤,𝐴𝑢𝑡⟩ ,

(141)

and hence

0 ≤ Θ (𝑢
𝑡
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑡
) + (1 − 𝑡) ⟨𝑦 − 𝑤,𝐴𝑢𝑡⟩ .

(142)

Letting 𝑡 → 0, we have, for each 𝑦 ∈ 𝐶,

0 ≤ Θ (𝑤, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑤) + ⟨𝐴𝑤, 𝑦 − 𝑤⟩ . (143)

This implies that 𝑤 ∈ GMEP(Θ, 𝜑, 𝐴). Therefore, 𝑤 ∈

∩
∞

𝑛=1
Fix(𝑇
𝑛
)∩GMEP(Θ, 𝜑, 𝐴)∩SGEP(𝐺)∩∩𝑁

𝑖=1
𝐼(𝐵
𝑖
, 𝑅
𝑖
) := Ω.

This shows that 𝜔
𝑤
(𝑥
𝑛
) ⊂ Ω. Consequently, from (128) and

(129) we have

lim sup
𝑛→∞

⟨𝑢 + (𝛾𝑓 − 𝑉) 𝑥
∗
, 𝑥𝑛 − 𝑥

∗
⟩

= ⟨𝑢 + (𝛾𝑓 − 𝑉) 𝑥
∗
, 𝑤 − 𝑥

∗
⟩ ≤ 0.

(144)

Step 6. Finally, we show that 𝑥
𝑛 → 𝑥

∗
∈ Ω as 𝑛 → ∞.

Indeed, from (47) and (54), we have

𝑦𝑛 − 𝑥
∗

2
≤ 𝛿𝑛

𝐺𝑧𝑛 − 𝑥
∗

2
+ (1 − 𝛿𝑛)

𝑊𝑛𝑧𝑛 − 𝑥
∗

2

≤
𝑧𝑛 − 𝑥

∗

2
≤
𝑥𝑛 − 𝑥

∗

2
.

(145)

In terms of Lemma 6 we have

𝑥𝑛+1 − 𝑥
∗

2

=

𝛼
𝑛
(𝑢 + 𝛾𝑓 (𝑥

𝑛
) − 𝑉𝑥

∗
) + 𝛽
𝑛
(𝑥
𝑛
− 𝑥
∗
)

+ ((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
𝑉) (𝑊

𝑛
𝑦
𝑛
− 𝑥
∗
)


2

≤

𝛽
𝑛
(𝑥
𝑛
− 𝑥
∗
) + ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝑉) (𝑊

𝑛
𝑦
𝑛
− 𝑥
∗
)


2

+ 2𝛼𝑛 ⟨𝑢 + 𝛾𝑓 (𝑥𝑛) − 𝑉𝑥
∗
, 𝑥𝑛+1 − 𝑥

∗
⟩

≤ [

((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝑉) (𝑊

𝑛
𝑦
𝑛
− 𝑥
∗
)

+ 𝛽
𝑛

𝑥𝑛 − 𝑥
∗]
2

2

+ 2𝛼𝑛𝛾 ⟨𝑓 (𝑥𝑛) − 𝑓 (𝑥
∗
) , 𝑥
𝑛+1

− 𝑥
∗
⟩

+ 2𝛼
𝑛 ⟨𝑢 + 𝛾𝑓 (𝑥

∗
) − 𝑉𝑥

∗
, 𝑥𝑛+1 − 𝑥

∗
⟩

≤ [(1 − 𝛽
𝑛
− 𝛼
𝑛
(1 + 𝜇) 𝛾)

𝑦𝑛 − 𝑥
∗ + 𝛽𝑛

𝑥𝑛 − 𝑥
∗]
2

+ 2𝛼𝑛𝛾𝑙
𝑥𝑛 − 𝑥

∗

𝑥𝑛+1 − 𝑥
∗

+ 2𝛼
𝑛
⟨𝑢 + 𝛾𝑓 (𝑥

∗
) − 𝑉𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

≤ (1 − 𝛼
𝑛
(1 + 𝜇)𝛾)

2𝑥𝑛 − 𝑥
∗

2

+ 𝛼
𝑛
𝛾𝑙 (

𝑥𝑛 − 𝑥
∗

2
+
𝑥𝑛+1 − 𝑥

∗

2
)

+ 2𝛼
𝑛
⟨𝑢 + 𝛾𝑓 (𝑥

∗
) − 𝑉𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩ ,

(146)

which leads to
𝑥𝑛+1 − 𝑥

∗

2

≤
1 − 2𝛼𝑛 (1 + 𝜇) 𝛾 + 𝛼

2

𝑛
(1 + 𝜇)

2
𝛾
2
+ 𝛼𝑛𝛾𝑙

1 − 𝛼
𝑛
𝛾𝑙

×
𝑥𝑛 − 𝑥

∗

2

+
2𝛼𝑛

1 − 𝛼
𝑛
𝛾𝑙
⟨𝑢 + 𝛾𝑓 (𝑥

∗
) − 𝑉𝑥

∗
, 𝑥𝑛+1 − 𝑥

∗
⟩

= [1 −
2 ((1 + 𝜇) 𝛾 − 𝛾𝑙) 𝛼𝑛

1 − 𝛼
𝑛
𝛾𝑙

]
𝑥𝑛 − 𝑥

∗

2

+
((1 + 𝜇)𝛼𝑛𝛾)

2

1 − 𝛼
𝑛
𝛾𝑙

𝑥𝑛 − 𝑥
∗

2

+
2𝛼
𝑛

1 − 𝛼𝑛𝛾𝑙
⟨𝑢 + 𝛾𝑓 (𝑥

∗
) − 𝑉𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

≤ [1 −
2 ((1 + 𝜇) 𝛾 − 𝛾𝑙) 𝛼

𝑛

1 − 𝛼
𝑛
𝛾𝑙

]
𝑥𝑛 − 𝑥

∗

2

+
2 ((1 + 𝜇) 𝛾 − 𝛾𝑙) 𝛼

𝑛

1 − 𝛼
𝑛
𝛾𝑙

×

{

{

{

(𝛼𝑛(1 + 𝜇)
2
𝛾
2
)𝑀0

2 ((1 + 𝜇) 𝛾 − 𝛾𝑙)
+

1

(1 + 𝜇) 𝛾 − 𝛾𝑙

× ⟨𝑢 + 𝛾𝑓 (𝑥
∗
) − 𝑉𝑥

∗
, 𝑥𝑛+1 − 𝑥

∗
⟩

}

}

}

= (1 − 𝛾
𝑛
)
𝑥𝑛 − 𝑥

∗

2
+ 𝜎
𝑛
𝛾
𝑛
,

(147)



20 Abstract and Applied Analysis

where 𝑀
0
= sup{‖𝑥

𝑛
− 𝑥
∗
‖
2
: 𝑛 ≥ 1}, 𝛾

𝑛
= 2((1 + 𝜇)𝛾 −

𝛾𝑙)𝛼
𝑛
/(1 − 𝛼

𝑛
𝛾𝑙) and 𝜎

𝑛
= ((𝛼

𝑛
(1 + 𝜇)

2
𝛾
2
)𝑀
0
/2((1 + 𝜇)𝛾 −

𝛾𝑙))+(1/((1+𝜇)𝛾−𝛾𝑙))⟨𝑢+𝛾𝑓(𝑥
∗
)−𝑉𝑥

∗
, 𝑥
𝑛+1

−𝑥
∗
⟩. It is easy

to see that ∑∞
𝑛=1

𝛾
𝑛
= ∞ and lim sup

𝑛→∞
𝜎
𝑛
≤ 0. Hence by

Lemma 15, we infer that the sequence {𝑥
𝑛
} converges strongly

to 𝑥∗. This completes the proof.

Corollary 22. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space𝐻. Let𝑁 be an integer. LetΘ be a bifunction
from 𝐶 × 𝐶 to R satisfying (H1)–(H4) and 𝜑 : 𝐶 → R be a
lower semicontinuous and convex functional. Let𝑅

𝑖
: 𝐶 → 2

𝐻

be a maximal monotone mapping and let 𝐴 : 𝐻 → 𝐻 and
𝐵
𝑖
: 𝐶 → 𝐻 be 𝜁-inverse strongly monotone and 𝜂

𝑖
-inverse

strongly monotone, respectively, where 𝑖 ∈ {1, 2, . . . , 𝑁}. Let
{𝑇
𝑛
}
∞

𝑛=1
be a sequence of nonexpansive mappings on 𝐻 and

{𝜆
𝑛
} be a sequence in (0, 𝑏] for some 𝑏 ∈ (0, 1). Let 𝑉 be a

𝛾-strongly positive bounded linear operator and 𝑓 : 𝐻 → 𝐻

be an 𝑙-Lipschitzian mapping with 𝛾𝑙 < (1 + 𝜇)𝛾. Let𝑊
𝑛
be the

𝑊-mapping defined by (9). Assume that Ω := ∩
∞

𝑛=1
Fix(𝑇
𝑛
) ∩

GMEP(Θ, 𝜑, 𝐴) ∩ ∩𝑁
𝑖=1

I(𝐵
𝑖
, 𝑅
𝑖
) ̸= 0. Let {𝛼

𝑛
}, {𝛽
𝑛
} and {𝛿

𝑛
} be

three sequences in [0, 1]. Assume that:
(i)𝐾 : 𝐻 → R is strongly convex with constant 𝜎 > 0 and

its derivative 𝐾 is Lipschitz continuous with constant ] > 0

such that the function 𝑥 → ⟨𝑦 − 𝑥,𝐾

(𝑥)⟩ is weakly upper

semicontinuous for each 𝑦 ∈ 𝐻;
(ii) for each 𝑥 ∈ 𝐻, there exist a bounded subset 𝐷

𝑥
⊂ 𝐶

and 𝑧
𝑥
∈ 𝐶 such that for any 𝑦 ∉ 𝐷

𝑥
,

Θ(𝑦, 𝑧
𝑥
) + 𝜑 (𝑧

𝑥
) − 𝜑 (𝑦)

+
1

𝑟
⟨𝐾

(𝑦) − 𝐾


(𝑥) , 𝑧𝑥 − 𝑦⟩ < 0;

(148)

(iii) lim𝑛→∞𝛼𝑛 = 0,∑
∞

𝑛=1
𝛼𝑛 = ∞, 0 < lim infn→∞𝛽𝑛 ≤

lim sup
𝑛→∞

𝛽
𝑛

< 1 and 0 < lim inf
𝑛→∞

𝛿
𝑛

≤

lim sup
𝑛→∞

𝛿
𝑛
< 1;

(iv) 𝜇
𝑖
∈ (0, 2𝜂

𝑖
), 𝑖 ∈ {1, 2, . . . , 𝑁}, and {𝑟

𝑛
} ⊂ [0, 2𝜁]

satisfies 0 < lim inf
𝑛→∞

𝑟
𝑛
≤ lim sup

𝑛→∞
𝑟
𝑛
< 2𝜁;

(v) lim
𝑛→∞

(|𝛿
𝑛+1

− 𝛿
𝑛
| + |𝑟
𝑛+1

− 𝑟
𝑛
|) = 0.

Given 𝑥
1
∈ 𝐻 arbitrarily, then the sequence {𝑥

𝑛
} generated

iteratively by

𝑢
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟𝑛𝐴) 𝑥𝑛,

𝑧
𝑛
= 𝐽
𝑅
𝑁
,𝜇
𝑁

(𝐼 − 𝜇
𝑁
𝐵
𝑁
) 𝐽
𝑅
𝑁−1
,𝜇
𝑁−1

× (𝐼 − 𝜇
𝑁−1

𝐵
𝑁−1

) ⋅ ⋅ ⋅ 𝐽
𝑅
1
,𝜇
1

(𝐼 − 𝜇
1
𝐵
1
) 𝑢
𝑛
,

𝑦
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
)𝑊
𝑛
𝑧
𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) + 𝛽

𝑛
𝑥
𝑛

+ ((1 − 𝛽𝑛) 𝐼 − 𝛼𝑛 (𝐼 + 𝜇𝑉))𝑊𝑛𝑦𝑛, ∀𝑛 ≥ 1,

(149)

converges strongly to 𝑥
∗

∈ Ω which solves the following
optimization problem provided 𝑆(Θ,𝜑)

𝑟
is firmly nonexpansive:

min
𝑥∈Ω

𝜇

2
⟨𝐴𝑥, 𝑥⟩ +

1

2
‖𝑥 − 𝑢‖

2
− ℎ (𝑥) , (OP3)

where ℎ is the potential function of 𝛾𝑓.

Proof. InTheorem 21, puttingΘ
1
≡ Θ
2
≡ 0 and𝐴

1
≡ 𝐴
2
≡ 0,

we get 𝐺𝑧
𝑛
= 𝑧
𝑛
and SGEP(𝐺) = 𝐶. Utilizing Theorem 21 we

derive the desired result.

Corollary 23. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻. Let Θ,Θ

1
, Θ
2
be three bifunctions from

𝐶 × 𝐶 to R satisfying (H1)–(H4) and 𝜑 : 𝐶 → R be a lower
semicontinuous and convex functional. Let 𝑅

𝑖
: 𝐶 → 2

𝐻

be a maximal monotone mapping and let 𝐴,𝐴
𝑘
: 𝐻 →

H and 𝐵𝑖 : 𝐶 → 𝐻 be 𝜁-inverse strongly monotone, 𝜁𝑘-
inverse strongly monotone and 𝜂𝑖-inverse strongly monotone,
respectively, for 𝑖 = 1, 2 and 𝑘 = 1, 2. Let {𝑇𝑛}

∞

𝑛=1
be a sequence

of nonexpansive mappings on 𝐻 and {𝜆𝑛} be a sequence in
(0, 𝑏] for some 𝑏 ∈ (0, 1). Let𝑉 be a 𝛾-strongly positive bounded
linear operator and 𝑓 : 𝐻 → 𝐻 be an 𝑙-Lipschitzian mapping
with 𝛾𝑙 < (1 + 𝜇)𝛾. Let 𝑊𝑛 be the 𝑊-mapping defined by
(9). Assume that Ω := ∩

∞

𝑛=1
Fix(𝑇
𝑛
) ∩ GMEP(Θ, 𝜑, 𝐴) ∩

SGEP(𝐺) ∩ I(𝐵
2
, 𝑅
2
) ∩ I(𝐵

1
, 𝑅
1
) ̸= 0 where 𝐺 is defined as in

Proposition CY. Let {𝛼
𝑛
}, {𝛽
𝑛
} and {𝛿

𝑛
} be three sequences in

[0, 1]. Assume that:
(i)𝐾 : 𝐻 → R is strongly convex with constant 𝜎 > 0 and

its derivative 𝐾 is Lipschitz continuous with constant ] > 0

such that the function 𝑥 → ⟨𝑦 − 𝑥,𝐾

(𝑥)⟩ is weakly upper

semicontinuous for each 𝑦 ∈ 𝐻;
(ii) for each 𝑥 ∈ 𝐻, there exist a bounded subset 𝐷

𝑥
⊂ 𝐶

and 𝑧
𝑥
∈ 𝐶 such that for any 𝑦 ∉ 𝐷

𝑥
,

Θ(𝑦, 𝑧𝑥) + 𝜑 (𝑧𝑥) − 𝜑 (𝑦)

+
1

𝑟
⟨𝐾

(𝑦) − 𝐾


(𝑥) , 𝑧𝑥 − 𝑦⟩ < 0;

(150)

(iii) lim
𝑛→∞

𝛼
𝑛
= 0,∑

∞

𝑛=1
𝛼
𝑛
= ∞, 0 < lim inf

𝑛→∞
𝛽
𝑛
≤

lim sup
𝑛→∞

𝛽
𝑛

< 1 and 0 < lim inf
𝑛→∞

𝛿
𝑛

≤

lim sup
𝑛→∞

𝛿
𝑛
< 1;

(iv) ]
𝑘
∈ (0, 2𝜁

𝑘
), 𝑘 = 1, 2, 𝜇

𝑖
∈ (0, 2𝜂

𝑖
), 𝑖 = 1, 2, and

{𝑟
𝑛
} ⊂ [0, 2𝜁] satisfies 0 < lim inf

𝑛→∞
𝑟
𝑛
≤ lim sup

𝑛→∞
𝑟
𝑛
<

2𝜁;
(v) lim

𝑛→∞
(|𝛿
𝑛+1

− 𝛿
𝑛
| + |𝑟
𝑛+1

− 𝑟
𝑛
|) = 0.

Given 𝑥
1
∈ 𝐻 arbitrarily, then the sequence {𝑥

𝑛
} generated

iteratively by

𝑢𝑛 = 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟𝑛𝐴) 𝑥𝑛,

𝑧𝑛 = 𝐽𝑅
2
,𝜇
2

(𝐼 − 𝜇2𝐵2) 𝐽𝑅
1
,𝜇
1

(𝐼 − 𝜇1𝐵1) 𝑢𝑛,

𝑦
𝑛
= 𝛿
𝑛
𝐺𝑧
𝑛
+ (1 − 𝛿

𝑛
)𝑊
𝑛
𝑧
𝑛
,

𝑥𝑛+1 = 𝛼𝑛 (𝑢 + 𝛾𝑓 (𝑥𝑛)) + 𝛽𝑛𝑥𝑛

+ ((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
(𝐼 + 𝜇𝑉))𝑊

𝑛
𝑦
𝑛
, ∀𝑛 ≥ 1,

(151)

converges strongly to 𝑥
∗

∈ Ω which solves the following
optimization problem provided 𝑆(Θ,𝜑)

𝑟
is firmly nonexpansive:

min
𝑥∈Ω

𝜇

2
⟨𝐴𝑥, 𝑥⟩ +

1

2
‖𝑥 − 𝑢‖

2
− ℎ (𝑥) , (OP4)

where ℎ is the potential function of 𝛾𝑓.
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Corollary 24. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻. Let Θ,Θ

1
, Θ
2
be three bifunctions from

𝐶 × 𝐶 to R satisfying (H1)–(H4) and 𝜑 : 𝐶 → R be a lower
semicontinuous and convex functional. Let 𝑅 : 𝐶 → 2

𝐻 be a
maximal monotone mapping and let 𝐴,𝐴

𝑘
: 𝐻 → 𝐻 and 𝐵 :

𝐶 → 𝐻 be 𝜁-inverse strongly monotone, 𝜁
𝑘
-inverse strongly

monotone and 𝜂-inverse strongly monotone, respectively, for
𝑘 = 1, 2. Let {𝑇𝑛}

∞

𝑛=1
be a sequence of nonexpansive mappings

on 𝐻 and {𝜆𝑛} be a sequence in (0, 𝑏] for some 𝑏 ∈ (0, 1).
Let 𝑉 be a 𝛾-strongly positive bounded linear operator and
𝑓 : 𝐻 → 𝐻 be an 𝑙-Lipschitzian mapping with 𝛾𝑙 < (1 + 𝜇)𝛾.
Let 𝑊𝑛 be the 𝑊-mapping defined by (9). Assume that Ω :=

∩
∞

𝑛=1
Fix(𝑇𝑛) ∩GMEP(Θ, 𝜑, 𝐴) ∩ SGEP(𝐺) ∩ I(𝐵, 𝑅) ̸= 0 where

𝐺 is defined as in Proposition CY. Let {𝛼𝑛}, {𝛽𝑛} and {𝛿𝑛} be
three sequences in [0, 1]. Assume that:

(i)𝐾 : 𝐻 → R is strongly convex with constant 𝜎 > 0 and
its derivative 𝐾 is Lipschitz continuous with constant ] > 0

such that the function 𝑥 → ⟨𝑦 − 𝑥,𝐾

(𝑥)⟩ is weakly upper

semicontinuous for each 𝑦 ∈ 𝐻;
(ii) for each 𝑥 ∈ 𝐻, there exist a bounded subset 𝐷

𝑥
⊂ 𝐶

and 𝑧
𝑥
∈ 𝐶 such that for any 𝑦 ∉ 𝐷

𝑥
,

Θ(𝑦, 𝑧
𝑥
) + 𝜑 (𝑧

𝑥
) − 𝜑 (𝑦)

+
1

𝑟
⟨𝐾

(𝑦) − 𝐾


(𝑥) , 𝑧𝑥 − 𝑦⟩ < 0;

(152)

(iii) lim
𝑛→∞

𝛼
𝑛
= 0,∑

∞

𝑛=1
𝛼
𝑛
= ∞, 0 < lim inf

𝑛→∞
𝛽
𝑛
≤

lim sup
𝑛→∞

𝛽
𝑛

< 1 and 0 < lim inf
𝑛→∞

𝛿
𝑛

≤

lim sup
𝑛→∞

𝛿
𝑛
< 1;

(iv) ]
𝑘
∈ (0, 2𝜁

𝑘
), 𝑘 = 1, 2, 𝜆 ∈ (0, 2𝜂), and {𝑟

𝑛
} ⊂ [0, 2𝜁]

satisfies 0 < lim inf𝑛→∞𝑟𝑛 ≤ lim sup
𝑛→∞

𝑟𝑛 < 2𝜁;
(v) lim𝑛→∞(|𝛿𝑛+1 − 𝛿𝑛| + |𝑟𝑛+1 − 𝑟𝑛|) = 0.
Given 𝑥1 ∈ 𝐻 arbitrarily, then the sequence {𝑥𝑛} generated

iteratively by

𝑢
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
,

𝑦𝑛 = 𝛿𝑛𝐺𝐽𝑅,𝜆 (𝐼 − 𝜆𝐵) 𝑢𝑛

+ (1 − 𝛿
𝑛
)𝑊
𝑛
𝐽
𝑅,𝜆 (𝐼 − 𝜆𝐵) 𝑢𝑛,

𝑥𝑛+1 = 𝛼𝑛 (𝑢 + 𝛾𝑓 (𝑥𝑛)) + 𝛽𝑛𝑥𝑛

+ ((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
(𝐼 + 𝜇𝑉))𝑊

𝑛
𝑦
𝑛
, ∀𝑛 ≥ 1,

(153)

converges strongly to 𝑥
∗

∈ Ω which solves the following
optimization problem provided 𝑆(Θ,𝜑)

𝑟
is firmly nonexpansive:

min
𝑥∈Ω

𝜇

2
⟨𝐴𝑥, 𝑥⟩ +

1

2
‖𝑥 − 𝑢‖

2
− ℎ (𝑥) , (OP5)

where ℎ is the potential function of 𝛾𝑓.

Corollary 25. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space𝐻. Let𝑁 be an integer. LetΘ,Θ1, Θ2 be three
bifunctions from𝐶×𝐶 toR satisfying (H1)–(H4) and 𝜑 : 𝐶 →

R be a lower semicontinuous and convex functional. Let 𝑅𝑖 :
𝐶 → 2

𝐻 be a maximal monotone mapping and let𝐴
𝑘
: 𝐻 →

𝐻 and 𝐵
𝑖
: 𝐶 → 𝐻 be 𝜁

𝑘
-inverse strongly monotone and 𝜂

𝑖
-

inverse strongly monotone, respectively, where 𝑘 ∈ {1, 2} and

𝑖 ∈ {1, 2, . . . , 𝑁}. Let {𝑇
𝑛
}
∞

𝑛=1
be a sequence of nonexpansive

mappings on 𝐻 and {𝜆
𝑛
} be a sequence in (0, 𝑏] for some 𝑏 ∈

(0, 1). Let 𝑉 be a 𝛾-strongly positive bounded linear operator
and 𝑓 : 𝐻 → 𝐻 be an 𝑙-Lipschitzian mapping with 𝛾𝑙 <
(1+𝜇)𝛾. Let𝑊

𝑛
be the𝑊-mapping defined by (9). Assume that

Ω := ∩
∞

𝑛=1
Fix(𝑇
𝑛
) ∩MEP(Θ, 𝜑) ∩ SGEP(𝐺) ∩ ∩𝑁

𝑖=1
I(𝐵
𝑖
, 𝑅
𝑖
) ̸= 0

where𝐺 is defined as in Proposition CY. Let {𝛼
𝑛
}, {𝛽
𝑛
} and {𝛿

𝑛
}

be three sequences in [0, 1]. Assume that:
(i)𝐾 : 𝐻 → R is strongly convex with constant 𝜎 > 0 and

its derivative 𝐾 is Lipschitz continuous with constant ] > 0

such that the function 𝑥 → ⟨𝑦 − 𝑥,𝐾

(𝑥)⟩ is weakly upper

semicontinuous for each 𝑦 ∈ 𝐻;
(ii) for each 𝑥 ∈ 𝐻, there exist a bounded subset 𝐷𝑥 ⊂ 𝐶

and 𝑧𝑥 ∈ 𝐶 such that for any 𝑦 ∉ 𝐷𝑥,

Θ(𝑦, 𝑧
𝑥
) + 𝜑 (𝑧

𝑥
) − 𝜑 (𝑦)

+
1

𝑟
⟨𝐾

(𝑦) − 𝐾


(𝑥) , 𝑧𝑥 − 𝑦⟩ < 0;

(154)

(iii) lim
𝑛→∞

𝛼
𝑛
= 0,∑

∞

𝑛=1
𝛼
𝑛
= ∞, 0 < lim inf

𝑛→∞
𝛽
𝑛
≤

lim sup
𝑛→∞

𝛽
𝑛

< 1 and 0 < lim inf
𝑛→∞

𝛿
𝑛

≤

lim sup
𝑛→∞

𝛿
𝑛
< 1;

(iv) ]
𝑘

∈ (0, 2𝜁
𝑘
), 𝑘 ∈ {1, 2}, 𝜇

𝑖
∈ (0, 2𝜂

𝑖
), 𝑖 ∈

{1, 2, . . . , 𝑁}, and {𝑟
𝑛
} is a bounded sequence in (0,∞) satis-

fying lim inf
𝑛→∞

𝑟
𝑛
> 0;

(v) lim
𝑛→∞

(|𝛿
𝑛+1

− 𝛿
𝑛
| + |𝑟
𝑛+1

− 𝑟
𝑛
|) = 0.

Given 𝑥
1
∈ 𝐻 arbitrarily, then the sequence {𝑥

𝑛
} generated

iteratively by

Θ(𝑢
𝑛
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑛
) +

1

𝑟
𝑛

⟨𝑘

(𝑢
𝑛
) − 𝑘

(𝑥
𝑛
) , 𝑦 − 𝑢

𝑛
⟩

≥ 0, ∀𝑦 ∈ 𝐶,

𝑧
𝑛
= 𝐽
𝑅
𝑁
,𝜇
𝑁

(𝐼 − 𝜇
𝑁
𝐵
𝑁
) 𝐽
𝑅
𝑁−1
,𝜇
𝑁−1

× (𝐼 − 𝜇
𝑁−1

𝐵
𝑁−1

) ⋅ ⋅ ⋅ 𝐽
𝑅
1
,𝜇
1

(𝐼 − 𝜇
1
𝐵
1
) 𝑢
𝑛
,

𝑦
𝑛
= 𝛿
𝑛
𝐺𝑧
𝑛
+ (1 − 𝛿

𝑛
)𝑊
𝑛
𝑧
𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) + 𝛽

𝑛
𝑥
𝑛

+ ((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
(𝐼 + 𝜇𝑉))𝑊

𝑛
𝑦
𝑛
, ∀𝑛 ≥ 1,

(155)

converges strongly to 𝑥
∗

∈ Ω which solves the following
optimization problem provided 𝑆(Θ,𝜑)

𝑟
is firmly nonexpansive:

min
𝑥∈Ω

𝜇

2
⟨𝐴𝑥, 𝑥⟩ +

1

2
‖𝑥 − 𝑢‖

2
− ℎ (𝑥) , (OP6)

where ℎ is the potential function of 𝛾𝑓.

Proof. In Theorem 21, for all 𝑛 ≥ 1, 𝑢𝑛 = 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟𝑛𝐴)𝑥𝑛 is
equivalent to

Θ(𝑢
𝑛
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑛
) + ⟨𝐴𝑥

𝑛
, 𝑦 − 𝑢

𝑛
⟩

+
1

𝑟
𝑛

⟨𝑘

(𝑢
𝑛
) − 𝑘

(𝑥
𝑛
) , 𝑦 − 𝑢

𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶.

(156)
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Put 𝐴 ≡ 0. Then it follows that

Θ(𝑢
𝑛
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑛
) +

1

𝑟𝑛

⟨𝑘

(𝑢
𝑛
) − 𝑘

(𝑥
𝑛
) , 𝑦 − 𝑢

𝑛
⟩

≥ 0, ∀𝑦 ∈ 𝐶.

(157)

Observe that for all 𝜁 ∈ (0,∞)

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 𝜁
𝐴𝑥 − 𝐴𝑦



2
, ∀𝑥, 𝑦 ∈ 𝐻. (158)

So, whenever 0 < lim inf
𝑛→∞

𝑟
𝑛
≤ lim sup

𝑛→∞
𝑟
𝑛
< 2𝜁

for some 𝜁 ∈ (0,∞), we obtain the desired result by using
Theorem 21.

Let 𝑇 : 𝐻 → 𝐻 be a 𝜅-strictly pseudocontractive
mapping. For recent convergence result for strictly pseudo-
contractive mappings, we refer to [16]. Putting 𝐴 = 𝐼 − 𝑇, we
know that for all 𝑥, 𝑦 ∈ 𝐻
(𝐼 − 𝐴) 𝑥 − (𝐼 − 𝐴) 𝑦



2
≤
𝑥 − 𝑦



2
+ 𝜅

𝐴𝑥 − 𝐴𝑦


2
. (159)

Note that
(𝐼 − 𝐴) 𝑥 − (𝐼 − 𝐴) 𝑦



2
=
𝑥 − 𝑦



2
+
𝐴𝑥 − 𝐴𝑦



2

− 2 ⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ .

(160)

Hence we have for all 𝑥, 𝑦 ∈ 𝐻

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥
1 − 𝜅

2

𝐴𝑥 − 𝐴𝑦


2
. (161)

Consequently, if 𝑇 : 𝐻 → 𝐻 is a 𝜅-strictly pseudocontrac-
tive mapping, then themapping𝐴 = 𝐼−𝑇 is (1−𝜅)/2-inverse
strongly monotone.

Corollary 26. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space 𝐻. Let 𝑁 be an integer. Let Θ,Θ

1
, Θ
2
be

three bifunctions from 𝐶×𝐶 to R satisfying (H1)–(H4) and 𝜑 :
𝐶 → R be a lower semicontinuous and convex functional. Let
𝑅𝑖 : 𝐶 → 2

𝐻 be amaximal monotone mapping and let𝑇,𝐴𝑘 :
𝐻 → 𝐻 and 𝐵𝑖 : 𝐶 → 𝐻 be 𝜅-strictly pseudocontractive, 𝜁𝑘-
inverse strongly monotone and 𝜂𝑖-inverse strongly monotone,
respectively, where 𝑘 ∈ {1, 2} and 𝑖 ∈ {1, 2, . . . , 𝑁}. Let {𝑇𝑛}

∞

𝑛=1

be a sequence of nonexpansive mappings on 𝐻 and {𝜆𝑛} be a
sequence in (0, 𝑏] for some 𝑏 ∈ (0, 1). Let 𝑉 be a 𝛾-strongly
positive bounded linear operator and 𝑓 : 𝐻 → 𝐻 be an 𝑙-
Lipschitzian mapping with 𝛾𝑙 < (1 + 𝜇)𝛾. Let 𝑊

𝑛
be the 𝑊-

mapping defined by (9). Assume that Ω := ∩
∞

𝑛=1
Fix(𝑇
𝑛
) ∩

GMEP(Θ, 𝜑, 𝐴) ∩ SGEP (𝐺)∩∩𝑁
𝑖=1

I(𝐵
𝑖
, 𝑅
𝑖
) ̸= 0where𝐴 = 𝐼−𝑇

and 𝐺 is defined as in Proposition CY. Let {𝛼𝑛}, {𝛽𝑛} and {𝛿𝑛}
be three sequences in [0, 1]. Assume that:

(i)𝐾 : 𝐻 → R is strongly convex with constant 𝜎 > 0 and
its derivative 𝐾 is Lipschitz continuous with constant ] > 0

such that the function 𝑥 → ⟨𝑦 − 𝑥,𝐾

(𝑥)⟩ is weakly upper

semicontinuous for each 𝑦 ∈ 𝐻;
(ii) for each 𝑥 ∈ 𝐻, there exist a bounded subset 𝐷𝑥 ⊂ 𝐶

and 𝑧
𝑥
∈ 𝐶 such that for any 𝑦 ∉ 𝐷

𝑥
,

Θ(𝑦, 𝑧
𝑥
) + 𝜑 (𝑧

𝑥
) − 𝜑 (𝑦)

+
1

𝑟
⟨𝐾

(𝑦) − 𝐾


(𝑥) , 𝑧𝑥 − 𝑦⟩ < 0;

(162)

(iii) lim
𝑛→∞

𝛼
𝑛
= 0,∑

∞

𝑛=1
𝛼
𝑛
= ∞, 0 < lim inf

𝑛→∞
𝛽
𝑛
≤

lim sup
𝑛→∞

𝛽
𝑛

< 1 and 0 < lim inf
𝑛→∞

𝛿
𝑛

≤

lim sup
𝑛→∞

𝛿
𝑛
< 1;

(iv) ]
𝑘

∈ (0, 2𝜁
𝑘
), 𝑘 ∈ {1, 2}, 𝜇

𝑖
∈ (0, 2𝜂

𝑖
), 𝑖 ∈

{1, 2, . . . , 𝑁}, and {𝑟
𝑛
} ⊂ [0, 1 − 𝜅] satisfies

0 < lim inf
𝑛→∞

𝑟𝑛 ≤ lim sup
𝑛→∞

𝑟𝑛 < 1 − 𝜅; (163)

(v) lim
𝑛→∞

(|𝛿
𝑛+1

− 𝛿
𝑛
| + |𝑟
𝑛+1

− 𝑟
𝑛
|) = 0.

Given 𝑥
1
∈ 𝐻 arbitrarily, then the sequence {𝑥

𝑛
} generated

iteratively by

𝑢
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

((1 − 𝑟
𝑛
) 𝑥
𝑛
+ 𝑟
𝑛
𝑇𝑥
𝑛
) ,

𝑧
𝑛
= 𝐽
𝑅
𝑁
,𝜇
𝑁

(𝐼 − 𝜇
𝑁
𝐵
𝑁
) 𝐽
𝑅
𝑁−1
,𝜇
𝑁−1

× (𝐼 − 𝜇
𝑁−1

𝐵
𝑁−1

) ⋅ ⋅ ⋅ 𝐽
𝑅
1
,𝜇
1

(𝐼 − 𝜇
1
𝐵
1
) 𝑢
𝑛
,

𝑦
𝑛
= 𝛿
𝑛
𝐺𝑧
𝑛
+ (1 − 𝛿

𝑛
)𝑊
𝑛
𝑧
𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) + 𝛽

𝑛
𝑥
𝑛

+ ((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
(𝐼 + 𝜇𝑉))𝑊

𝑛
𝑦
𝑛
, ∀𝑛 ≥ 1,

(164)

converges strongly to 𝑥
∗

∈ Ω which solves the following
optimization problem provided 𝑆(Θ,𝜑)

𝑟
is firmly nonexpansive:

min
𝑥∈Ω

𝜇

2
⟨𝐴𝑥, 𝑥⟩ +

1

2
‖𝑥 − 𝑢‖

2
− ℎ (𝑥) , (OP7)

where ℎ is the potential function of 𝛾𝑓.

Proof. Since 𝑇 is a 𝜅-strictly pseudocontractive mapping, the
mapping 𝐴 = 𝐼 − 𝑇 is (1 − 𝜅)/2-inverse strongly monotone.
In this case, put 𝜁 = (1 − 𝜅)/2. Moreover, we obtain that

𝑢𝑛 = 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟𝑛𝐴) 𝑥𝑛

= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝑥
𝑛
− 𝑟
𝑛 (𝐼 − 𝑇) 𝑥𝑛)

= 𝑆
(Θ,𝜑)

𝑟
𝑛

((1 − 𝑟𝑛) 𝑥𝑛 + 𝑟𝑛𝑇𝑥𝑛) .

(165)

So, fromTheorem 21, we obtain the desired result.

Corollary 27. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space 𝐻. Let 𝑁 be an integer. Let Θ,Θ

1
, Θ
2
be

three bifunctions from 𝐶×𝐶 to R satisfying (H1)–(H4) and 𝜑 :
𝐶 → R be a lower semicontinuous and convex functional. Let
𝑅𝑖 : 𝐶 → 2

𝐻 be amaximalmonotonemapping and let𝐴,𝐴𝑘 :
𝐻 → 𝐻 and 𝐵𝑖 : 𝐶 → 𝐻 be 𝜁-inverse strongly monotone, 𝜁𝑘-
inverse strongly monotone and 𝜂𝑖-inverse strongly monotone,
respectively, where 𝑘 ∈ {1, 2} and 𝑖 ∈ {1, 2, . . . , 𝑁}. Let 𝑉 be a
𝛾-strongly positive bounded linear operator and 𝑓 : 𝐻 → 𝐻

be an 𝑙-Lipschitzian mapping with 𝛾𝑙 < (1 + 𝜇)𝛾. Assume that
Ω := GMEP(Θ, 𝜑, 𝐴) ∩ SGEP(𝐺) ∩ ∩𝑁

𝑖=1
I(𝐵𝑖, 𝑅𝑖) ̸= 0 where 𝐺

is defined as in Proposition CY. Let {𝛼𝑛}, {𝛽𝑛} and {𝛿𝑛} be three
sequences in [0, 1]. Assume that:

(i)𝐾 : 𝐻 → R is strongly convex with constant 𝜎 > 0 and
its derivative 𝐾 is Lipschitz continuous with constant ] > 0

such that the function 𝑥 → ⟨𝑦 − 𝑥,𝐾

(𝑥)⟩ is weakly upper

semicontinuous for each 𝑦 ∈ 𝐻;
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(ii) for each 𝑥 ∈ 𝐻, there exist a bounded subset 𝐷
𝑥
⊂ 𝐶

and 𝑧
𝑥
∈ 𝐶 such that for any 𝑦 ∉ 𝐷

𝑥
,

Θ(𝑦, 𝑧
𝑥) + 𝜑 (𝑧𝑥) − 𝜑 (𝑦)

+
1

𝑟
⟨𝐾

(𝑦) − 𝐾


(𝑥) , 𝑧𝑥 − 𝑦⟩ < 0;

(166)

(iii) lim
𝑛→∞

𝛼
𝑛
= 0,∑

∞

𝑛=1
𝛼
𝑛
= ∞, 0 < lim inf

𝑛→∞
𝛽
𝑛
≤

lim sup
𝑛→∞

𝛽
𝑛

< 1 and 0 < lim inf
𝑛→∞

𝛿
𝑛

≤

lim sup
𝑛→∞

𝛿
𝑛
< 1;

(iv) ]
𝑘

∈ (0, 2𝜁
𝑘
), 𝑘 ∈ {1, 2}, 𝜇

𝑖
∈ (0, 2𝜂

𝑖
), 𝑖 ∈

{1, 2, . . . , 𝑁}, and {𝑟
𝑛
} ⊂ [0, 2𝜁] satisfies

0 < lim inf
𝑛→∞

𝑟𝑛 ≤ lim sup
𝑛→∞

𝑟𝑛 < 2𝜁; (167)

(v) lim
𝑛→∞

(|𝛿
𝑛+1

− 𝛿
𝑛
| + |𝑟
𝑛+1

− 𝑟
𝑛
|) = 0.

Given 𝑥
1
∈ 𝐻 arbitrarily, then the sequence {𝑥

𝑛
} generated

iteratively by

𝑢
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
,

𝑧
𝑛
= 𝐽
𝑅
𝑁
,𝜇
𝑁

(𝐼 − 𝜇
𝑁
𝐵
𝑁
) 𝐽
𝑅
𝑁−1
,𝜇
𝑁−1

× (𝐼 − 𝜇𝑁−1𝐵𝑁−1) ⋅ ⋅ ⋅ 𝐽𝑅
1
,𝜇
1

(𝐼 − 𝜇1𝐵1) 𝑢𝑛,

𝑦
𝑛
= 𝛿
𝑛
𝐺𝑧n + (1 − 𝛿𝑛) 𝑧𝑛,

𝑥
𝑛+1

= 𝛼
𝑛
(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) + 𝛽

𝑛
𝑥
𝑛

+ ((1 − 𝛽𝑛) 𝐼 − 𝛼𝑛 (𝐼 + 𝜇𝑉)) 𝑦𝑛, ∀𝑛 ≥ 1,

(168)

converges strongly to 𝑥
∗

∈ Ω which solves the following
optimization problem provided 𝑆(Θ,𝜑)

𝑟
is firmly nonexpansive:

min
𝑥∈Ω

𝜇

2
⟨𝐴𝑥, 𝑥⟩ +

1

2
‖𝑥 − 𝑢‖

2
− ℎ (𝑥) , (OP8)

where ℎ is the potential function of 𝛾𝑓.

Proof. Put 𝑇
𝑛
𝑥 = 𝑥 for all integers 𝑛 ≥ 1 and all 𝑥 ∈ 𝐻. Then,

the desired result follows fromTheorem 21.

Corollary 28. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space𝐻. Let𝑁 be an integer. LetΘ

1
andΘ

2
be two

bifunctions from𝐶×𝐶 toR satisfying (H1)–(H4). Let𝑅
𝑖
: 𝐶 →

2
𝐻 be a maximal monotone mapping and let 𝐴𝑘 : 𝐻 → 𝐻

and 𝐵𝑖 : 𝐶 → 𝐻 be 𝜁𝑘-inverse strongly monotone and 𝜂𝑖-
inverse strongly monotone, respectively, where 𝑘 ∈ {1, 2} and
𝑖 ∈ {1, 2, . . . , 𝑁}. Let {𝑇𝑛}

∞

𝑛=1
be a sequence of nonexpansive

mappings on 𝐻 and {𝜆𝑛} be a sequence in (0, 𝑏] for some 𝑏 ∈
(0, 1). Let 𝑉 be a 𝛾-strongly positive bounded linear operator
and 𝑓 : 𝐻 → 𝐻 be an 𝑙-Lipschitzian mapping with 𝛾𝑙 <
(1 + 𝜇)𝛾. Let 𝑊𝑛 be the 𝑊-mapping defined by (9). Assume
thatΩ := ∩

∞

𝑛=1
Fix(𝑇𝑛) ∩ SGEP(𝐺) ∩ ∩𝑁

𝑖=1
I(𝐵𝑖, 𝑅𝑖) ̸= 0 where 𝐺

is defined as in Proposition CY. Let {𝛼
𝑛
}, {𝛽
𝑛
} and {𝛿

𝑛
} be three

sequences in [0, 1]. Assume that:
(i)lim

𝑛→∞
𝛼
𝑛
= 0,∑

∞

𝑛=1
𝛼
𝑛
= ∞, 0 < lim inf

𝑛→∞
𝛽
𝑛
≤

lim sup
𝑛→∞

𝛽
𝑛

< 1 and 0 < lim inf
𝑛→∞

𝛿
𝑛

≤

lim sup
𝑛→∞

𝛿
𝑛
< 1;

(ii) ]
𝑘
∈ (0, 2𝜁

𝑘
), 𝑘 ∈ {1, 2}, 𝜇

𝑖
∈ (0, 2𝜂

𝑖
), 𝑖 ∈ {1, 2, . . . , 𝑁},

and {𝑟
𝑛
} ⊂ [0, 2𝜁] satisfies

0 < lim inf
𝑛→∞

𝑟𝑛 ≤ lim sup
𝑛→∞

𝑟𝑛 < 2𝜁; (169)

(iii) lim
𝑛→∞

(|𝛿
𝑛+1

− 𝛿
𝑛
| + |𝑟
𝑛+1

− 𝑟
𝑛
|) = 0.

Given 𝑥
1
∈ 𝐶 arbitrarily, then the sequence {𝑥

𝑛
} generated

iteratively by

𝑧
𝑛
= 𝐽
𝑅
𝑁
,𝜇
𝑁

(𝐼 − 𝜇
𝑁
𝐵
𝑁
) 𝐽
𝑅
𝑁−1
,𝜇
𝑁−1

× (𝐼 − 𝜇
𝑁−1

𝐵
𝑁−1

) ⋅ ⋅ ⋅ 𝐽
𝑅
1
,𝜇
1

(𝐼 − 𝜇
1
𝐵
1
) 𝑥
𝑛
,

𝑦
𝑛
= 𝛿
𝑛
𝐺𝑧
𝑛
+ (1 − 𝛿

𝑛
)𝑊
𝑛
𝑧
𝑛
,

𝑥𝑛+1 = 𝛼𝑛 (𝑢 + 𝛾𝑓 (𝑥𝑛)) + 𝛽𝑛𝑥𝑛

+ ((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
(𝐼 + 𝜇𝑉))𝑊

𝑛
𝑦
𝑛
, ∀𝑛 ≥ 1,

(170)

converges strongly to 𝑥
∗

∈ Ω which solves the following
optimization problem provided 𝑆(Θ,𝜑)

𝑟
is firmly nonexpansive:

min
𝑥∈Ω

𝜇

2
⟨𝐴𝑥, 𝑥⟩ +

1

2
‖𝑥 − 𝑢‖

2
− ℎ (𝑥) , (OP9)

where ℎ is the potential function of 𝛾𝑓.

Proof. Put Θ(𝑥, 𝑦) = 0, 𝜑(𝑥) = 0 for all 𝑥, 𝑦 ∈ 𝐶, 𝐴𝑥 = 0

for all 𝑥 ∈ 𝐻 and 𝑟
𝑛
= 1. Take 𝐾(𝑥) = (1/2)‖𝑥‖

2 for all
𝑥 ∈ 𝐻.Thenwe get 𝑢

𝑛
= 𝑥
𝑛
inTheorem 21 and the conclusion

follows.
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