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We are interested in the following fractional boundary value problem: 𝐷𝛼𝑢(𝑡) + 𝑎 (𝑡) 𝑢𝜎 = 0, 𝑡 ∈ (0,∞), lim
𝑡→0

𝑡
2−𝛼

𝑢(𝑡) = 0,
lim
𝑡→∞

𝑡
1−𝛼

𝑢(𝑡) = 0, where 1 < 𝛼 < 2,𝜎 ∈ (−1, 1),𝐷𝛼 is the standardRiemann-Liouville fractional derivative, and 𝑎 is a nonnegative
continuous function on (0,∞) satisfying some appropriate assumptions related to Karamata regular variation theory. Using the
Schauder fixed point theorem, we prove the existence and the uniqueness of a positive solution. We also give a global behavior of
such solution.

1. Introduction

Fractional differential equations arise in various fields of
science and engineering such as control, porous media,
electrochemistry, viscoelasticity, and electromagnetic. They
also serve as an excellent tool for the description of hereditary
properties of various materials and processes (see [1–3]). In
consequence, the subject of fractional differential equations
has been gainingmuch importance and attention.Most of the
related results focused on developing the global existence and
uniqueness of solutions on finite intervals (see [4–12]) and the
references therein). However, to the best of our knowledge,
there exist few articles dealing with the existence of solutions
to fractional differential equations on the half-line; see, for
instance, [13–21]. In [17], by using the recent Leggett-Williams
norm-type theorem due to O’Regan and Zima, the author
established the existence of positive solutions for fractional
boundary value problems of resonance on infinite intervals.
On the other hand, in [20], Su and Zhang studied the
following fractional differential problem on the half-line by
using Schauder’s fixed point theorem:

𝐷
𝛼

𝑢 (𝑡) = 𝑓 (𝑡, 𝑢, 𝐷
𝛼−1

𝑢) , 𝑡 ∈ (0,∞) , 1 < 𝛼 ≤ 2,

𝑢 (0) = 0, lim
𝑡→∞

𝐷
𝛼−1

𝑢 (𝑡) = 𝑢
∞
, 𝑢
∞
∈ R,

(1)

where 𝐷𝛼 is the standard Riemann-Liouville fractional deri-
vative (see Definition 8 below).

In [21], by means of the Leray-Schauder alternative
theorem, Zhao and Ge proved the existence of solutions to
the following boundary value problem:

𝐷
𝛼

𝑢 (𝑡) + 𝑓 (𝑡, 𝑢) = 0, 𝑡 ∈ (0,∞) , 1 < 𝛼 < 2,

𝑢 (0) = 0, lim
𝑡→∞

𝐷
𝛼−1

𝑢 (𝑡) = 𝛽𝑢 (𝜉) ,

(2)

where 𝛽 ∈ R and 0 < 𝜉 < ∞.
In this paper, we aim at studying the existence, unique-

ness, and the exact asymptotic behavior of a positive solution
to the following fractional boundary value problem:

𝐷
𝛼

𝑢 (𝑡) + 𝑎 (𝑡) 𝑢
𝜎

= 0, 𝑡 ∈ (0,∞) ,

lim
𝑡→0

𝑡
2−𝛼

𝑢 (𝑡) = 0, lim
𝑡→∞

𝑡
1−𝛼

𝑢 (𝑡) = 0,

(3)

where 1 < 𝛼 < 2, 𝜎 ∈ (−1, 1), and 𝑎 is a nonnegative
continuous function on (0,∞) that may be singular at 0.

To state our result, we need some notations. We first
introduce the following Karamata classes.
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2 Abstract and Applied Analysis

Definition 1. The classK is the set of all Karamata functions
𝐿 defined on (0, 𝜂] by

𝐿 (𝑡) := 𝑐 exp(∫
𝜂

𝑡

𝑧 (𝑠)

𝑠
𝑑𝑠) , (4)

for some 𝜂 > 1 and where 𝑐 > 0 and 𝑧 ∈ 𝐶([0, 𝜂]) such that
𝑧(0) = 0.

Definition 2. The class K∞ is the set of all Karamata func-
tions 𝐿 defined on [1,∞) by

𝐿 (𝑡) := 𝑐 exp(∫
𝑡

1

𝑧 (𝑠)

𝑠
𝑑𝑠) , (5)

where 𝑐 > 0 and 𝑧 ∈ 𝐶([1,∞)) such that lim
𝑡→∞

𝑧(𝑡) = 0.

It is easy to verify the following.

Remark 3. (i) A function 𝐿 is in K if and only if 𝐿 is a
positive function in 𝐶1((0, 𝜂]), for some 𝜂 > 1, such that
lim
𝑡→0
+(𝑡𝐿
󸀠

(𝑡)/𝐿(𝑡)) = 0.
(ii) A function 𝐿 is in K∞ if and only if 𝐿 is a positive

function in 𝐶1([1,∞)) such that lim
𝑡→∞

(𝑡𝐿
󸀠

(𝑡)/𝐿(𝑡)) = 0.

Remark 4 (see [22]). Let 𝐿 be a function in K∞, and then
there exists𝑚 ≥ 0 such that for every 𝛽 > 0 and 𝑡 ≥ 1we have

(1 + 𝛽)
−𝑚

𝐿 (𝑡) ≤ 𝐿 (𝛽 + 𝑡) ≤ (1 + 𝛽)
𝑚

𝐿 (𝑡) . (6)

As a typical example of function belonging to the classK,
we quote

𝐿 (𝑡) =

𝑚

Π
𝑘=1

(log
𝑘
(
𝜔

𝑡
))

𝜉
𝑘

, (7)

where 𝜉
𝑘
are real numbers, log

𝑘
𝑥 = log ∘ log ∘ ⋅ ⋅ ⋅ log𝑥 (𝑘

times), and 𝜔 is a sufficiently large positive real number such
that 𝐿 is defined and positive on (0, 𝜂], for some 𝜂 > 1.

In the sequel, we denote by 𝐵
+

((0,∞)) the set of
nonnegative Borel measurable functions in (0,∞) and by
𝐶
2−𝛼
([0,∞)) the set of all functions𝑓 such that 𝑡 → 𝑡

2−𝛼

𝑓(𝑡)

is continuous on [0,∞).
We also denote by 𝐶

0
([0,∞)) the set of continuous

functions V on [0,∞) such that lim
𝑡→∞

V(𝑡) = 0. It is easy to
see that 𝐶

0
([0,∞)) is a Banach space with the uniform norm

‖V‖
∞
= sup

𝑡>0
|V(𝑡)|.

For two nonnegative functions 𝑓 and 𝑔 defined on a set
𝑆, the notation 𝑓(𝑡) ≈ 𝑔(𝑡), 𝑡 ∈ 𝑆means that there exists 𝑐 > 0
such that (1/𝑐)𝑓(𝑡) ≤ 𝑔(𝑡) ≤ 𝑐𝑓(𝑡), for all 𝑡 ∈ 𝑆.

Finally, for 𝜆 ∈ R, we put 𝜆+ = max(𝜆, 0).
Throughout this paper we assume that the function 𝑎 is

nonnegative on (0,∞) and satisfies the following condition:
(H) 𝑎 ∈ 𝐶((0,∞)) such that

𝑎 (𝑡) ≈ 𝑡
−𝜆

(1 + 𝑡)
𝜆−𝜇

𝐿
1
(min (𝑡, 1)) 𝐿

2
(max (𝑡, 1)) , 𝑡 > 0,

(8)

where 𝜆 ≤ 2 + (𝛼 − 2)𝜎, 𝜇 ≥ 1 + (𝛼 − 1)𝜎, 𝐿
1
∈K defined on

(0, 𝜂], for some 𝜂 > 1 and 𝐿
2
∈K∞ satisfying

∫

𝜂

0

𝐿
1
(𝑠)

𝑠𝜆−(𝛼−2)𝜎−1
𝑑𝑠 < ∞, ∫

∞

1

𝐿
2
(𝑠)

𝑠𝜇−(𝛼−1)𝜎
𝑑𝑠 < ∞. (9)

In what follows, we put

] = min(1, 2 − 𝜆 + (𝛼 − 2) 𝜎
1 − 𝜎

) ,

𝜁 = max(0,
2 − 𝜇 + (𝛼 − 2) 𝜎

1 − 𝜎
) ,

(10)

and we define the function 𝜃 on (0,∞) by

𝜃 (𝑡) = 𝑡
]
(1 + 𝑡)

𝜁−]
(𝐿̃
1
(min(𝑡, 1)))

1/(1−𝜎)

× (𝐿̃
2
(max(𝑡, 1)))

1/(1−𝜎)

,

(11)

where, for 𝑡 ∈ (0, 𝜂),

𝐿̃
1
(𝑡) =

{{{{{{{

{{{{{{{

{

∫

𝑡

0

𝐿
1
(𝑠)

𝑠
𝑑𝑠 if 𝜆 = 2 + (𝛼 − 2) 𝜎,

𝐿
1
(𝑡) if 1 + (𝛼 − 1) 𝜎 < 𝜆 < 2 + (𝛼 − 2) 𝜎,

∫

𝜂

𝑡

𝐿
1
(𝑠)

𝑠
𝑑𝑠 if 𝜆 = 1 + (𝛼 − 1) 𝜎,

1 if 𝜆 < 1 + (𝛼 − 1) 𝜎
(12)

and, for 𝑡 ≥ 1,

𝐿̃
2
(𝑡) =

{{{{{

{{{{{

{

∫

∞

𝑡

𝐿
2
(𝑠)

𝑠
𝑑𝑠 if 𝜇 = 1 + (𝛼 − 1) 𝜎,

𝐿
2
(𝑡) if 1 + (𝛼 − 1) 𝜎 < 𝜇 < 2 + (𝛼 − 2) 𝜎,

∫

𝑡+1

1

𝐿
2
(𝑠)

𝑠
𝑑𝑠 if 𝜇 = 2 + (𝛼 − 2) 𝜎,

1 if 𝜇 > 2 + (𝛼 − 2) 𝜎.
(13)

Our main result is the following.

Theorem 5. Let 1 < 𝛼 < 2, 𝜎 ∈ (−1, 1) and assume (H). Then
problem (3) has a unique positive solution 𝑢 ∈ 𝐶

2−𝛼
([0,∞))

satisfying, for 𝑡 ∈ (0,∞),

𝑢 (𝑡) ≈ 𝑡
𝛼−2

𝜃 (𝑡) . (14)

Remark 6. Theconclusion ofTheorem 5 remains valid for the
case 𝛼 = 2 and 𝜎 < 1 (see [23]).

The content of this paper is organized as follows. In
Section 2, we present some properties of the Green function
𝐺
𝛼
(𝑡, 𝑠) of the operator 𝑢 → −𝐷

𝛼

𝑢 on (0,∞) with Dirichlet
conditions lim

𝑡→0
𝑡
2−𝛼

𝑢(𝑡) = 0 and lim
𝑡→∞

𝑡
1−𝛼

𝑢(𝑡) = 0.
Next, we give some fundamental properties of the two Kara-
mata classesK andK∞ and we establish sharp estimates on
some potential functions. In Section 3, exploiting the results
of the previous section and using the Schauder fixed point
theorem, we proveTheorem 5.

2. Preliminaries

2.1. Fractional Calculus and Green Function. For the con-
venience of the reader, we recall in this section some basic
definitions on fractional calculus (see [2, 24, 25]) and we give
some properties of the Green function 𝐺

𝛼
(𝑡, 𝑠).
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Definition 7. The Riemann-Liouville fractional integral of
order 𝛽 > 0 of a function ℎ : (0,∞) → R is given by

𝐼
𝛽

ℎ (𝑡) =
1

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

ℎ (𝑠) 𝑑𝑠, 𝑡 > 0, (15)

provided that the right-hand side is pointwise defined on
(0,∞).

Definition 8. The Riemann-Liouville fractional derivative of
order 𝛽 > 0 of a function ℎ : (0,∞) → R is given by

𝐷
𝛽

ℎ (𝑡) =
1

Γ (𝑛 − 𝛽)
(
𝑑

𝑑𝑡
)

𝑛

∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝛽−1

ℎ (𝑠) 𝑑𝑠, 𝑡 > 0,

(16)

where 𝑛 = [𝛽] + 1 provided that the right-hand side is
pointwise defined on (0,∞). Here [𝛽]means the integer part
of the number 𝛽.

So we have the following properties (see [2]).

Proposition 9. (1) Let 𝛽 > 0 and let ℎ ∈ 𝐿1(0,∞), and then
one has

𝐷
𝛽

𝐼
𝛽

ℎ (𝑡) = ℎ (𝑡) , 𝑓𝑜𝑟 𝑡 > 0. (17)

(2) Let 𝛽 > 0, and then

𝐷
𝛽

ℎ (𝑡) = 0 𝑖𝑓𝑓 ℎ (𝑡) =

𝑚

∑

𝑗=1

𝑐
𝑗
𝑡
𝛽−𝑗

, (18)

where 𝑚 is the smallest integer greater than or equal to 𝛽 and
(𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑚
) ∈ R𝑚.

Corollary 10. Let 𝛽 > 0 and assume that 𝐷𝛽ℎ ∈ 𝐿
1

(0,∞).
Then,

𝐼
𝛽

𝐷
𝛽

ℎ (𝑡) = ℎ (𝑡) + 𝑐
1
𝑡
𝛽−1

+ 𝑐
2
𝑡
𝛽−2

+ ⋅ ⋅ ⋅ + 𝑐
𝑚
𝑡
𝛽−𝑚

, 𝑡 > 0,

(19)

where 𝑚 is the smallest integer greater than or equal to 𝛽 and
(𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑚
) ∈ R𝑚.

Lemma 11. Let 1 < 𝛼 < 2 and ℎ ∈ 𝐿
1

(0,∞). The unique
solution of

𝐷
𝛼

𝑢 (𝑡) + ℎ (𝑡) = 0, 𝑡 > 0

lim
𝑡→0

𝑡
2−𝛼

𝑢 (𝑡) = 0, lim
𝑡→∞

𝑡
1−𝛼

𝑢 (𝑡) = 0

(20)

is given by

𝑢 (𝑡) = ∫

∞

0

𝐺
𝛼
(𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠, (21)

where

𝐺
𝛼
(𝑡, 𝑠) =

1

Γ (𝛼)
[𝑡
𝛼−1

− ((𝑡 − 𝑠)
+

)
𝛼−1

] (22)

is Green’s function for the boundary value problem (20).

Proof. We may apply Corollary 10 and Proposition 9 to
reduce equation 𝐷𝛼𝑢(𝑡) + ℎ(𝑡) = 0 to an equivalent integral
equation

𝑢 (𝑡) = −𝐼
𝛼

ℎ (𝑡) + 𝑐
1
𝑡
𝛼−1

+ 𝑐
2
𝑡
𝛼−2

, (23)

where (𝑐
1
, 𝑐
2
) ∈ R2. Hence the general solution of 𝐷𝛼𝑢(𝑡) +

ℎ(𝑡) = 0 is

𝑢 (𝑡) = 𝑐
1
𝑡
𝛼−1

+ 𝑐
2
𝑡
𝛼−2

−
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

ℎ (𝑠) 𝑑𝑠. (24)

By using lim
𝑡→0

𝑡
2−𝛼

𝑢(𝑡) = 0 and lim
𝑡→∞

𝑡
1−𝛼

𝑢(𝑡) = 0, we get

𝑐
2
= 0, 𝑐

1
=

1

Γ (𝛼)
∫

∞

0

ℎ (𝑠) 𝑑𝑠. (25)

Therefore, the unique solution of problem (20) is

𝑢 (𝑡) =
𝑡
𝛼−1

Γ (𝛼)
∫

∞

0

ℎ (𝑠) 𝑑𝑠 −
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

ℎ (𝑠) 𝑑𝑠

= ∫

∞

0

𝐺
𝛼
(𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠.

(26)

The proof is complete.

Next we give sharp estimates on the Green function
𝐺
𝛼
(𝑡, 𝑠). To this end, we need the following lemma.

Lemma 12. (i) For 𝜆, 𝜇 ∈ (0,∞) and 𝑥 ∈ [0, 1], one has

min(1,
𝜇

𝜆
) (1 − 𝑥

𝜆

) ≤ 1 − 𝑥
𝜇

≤ max (1,
𝜇

𝜆
) (1 − 𝑥

𝜆

) .

(27)

(ii) For (𝑡, 𝑠) ∈ (0,∞) × (0,∞) one has

min (1, 𝑡)min (1, 𝑠) ≤ min (𝑡, 𝑠) ≤ max (1, 𝑡)min (1, 𝑠) .
(28)

Proposition 13. The Green function 𝐺
𝛼
(𝑡, 𝑠) defined by (22)

satisfies

𝐺
𝛼
(𝑡, 𝑠) ≈ 𝑡

𝛼−2min (𝑡, 𝑠) , 𝑓𝑜𝑟 (𝑡, 𝑠) ∈ (0,∞) × (0,∞) .

(29)

Proof. For (𝑡, 𝑠) ∈ (0,∞) × (0,∞) we have

𝐺
𝛼
(𝑡, 𝑠) =

𝑡
𝛼−1

Γ (𝛼)
[1 − (

(𝑡 − 𝑠)
+

𝑡
)

𝛼−1

] . (30)

Since ((𝑡 − 𝑠)+/𝑡) ∈ [0, 1) for (𝑡, 𝑠) ∈ (0,∞) × (0,∞), then by
applying Lemma 12 (i) with 𝜇 = 𝛼 − 1 and 𝜆 = 1, we obtain

𝐺
𝛼
(𝑡, 𝑠) ≈ 𝑡

𝛼−1

[1 − (
(𝑡 − 𝑠)

+

𝑡
)] = 𝑡

𝛼−2min (𝑡, 𝑠) . (31)

From here on, we define the potential kernel 𝐺
𝛼
on

𝐵
+

((0,∞)) by

𝐺
𝛼
ℎ (𝑡) := ∫

∞

0

𝐺
𝛼
(𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠, for 𝑡 > 0. (32)
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Using Proposition 13 and Lemma 12 (ii), we deduce the
following.

Corollary 14. Let 1 < 𝛼 < 2 and ℎ ∈ 𝐵+((0,∞)), and then
the function 𝑡 → 𝐺

𝛼
ℎ(𝑡) belongs to 𝐶

2−𝛼
([0,∞)) if and only

if the integral ∫∞
0

min(1, 𝑠)ℎ(𝑠)𝑑𝑠 converges.

Proposition 15. Let 1 < 𝛼 < 2 and 𝑓 be a function such that
the map 𝑠 → min(1, 𝑠)𝑓(𝑠) is continuous and integrable on
(0,∞). Then𝐺

𝛼
𝑓 is the unique solution in 𝐶

2−𝛼
([0,∞)) of the

boundary value problem

𝐷
𝛼

𝑢 (𝑡) + 𝑓 (𝑡) = 0, 𝑡 > 0

lim
𝑡→0

𝑡
2−𝛼

𝑢 (𝑡) = 0, lim
𝑡→∞

𝑡
1−𝛼

𝑢 (𝑡) = 0.

(33)

Proof. FromCorollary 14, the function𝐺
𝛼
𝑓 is well defined in

(0,∞). Using Proposition 13 and Lemma 12 (ii), we get

𝐺
𝛼

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨 (𝑡) ≤ 𝑐 (𝑡

𝛼−2

(𝑡 + 1) ∫

∞

0

min (1, 𝑠) 󵄨󵄨󵄨󵄨𝑓 (𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠) . (34)

This implies that 𝐼2−𝛼(𝐺
𝛼
|𝑓|) is finite on (0,∞). So by using

Fubini’s theorem, we obtain

𝐼
2−𝛼

(𝐺
𝛼
𝑓) (𝑡)

=
1

Γ (2 − 𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
1−𝛼

𝐺
𝛼
𝑓 (𝑠) 𝑑𝑠

=
1

Γ (2 − 𝛼)
∫

∞

0

(∫

𝑡

0

(𝑡 − 𝑠)
1−𝛼

𝐺
𝛼
(𝑠, 𝑟) 𝑑𝑠)𝑓 (𝑟) 𝑑𝑟.

(35)

Observe that by considering the substitution 𝑠 = 𝑟 + (𝑡 − 𝑟)𝜃,
we obtain

∫

𝑡

𝑟

(𝑡 − 𝑠)
1−𝛼

(𝑠 − 𝑟)
𝛼−1

𝑑𝑠 = Γ (𝛼) Γ (2 − 𝛼) (𝑡 − 𝑟) . (36)

Using this fact and (22) we deduce that

1

Γ (2 − 𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
1−𝛼

𝐺
𝛼
(𝑠, 𝑟) 𝑑𝑠

=
1

Γ (2 − 𝛼) Γ (𝛼)

× [∫

𝑡

0

(𝑡 − 𝑠)
1−𝛼

𝑠
𝛼−1

𝑑𝑠 − ∫

𝑡

0

(𝑡 − 𝑠)
1−𝛼

((𝑠 − 𝑟)
+

)
𝛼−1

𝑑𝑠]

= 𝑡 −
1

Γ (2 − 𝛼) Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
1−𝛼

((𝑠 − 𝑟)
+

)
𝛼−1

𝑑𝑠.

(37)

Now, assume that 𝑟 ≤ 𝑡, and then by (36) we have

∫

𝑡

0

(𝑡 − 𝑠)
1−𝛼

((𝑠 − 𝑟)
+

)
𝛼−1

𝑑𝑠

= ∫

𝑡

𝑟

(𝑡 − 𝑠)
1−𝛼

(𝑠 − 𝑟)
𝛼−1

𝑑𝑠 = Γ (𝛼) Γ (2 − 𝛼) (𝑡 − 𝑟) .

(38)

On the other hand, if 𝑡 ≤ 𝑟 and 𝑠 ∈ (0, 𝑡), we have

∫

𝑡

0

(𝑡 − 𝑠)
1−𝛼

((𝑠 − 𝑟)
+

)
𝛼−1

𝑑𝑠 = 0. (39)

So combining (38) and (39), we obtain

1

Γ (2 − 𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
1−𝛼

𝐺
𝛼
(𝑠, 𝑟) 𝑑𝑠 = 𝑡 − (𝑡 − 𝑟)

+

= min (𝑡, 𝑟) .

(40)

This implies that

𝐼
2−𝛼

(𝐺
𝛼
𝑓) (𝑡) = ∫

∞

0

min (𝑡, 𝑟) 𝑓 (𝑟) 𝑑𝑟

= ∫

𝑡

0

𝑟𝑓 (𝑟) 𝑑𝑟 + 𝑡 ∫

∞

𝑡

𝑓 (𝑟) 𝑑𝑟,

(41)

and𝐷𝛼(𝐺
𝛼
𝑓)(𝑡) = (𝑑

2

/𝑑𝑡
2

)(𝐼
2−𝛼

(𝐺
𝛼
𝑓))(𝑡) = −𝑓(𝑡), for 𝑡 > 0.

Moreover, using Proposition 13 and the dominated con-
vergence theorem, we deduce that

lim
𝑡→0

𝑡
2−𝛼

𝐺
𝛼
𝑓 (𝑡) = 0, lim

𝑡→∞

𝑡
1−𝛼

𝐺
𝛼
𝑓 (𝑡) = 0. (42)

Finally, we need to prove the uniqueness. Let 𝑢, V ∈

𝐶
2−𝛼
([0,∞)) be two solutions of (33) and put 𝜔 = 𝑢 − V.

Then 𝜔 ∈ 𝐶
2−𝛼
([0,∞)) and 𝐷𝛼𝜔 = 0. Hence, it follows from

Corollary 10 that 𝜔(𝑡) = 𝑐
1
𝑡
𝛼−1

+ 𝑐
2
𝑡
𝛼−2. Using the fact that

lim
𝑡→0

𝑡
2−𝛼

𝜔(𝑡) = lim
𝑡→∞

𝑡
1−𝛼

𝜔(𝑡) = 0, we deduce that𝜔 = 0
and therefore 𝑢 = V. The proof is complete.

2.2. Sharp Estimates on the Potential of Some Karamata
Functions. We collect in this paragraph some properties of
functions belonging to theKaramata classK (resp.,K∞) and
we give estimates on some potential functions.

Proposition 16 (see [26, 27]). (i) Let 𝐿
1
, 𝐿
2
∈ K (resp,K∞)

and 𝑝 ∈ R. Then the functions

𝐿
1
+ 𝐿
2
, 𝐿
1
𝐿
2
𝑎𝑛𝑑 𝐿

𝑝

1
𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠 K (resp, K∞) .

(43)

(ii) Let 𝐿 be a function inK (resp.,K∞) and 𝜀 > 0. Then one
has

lim
𝑡→0
+

𝑡
𝜀

𝐿 (𝑡) = 0, (𝑟𝑒𝑠𝑝. lim
𝑡→∞

𝑡
−𝜀

𝐿 (𝑡) = 0) . (44)

Theorem 17 (see [26, 27]). (a) Let 𝛾 ∈ R and 𝐿 be a function
inK defined on (0, 𝜂]. One has the following.

(i) If 𝛾 < −1, then ∫
𝜂

0

𝑠
𝛾

𝐿(𝑠)𝑑𝑠 diverges and ∫𝜂
𝑡

𝑠
𝛾

𝐿(𝑠)

𝑑𝑠 ∼
𝑡→0
+

−𝑡
𝛾+1

𝐿(𝑡)/(𝛾 + 1).

(ii) If 𝛾 > −1, then ∫𝜂
0

𝑠
𝛾

𝐿(𝑠)𝑑𝑠 converges and ∫𝑡
0

𝑠
𝛾

𝐿(𝑠)

𝑑𝑠 ∼
𝑡→0
+

𝑡
𝛾+1

𝐿(𝑡)/(𝛾 + 1).

(b) Let 𝛾 ∈ R and 𝐿 be a function in K∞. One has the
following.



Abstract and Applied Analysis 5

(i) If 𝛾 > −1, then ∫∞
1

𝑠
𝛾

𝐿(𝑠)𝑑𝑠 diverges and ∫𝑡
1

𝑠
𝛾

𝐿(𝑠)

𝑑𝑠 ∼
𝑡→∞

𝑡
𝛾+1

𝐿(𝑡)/(𝛾 + 1).

(ii) If 𝛾 < −1, then ∫∞
1

𝑠
𝛾

𝐿(𝑠)𝑑𝑠 converges and ∫∞
𝑡

𝑠
𝛾

𝐿(𝑠)

𝑑𝑠 ∼
𝑡→∞

−𝑡
𝛾+1

𝐿(𝑡)/(𝛾 + 1).

The proof of the next lemma can be found in [11].

Lemma 18. Let 𝐿 be a function in K defined on (0, 𝜂]. Then
one has

lim
𝑡→0
+

𝐿 (𝑡)

∫
𝜂

𝑡

(𝐿 (𝑠) /𝑠) 𝑑𝑠

= 0. (45)

In particular,

𝑡 󳨀→ ∫

𝜂

𝑡

𝐿 (𝑠)

𝑠
𝑑𝑠 ∈K. (46)

If further ∫𝜂
0

(𝐿(𝑠)/𝑠)𝑑𝑠 converges, then one has lim
𝑡→0
+(𝐿(𝑡)/

∫
𝑡

0

(𝐿(𝑠)/𝑠)𝑑𝑠) = 0.
In particular,

𝑡 󳨀→ ∫

𝑡

0

𝐿 (𝑠)

𝑠
𝑑𝑠 ∈K. (47)

In the next lemma, we have the following properties
related to the classK∞. For the proof we refer to [22].

Lemma 19. Let 𝐿 be a function inK∞. Then one has

lim
𝑡→∞

𝐿 (𝑡)

∫
𝑡

1

(𝐿 (𝑠) /𝑠) 𝑑𝑠

= 0. (48)

In particular,

𝑡 󳨀→ ∫

𝑡+1

1

𝐿 (𝑠)

𝑠
𝑑𝑠 ∈K

∞

. (49)

If further ∫∞
1

(𝐿(𝑠)/𝑠)𝑑𝑠 converges, then one has

lim
𝑡→∞

𝐿 (𝑡)

∫
∞

𝑡

(𝐿 (𝑠) /𝑠) 𝑑𝑠

= 0. (50)

In particular,

𝑡 󳨀→ ∫

∞

𝑡

𝐿 (𝑠)

𝑠
𝑑𝑠 ∈K

∞

. (51)

Now, we put

𝑏 (𝑡) = 𝑡
−𝛽

(1 + 𝑡)
𝛽−𝛾

𝐿
3
(min (𝑡, 1)) 𝐿

4
(max (𝑡, 1)) , 𝑡 > 0,

(52)

where 𝐿
3
∈ K and 𝐿

4
∈ K∞. We aim at giving sharp

estimates on the potential function 𝐺
𝛼
𝑏(𝑡).

Proposition 20. Assume that 𝐿
3
∈ K defined on (0, 𝜂], for

some 𝜂 > 1 and 𝐿
4
∈K∞. Let 𝛽 ≤ 2 and 𝛾 ≥ 1 such that

∫

𝜂

0

𝑠
1−𝛽

𝐿
3
(𝑠) 𝑑𝑠 < ∞, ∫

∞

1

𝑠
−𝛾

𝐿
4
(𝑠) 𝑑𝑠 < ∞. (53)

Then for 𝑡 > 0

𝐺
𝛼
𝑏 (𝑡) ≈ 𝑡

𝛼−2

𝜓
𝛽
(min (𝑡, 1)) 𝜙

𝛾
(max (𝑡, 1)) , (54)

where, for 𝑡 ∈ (0, 1],

𝜓
𝛽
(𝑡) =

{{{{{{{

{{{{{{{

{

∫

𝑡

0

𝐿
3
(𝑠)

𝑠
𝑑𝑠 if 𝛽 = 2,

𝑡
2−𝛽

𝐿
3
(𝑡) if 1 < 𝛽 < 2,

𝑡∫

𝜂

𝑡

𝐿
3
(𝑠)

𝑠
𝑑𝑠 if 𝛽 = 1,

𝑡 if 𝛽 < 1

(55)

and, for 𝑡 ≥ 1,

𝜙
𝛾
(𝑡) =

{{{{{{{

{{{{{{{

{

𝑡∫

∞

𝑡

𝐿
4
(𝑠)

𝑠
𝑑𝑠 if 𝛾 = 1,

𝑡
2−𝛾

𝐿
4
(𝑡) if 1 < 𝛾 < 2,

∫

𝑡+1

1

𝐿
4
(𝑠)

𝑠
𝑑𝑠 if 𝛾 = 2,

1 if 𝛾 > 2.

(56)

Proof. Using Proposition 13 and Remark 4, we have

𝑡
2−𝛼

𝐺
𝛼
𝑏 (𝑡) ≈ ∫

𝜂

0

min (𝑡, 𝑠) 𝑠−𝛽𝐿
3
(𝑠) 𝑑𝑠

+ ∫

∞

𝜂

min (𝑡, 𝑠) 𝑠−𝛾𝐿
4
(𝑠) 𝑑𝑠

= 𝐼 (𝑡) + 𝐽 (𝑡) .

(57)

Case 1. Assume that 0 < 𝑡 ≤ 1.
By using (53), we deduce that

𝐽 (𝑡) ≈ 𝑡. (58)

On the other hand,

𝐼 (𝑡) = ∫

𝑡

0

𝑠
1−𝛽

𝐿
3
(𝑠) 𝑑𝑠 + 𝑡 ∫

𝜂

𝑡

𝑠
−𝛽

𝐿
3
(𝑠) 𝑑𝑠

= 𝐼
1
(𝑡) + 𝐼

2
(𝑡) .

(59)

UsingTheorem 17 and hypothesis (53), we deduce that

𝐼
1
(𝑡) ≈

{

{

{

𝑡
2−𝛽

𝐿
3
(𝑡) if 𝛽 < 2,

∫

𝑡

0

𝐿
3
(𝑠)

𝑠
𝑑𝑠 if 𝛽 = 2,

𝐼
2
(𝑡) ≈

{

{

{

𝑡
2−𝛽

𝐿
3
(𝑡) if 1 < 𝛽 ≤ 2,

𝑡∫

𝜂

𝑡

𝑠
−𝛽

𝐿
3
(𝑠) 𝑑𝑠 if 𝛽 ≤ 1.

(60)
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Hence, it follows by Lemma 18, Proposition 16, and hypothe-
sis (53) that

𝐼 (𝑡) ≈

{{{{{{{

{{{{{{{

{

∫

𝑡

0

𝐿
3
(𝑠)

𝑠
𝑑𝑠 if 𝛽 = 2,

𝑡
2−𝛽

𝐿
3
(𝑡) if 1 < 𝛽 < 2,

𝑡∫

𝜂

𝑡

𝐿
3
(𝑠)

𝑠
𝑑𝑠 if 𝛽 = 1,

𝑡 if 𝛽 < 1.

(61)

Combining (58) and (61) and using Proposition 16 and
hypothesis (53), we deduce that, for 0 < 𝑡 ≤ 1,

𝑡
2−𝛼

𝐺
𝛼
𝑏 (𝑡) ≈ 𝜓

𝛽
(𝑡) . (62)

Case 2. Assume that 𝑡 > 𝜂 + 1.

By using (53), we deduce that

𝐼 (𝑡) ≈ 1. (63)

On the other hand,

𝐽 (𝑡) = ∫

𝜂

𝑡

𝑠
1−𝛾

𝐿
4
(𝑠) 𝑑𝑠 + 𝑡 ∫

∞

𝑡

𝑠
−𝛾

𝐿
4
(𝑠) 𝑑𝑠

= 𝐽
1
(𝑡) + 𝐽

2
(𝑡) .

(64)

Using againTheorem 17 and hypothesis (53), we deduce that

𝐽
1
(𝑡) ≈

{{

{{

{

𝑡
2−𝛾

𝐿
4
(𝑡) if 1 ≤ 𝛾 < 2,

∫

𝑡

𝜂

𝑠
1−𝛾

𝐿
4
(𝑠) 𝑑𝑠 if 𝛾 ≥ 2,

𝐽
2
(𝑡) ≈

{

{

{

𝑡
2−𝛾

𝐿
4
(𝑡) if 𝛾 > 1,

𝑡∫

∞

𝑡

𝐿
4
(𝑠)

𝑠
𝑑𝑠 if 𝛾 = 1.

(65)

Hence, it follows from Lemma 19 and hypothesis (53) that

𝐽 (𝑡) ≈

{{{{{{{

{{{{{{{

{

𝑡∫

∞

𝑡

𝐿
4
(𝑠)

𝑠
𝑑𝑠 if 𝛾 = 1,

𝑡
2−𝛾

𝐿
4
(𝑡) if 1 < 𝛾 < 2,

∫

𝑡

𝜂

𝐿
4
(𝑠)

𝑠
𝑑𝑠 if 𝛾 = 2,

1 if 𝛾 > 2.

(66)

Combining (63) and (66) and using Proposition 16, hypothe-
sis (53), and Remark 4, we deduce that, for 𝑡 > 𝜂 + 1,

𝑡
2−𝛼

𝐺
𝛼
𝑏 (𝑡) ≈

{{{{{{{

{{{{{{{

{

𝑡∫

∞

𝑡

𝐿
4
(𝑠)

𝑠
𝑑𝑠 if 𝛾 = 1,

𝑡
2−𝛾

𝐿
4
(𝑡) if 1 < 𝛾 < 2,

∫

𝑡

𝜂

𝐿
4
(𝑠)

𝑠
𝑑𝑠 if 𝛾 = 2,

1 if 𝛾 > 2.

≈ 𝜙
𝛾
(𝑡) .

(67)

Now since the functions 𝑡 → 𝑡
2−𝛼

𝐺
𝛼
𝑏(𝑡) and 𝑡 → 𝜙

𝛾
(𝑡)

are positive and continuous on [1, 𝜂 + 1], we deduce that, for
𝑡 ∈ [1, 𝜂 + 1],

𝑡
2−𝛼

𝐺
𝛼
𝑏 (𝑡) ≈ 𝜙

𝛾
(𝑡) . (68)

Finally, using (62), (67), and (68), we obtain the required
result.

3. Proof of the Main Result

The next lemma will play a crucial role in the proof of
Theorem 5

Lemma 21. Assume that the function 𝑎 satisfies (H) and put
𝜔(𝑡) = 𝑎(𝑡)𝑡

(𝛼−2)𝜎

𝜃
𝜎

(𝑡) for 𝑡 > 0. Then one has for 𝑡 ∈ (0,∞)

𝑡
2−𝛼

𝐺
𝛼
𝜔 (𝑡) ≈ 𝜃 (𝑡) . (69)

Proof. We recall that

] = min(1, 2 − 𝜆 + (𝛼 − 2) 𝜎
1 − 𝜎

) ,

𝜁 = max(0,
2 − 𝜇 + (𝛼 − 2) 𝜎

1 − 𝜎
) ,

𝜃 (𝑡) = 𝑡
]
(1 + 𝑡)

𝜁−]
(𝐿̃
1
(min(𝑡, 1)))

1/(1−𝜎)

× (𝐿̃
2
(max(𝑡, 1)))

1/(1−𝜎)

,

(70)

where, for 𝑡 ∈ (0, 1],

𝐿̃
1
(𝑡) =

{{{{{{{

{{{{{{{

{

∫

𝑡

0

𝐿
1
(𝑠)

𝑠
𝑑𝑠 if 𝜆 = 2 + (𝛼 − 2) 𝜎,

𝐿
1
(𝑡) if 1 + (𝛼 − 1) 𝜎 < 𝜆 < 2 + (𝛼 − 2) 𝜎,

∫

𝜂

𝑡

𝐿
1
(𝑠)

𝑠
𝑑𝑠 if 𝜆 = 1 + (𝛼 − 1) 𝜎,

1 if 𝜆 < 1 + (𝛼 − 1) 𝜎
(71)

and, for 𝑡 ≥ 1,

𝐿̃
2
(𝑡) =

{{{{{

{{{{{

{

∫

∞

𝑡

𝐿
2
(𝑠)

𝑠
𝑑𝑠 if 𝜇 = 1 + (𝛼 − 1) 𝜎,

𝐿
2
(𝑡) if 1 + (𝛼 − 1) 𝜎 < 𝜇 < 2 + (𝛼 − 2) 𝜎,

∫

𝑡+1

1

𝐿
2
(𝑠)

𝑠
𝑑𝑠 if 𝜇 = 2 + (𝛼 − 2) 𝜎,

1 if 𝜇 > 2 + (𝛼 − 2) 𝜎.
(72)

For 𝑡 > 0, we have
𝜔 (𝑡)

≈ 𝑡
−𝜆+]𝜎+(𝛼−2)𝜎

(1 + 𝑡)
𝜆−𝜇+(𝜁−])𝜎

× 𝐿
1
(min (𝑡, 1)) (𝐿̃

1
(min(𝑡, 1)))

𝜎/(1−𝜎)

× 𝐿
2
(max (𝑡, 1)) (𝐿̃

2
(max(𝑡, 1)))

𝜎/(1−𝜎)

.

(73)

Using Proposition 20 with 𝛽 = 𝜆 − ]𝜎 − (𝛼 − 2)𝜎 and 𝛾 =

𝜇 − 𝜁𝜎 − (𝛼 − 2)𝜎, 𝐿
3
(𝑡) = 𝐿

1
(𝑡)(𝐿̃
1
(𝑡))
𝜎/(1−𝜎) and 𝐿

4
(𝑡) =

𝐿
2
(𝑡)(𝐿̃
2
(𝑡))
𝜎/(1−𝜎), we obtain for 𝑡 ∈ (0, 1]
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𝑡
2−𝛼

𝐺
𝛼
𝜔 (𝑡) ≈

{{{{{{{{

{{{{{{{{

{

∫

𝑡

0

𝐿
1
(𝑠)

𝑠
(∫

𝑠

0

𝐿
1
(𝑟)

𝑟
𝑑𝑟)

𝜎/(1−𝜎)

𝑑𝑠 if 𝜆 = 2 + (𝛼 − 2) 𝜎,

𝑡
(2−𝜆+(𝛼−2)𝜎)/(1−𝜎)

𝐿
1
(𝑡) (𝐿
1
(𝑡))
𝜎/(1−𝜎) if 1 + (𝛼 − 1) 𝜎 < 𝜆 < 2 + (𝛼 − 2) 𝜎,

𝑡∫

𝜂

𝑡

𝐿
1
(𝑠)

𝑠
(∫

𝜂

𝑠

𝐿
1
(𝑟)

𝑟
𝑑𝑟)

𝜎/(1−𝜎)

𝑑𝑠 if 𝜆 = 1 + (𝛼 − 1) 𝜎,

𝑡 if 𝜆 < 1 + (𝛼 − 1) 𝜎,

≈

{{{{{{{{

{{{{{{{{

{

∫

𝑡

0

(
𝐿
1
(𝑠)

𝑠
𝑑𝑠)

1/(1−𝜎)

if 𝜆 = 2 + (𝛼 − 2) 𝜎,

𝑡
(2−𝜆+(𝛼−2)𝜎)/(1−𝜎)

(𝐿
1
(𝑡))
1/(1−𝜎) if 1 + (𝛼 − 1) 𝜎 < 𝜆 < 2 + (𝛼 − 2) 𝜎,

𝑡(∫

𝜂

𝑡

𝐿
1
(𝑠)

𝑠
𝑑𝑠)

1/(1−𝜎)

if 𝜆 = 1 + (𝛼 − 1) 𝜎,

𝑡 if 𝜆 < 1 + (𝛼 − 1) 𝜎,

≈ 𝜃 (𝑡) .

(74)

On the other hand, using again Proposition 20 andRemark 4,
we get, for 𝑡 ≥ 1,

𝑡
2−𝛼

𝐺
𝛼
𝜔 (𝑡) ≈

{{{{{{{{

{{{{{{{{

{

𝑡∫

∞

𝑡

𝐿
2
(𝑠)

𝑠
(∫

∞

𝑠

𝐿
2
(𝑟)

𝑟
𝑑𝑟)

𝜎/(1−𝜎)

𝑑𝑠 if 𝜇 = 1 + (𝛼 − 1) 𝜎,

𝑡
𝜁

𝐿
2
(𝑡) (𝐿
2
(𝑡))
𝜎/(1−𝜎) if 1 + (𝛼 − 1) 𝜎 < 𝜇 < 2 + (𝛼 − 2) 𝜎,

∫

𝑡+1

1

𝐿
2
(𝑠)

𝑠
(∫

𝑠+1

1

𝐿
2
(𝑟)

𝑟
𝑑𝑟)

𝜎/(1−𝜎)

𝑑𝑠 if 𝜇 = 2 + (𝛼 − 2) 𝜎,

1 if 𝜇 > 2 + (𝛼 − 2) 𝜎.

≈

{{{{{{{{

{{{{{{{{

{

𝑡(∫

∞

𝑡

𝐿
2
(𝑠)

𝑠
𝑑𝑠)

1/(1−𝜎)

if 𝜇 = 1 + (𝛼 − 1) 𝜎,

𝑡
𝜁

(𝐿
2
(𝑡))
1/(1−𝜎) if 1 + (𝛼 − 1) 𝜎 < 𝜇 < 2 + (𝛼 − 2) 𝜎,

(∫

𝑡+1

1

𝐿
2
(𝑠)

𝑠
𝑑𝑠)

1/(1−𝜎)

if 𝜇 = 2 + (𝛼 − 2) 𝜎,

1 if 𝜇 > 2 + (𝛼 − 2) 𝜎.

≈ 𝜃 (𝑡) .

(75)

This completes the proof.

Proof of Theorem 5. FromLemma 21, there exists𝑀 > 1 such
that for each 𝑡 > 0

1

𝑀
𝜃 (𝑡) ≤ 𝑡

2−𝛼

𝐺
𝛼
𝜔 (𝑡) ≤ 𝑀𝜃 (𝑡) , (76)

where 𝜔(𝑡) = 𝑎(𝑡)𝑡(𝛼−2)𝜎𝜃𝜎(𝑡).
Put 𝑐
0
= 𝑀
1/(1−|𝜎|) and let

Λ = {V ∈ 𝐶
0
([0,∞)) :

𝜃 (𝑡)

𝑐
0
(1 + 𝑡)

≤ V (𝑡) ≤
𝑐
0
𝜃 (𝑡)

1 + 𝑡
, 𝑡 > 0} .

(77)

In order to use a fixed point theorem, we define the operator
𝑇 on Λ by

𝑇V (𝑡) =
𝑡
2−𝛼

1 + 𝑡
∫

∞

0

𝐺
𝛼
(𝑡, 𝑠) 𝑎 (𝑠) 𝑠

(𝛼−2)𝜎

(1 + 𝑠)
𝜎V𝜎 (𝑠) 𝑑𝑠.

(78)

For this choice of 𝑐
0
and using (76), we easily prove that for

all V ∈ Λ and 𝑡 > 0

𝑇V (𝑡) ≤
𝑐
0
𝜃 (𝑡)

1 + 𝑡
, 𝑇V (𝑡) ≥

𝜃 (𝑡)

𝑐
0
(1 + 𝑡)

. (79)
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On the other hand, using Proposition 13 and Lemma 12 (ii),
there exists 𝑐 > 0 such that for all 𝑡, 𝑠 > 0, we have

𝑡
2−𝛼

𝐺
𝛼
(𝑡, 𝑠)

1 + 𝑡
≤ 𝑐min (1, 𝑠) . (80)

This implies that there exists 𝑐 > 0 such that, for each V ∈ Λ
and 𝑡 > 0,

|𝑇V (𝑡)| ≤ 𝑐 ∫
∞

0

min (1, 𝑠) 𝜔 (𝑠) 𝑑𝑠. (81)

Now by hypothesis (H) and Theorem 17, the function 𝑡 →

min(1, 𝑡)𝜔(𝑡) is in 𝐿1(0,∞), which implies that the family
{𝑇V(𝑡), V ∈ Λ} is uniformly bounded.

Using (80) and the fact that, for each 𝑠 > 0, the function
𝑡 → (𝑡

2−𝛼

𝐺
𝛼
(𝑡, 𝑠))/(1 + 𝑡) is in 𝐶

0
([0,∞)), we deduce that

the family {𝑇V(𝑡), V ∈ Λ} is equicontinuous in [0,∞].
Hence, it follows by Ascoli’s theorem that 𝑇(Λ) is rela-

tively compact in 𝐶
0
([0,∞)) and therefore 𝑇(Λ) ⊂ Λ.

Next, we will prove the continuity of 𝑇 in the supremum
norm. Let (V

𝑘
)
𝑘
be a sequence in Λ which converges to V in

Λ. Using again (80) and Lebesgue’s theorem, we deduce that
𝑇V
𝑘
(𝑡) → 𝑇V(𝑡) as 𝑘 → ∞, for 𝑡 > 0.
Since 𝑇(Λ) is relatively compact in 𝐶

0
([0,∞)), then the

pointwise convergence implies the uniform convergence.
Thus we have proved that 𝑇 is a compact mapping from Λ

to itself.
Now, the Schauder fixed point theorem implies the

existence of V ∈ Λ such that

V (𝑡) =
𝑡
2−𝛼

1 + 𝑡
∫

∞

0

𝐺
𝛼
(𝑡, 𝑠) 𝑎 (𝑠) 𝑠

(𝛼−2)𝜎

(1 + 𝑠)
𝜎V𝜎 (𝑠) 𝑑𝑠. (82)

Put 𝑢(𝑡) = 𝑡
𝛼−2

(1 + 𝑡)V(𝑡). Then 𝑢 ∈ 𝐶
2−𝛼
([0,∞)) and 𝑢

satisfies the equation

𝑢 (𝑡) = 𝐺
𝛼
(𝑎𝑢
𝜎

) (𝑡) . (83)

Since the function 𝑠 → min(1, 𝑠)𝑎(𝑠)𝑢𝜎(𝑠) is continuous and
integrable on (0,∞), then by Proposition 15, the function 𝑢 is
a positive solution in 𝐶

2−𝛼
([0,∞)) of problem (3).

Finally, it remains to prove that 𝑢 is the unique pos-
itive solution in 𝐶

2−𝛼
([0,∞)) satisfying (14). To this end,

assume that problem (3) has two positive solutions 𝑢, V ∈

𝐶
2−𝛼
([0,∞)) satisfying (14).Then there exists a constant𝑚 >

1 such that
1

𝑚
≤
𝑢

V
≤ 𝑚. (84)

This implies that the set

𝐽 = {𝑚 ≥ 1 :
1

𝑚
≤
𝑢

V
≤ 𝑚} (85)

is not empty. Let 𝑐 = inf 𝐽. Then 𝑐 ≥ 1 and we have (1/𝑐)V ≤
𝑢 ≤ 𝑐V. It follows that 𝑢𝜎 ≤ 𝑐|𝜎|V𝜎 and consequently

−𝐷
𝛼

(𝑐
|𝜎|V − 𝑢) = 𝑎 (𝑐|𝜎|V𝜎 − 𝑢𝜎) ≥ 0, (86)

lim
𝑡→0

𝑡
2−𝛼

(𝑐
|𝜎|V − 𝑢) (𝑡) = 0, lim

𝑡→∞

𝑡
1−𝛼

(𝑐
|𝜎|V − 𝑢) (𝑡) = 0.

(87)

This implies by Proposition 15 that 𝑐|𝜎|V − 𝑢 = 𝐺
𝛼
(𝑎(𝑐
|𝜎|V𝜎 −

𝑢
𝜎

)) ≥ 0. By symmetry, we obtain also V ≤ 𝑐|𝜎|𝑢. Hence 𝑐|𝜎| ∈
𝐽 and 𝑐 ≤ 𝑐

|𝜎|. Since |𝜎| < 1, then 𝑐 = 1 and therefore 𝑢 =

V.

Example 22. Let 1 < 𝛼 < 2, 𝜎 ∈ (−1, 1), and 𝑎 be a positive
continuous function on (0,∞) such that

𝑎 (𝑡) ≈ 𝑡
−𝜆

(1 + 𝑡)
𝜆−𝜇 log( 2

min (𝑡, 1)
) , 𝑡 > 0, (88)

where𝜆 < 2+(𝛼−2)𝜎 and𝜇 > 1+(𝛼−1)𝜎.Then byTheorem 5,
problem (3) has a unique positive solution 𝑢 ∈ 𝐶

2−𝛼
([0,∞))

satisfying, for 𝑡 > 0,

𝑢 (𝑡) ≈ 𝑡
𝛼−2+]

(1 + 𝑡)
𝜁−]
(𝐿̃
1
(min(𝑡, 1)))

1/(1−𝜎)

× (𝐿̃
2
(max(𝑡, 1)))

1/(1−𝜎)

,

(89)

where ] = min(1, (2 − 𝜆 + (𝛼 − 2)𝜎)/(1 − 𝜎)), 𝜁 = max(0, (2 −
𝜇 + (𝛼 − 2)𝜎)/(1 − 𝜎)),

𝐿̃
1
(𝑡) =

{{{

{{{

{

log(2
𝑡
) if 1 + (𝛼 − 1) 𝜎 < 𝜆 < 2 + (𝛼 − 2) 𝜎,

(log(2
𝑡
))

2

if 𝜆 = 1 + (𝛼 − 1) 𝜎,
1 if 𝜆 < 1 + (𝛼 − 1) 𝜎,

𝐿̃
2
(𝑡) = {

log (1 + 𝑡) if 𝜇 = 2 + (𝛼 − 2) 𝜎,
1 if 𝜇 ̸= 2 + (𝛼 − 2) 𝜎.

(90)
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[26] V. Marić, Regular Variation and Differential Equations, vol. 1726
of Lecture Notes in Mathematics, Springer, Berlin, Germany,
2000.

[27] R. Seneta, Regularly Varying Functions, vol. 508 of Lecture Notes
in Mathematics, Springer, Berlin, Germany, 1976.


