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The element-free Galerkin (EFG) method is one of the widely used meshfree methods for solving partial differential equations. In
the EFG method, shape functions are derived from a moving least-squares (MLS) approximation, which involves the inversion of
a small matrix for every point of interest. To avoid the calculation of matrix inversion in the formulation of the shape functions,
an improved MLS approximation is presented, where an orthogonal function system with a weight function is used. However, it
can also lead to ill-conditioned or even singular system of equations. In this paper, aspects of the IMLS approximation are analyzed
in detail. The reason why singularity problem occurs is studied. A novel technique based on matrix triangular process is proposed
to solve this problem. It is shown that the EFG method with present technique is very effective in constructing shape functions.
Numerical examples are illustrated to show the efficiency and accuracy of the proposed method. Although our study relies on
monomial basis functions, it is more general than existing methods and can be extended to any basis functions.

1. Introduction

In recent years, the meshfree (meshless) method has been
developed rapidly as a computational technique for solving
partial differential equations. In the meshfree method, only
a mesh of nodes and a boundary description are needed
to develop the discrete equations. This makes it much
flexible in solving problems with moving discontinuities
(e.g., fracture of solids) and/or moving boundaries (e.g.,
shape optimization problems) that cannot be solved easily by
conventional numerical methods, such as the finite element
method (FEM), finite difference method (FDM), and bound-
ary element method (BEM).

A group of meshfree methods have been proposed and
developed, such as the diffuse element method (DEM) [1],
the element-free Galerkin method (EFG) [2, 3], the meshfree
point interpolation method [4], the meshless method based
on radial basis functions [5–7], the meshless local Petrov-
Galerkin method [8], and the meshfree weak-strong (MWS)
method [9]. Many details about meshfree methods have been
presented [10]. Among these meshfree methods, the EFG

method is a very promising method and is currently widely
used in computational mechanics and other areas.

In the EFGmethod, moving least-squares (MLS) approx-
imation is used to construct shape functions for each com-
putational point. One disadvantage of MLS approximation
is that a set of linear algebraic equations must be solved
for every computational point of interest [11]. If 𝑚 basis
functions were used to construct the shape functions, then
an 𝑚 × 𝑚 moment matrix, say A, must be inverted for
every computational point when the discrete equations are
assembled. With inappropriate nodes distribution and basis
functions, A may be ill-conditioned or even be singular.
Besides, in the postprocessing, A also must be inverted at
each node when the displacements, strains, and stresses are
computed. The computational cost associated with this is
quite burdensome. Moreover, in order to retain the high
accuracy of MLS approximation, the moment matrix A
must be inverted accurately. If the inverse of A is obtained
inaccurately, then the accuracy of EFG method is compro-
mised. In order to ameliorate this shortcoming, an improved
MLS (IMLS) approximation is described and studied in
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[12–17], where the authors used weighted orthogonal basis
functions for constructing MLS approximation by using
Schmidt orthogonalization process. With the use of weighted
orthogonal basis functions, the moment matrix becomes a
diagonal matrix; thus the burden of inverting A at each
computational point is totally eliminated.This idea is further
studied and applied in elasticity problems [12, 16], dynamics
analysis [12], fracture problems [13], and so on. The use of
weighted orthogonal basis functions can also be applied to
other meshfree methods based on MLS approximation, such
as MLPG method [17].

In [16], some aspects of the MLS approximation with
orthogonal basis functions are revisited. The authors found
that this technique can be used to avoid computing the
inversion ofA but cannot be used to overcome the singularity
problems which may occur in the MLS approximation. They
used the perturbation method to avoid inversion but did
not overcome the singularity problem, either. In [18], the
reason for singularity problem was discussed and a method
to solve the singularity problem by finding optimal radius
of the support domain was proposed. This method is useful
for regular nodes distribution andmonomial basis functions.
For irregular nodes distribution and general basis functions,
this method cannot avoid singularity problems. Sunilkumar
and Roy proposed another class of techniques in [19], where
support domain automatically allows for invertibility of the
moment matrix in all cases. In this paper, aspects of MLS
approximation with orthogonal basis functions are analyzed
in detail. The reason why singularity problem occurs is
studied, where the proof is different from that in [18]. A
novel technique, which is similar tomatrix triangular process
[20], is proposed to solve this problem. It is shown that the
EFG method with the present technique is very effective in
constructing shape functions. Some numerical examples are
illustrated to show its efficiency and accuracy. Our study also
relies on monomial basis functions, but it is more general
than the existing methods and can be extended to any basis
functions.

The remainder of this paper is arranged as follows. In
Section 2, theMLS approximation with orthogonal functions
is reviewed. In Section 3, a comprehensive discussion of
the MLS approximation with orthogonal basis functions is
analyzed; the cause of singularity problem is derived and
a new technique is proposed to solve this problem. The
standard EFG formulation is presented for 2D linear elastic
problem in Section 4. In Section 5, some numerical examples
are presented to show the effectiveness of the proposed
method. Finally, this paper is ended with some conclusions
and outlook in Section 6.

2. The MLS Approximation with
Orthogonal Functions

Consider a subdomain Ωx, the neighborhood of a point
x and denoted as the domain of definition of the MLS
approximation for the trial function at x, which is located
in the problem domain Ω. To approximate the distribution
of function 𝑢 in Ωx, over a number of randomly located

nodes {x
𝑖
}, 𝑖 = 1, . . . , 𝑛, the moving least-squares (MLS)

approximation 𝑢
ℎ
(x) of 𝑢, for all x ∈ Ωx, can be defined as

𝑢
ℎ
(x) =

𝑚

∑

𝑗=1

𝑝
𝑗 (
x) a𝑗 (x) = p𝑇 (x) a (x) , (1)

where p𝑇(x) = [𝑝
1
(x), 𝑝
2
(x), . . . , 𝑝

𝑚
(x)] are basis functions

and a(x) is a vector containing the coefficient a
𝑗
(x) (𝑗 =

1, 2, . . . , 𝑚), which are also functions of x.The basis functions
can be chosen widely. In general, they can be chosen as the
monomial bases, which are defined as follows:

(i) linear basis

p𝑇 = {1, 𝑥} , in 1𝐷

p𝑇 = {1, 𝑥, 𝑦} , in 2𝐷;

(2)

(ii) quadratic basis

p𝑇 = {1, 𝑥, 𝑥
2
} , in 1𝐷

p𝑇 = {1, 𝑥, 𝑦, 𝑥
2
, 𝑥𝑦, 𝑦

2
} , in 2𝐷.

(3)

The coefficient vector a(x) can be obtained at any point
x by minimizing a weighted discrete 𝐿

2
norm, which can be

defined as

J (x) =
𝑛

∑

𝑖=1

𝑤
𝑖 (
x) [p𝑇 (x𝑖) a (x) − �̂�

𝑖
]

2

,

= [Pa (x) − û]𝑇W [Pa (x) − û] ,

(4)

where𝑤
𝑖
(x) = 𝑤(x−x

𝑖
) is the weight function associated with

the node 𝑖, with 𝑤
𝑖
(x) ≥ 0 for all x in the support domain of

𝑤
𝑖
(x), x
𝑖
denotes the value of x at node 𝑖, and 𝑛 is the number

of nodes inΩx. In this paper, the cubic spline weight function
is used
𝑤
𝑖 (
𝑥)

=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

2

3

− 4(

𝑑
𝑖

𝑟
𝑤

)

2

+ 4(

𝑑
𝑖

𝑟
𝑤

)

3

, 𝑑
𝑖
≤ 0.5𝑟

𝑤
,

4

3

−4(

𝑑
𝑖

𝑟
𝑤

)+ 4(

𝑑
𝑖

𝑟
𝑤

)

2

−

4

3

(

𝑑
𝑖

𝑟
𝑤

)

3

, 0.5𝑟
𝑤
< 𝑑
𝑖
≤ 𝑟
𝑤
,

0, 𝑑
𝑖
> 𝑟
𝑤
,

(5)

where 𝑑
𝑖
= |x− x

𝑖
| is the distance from node x

𝑖
to point x and

𝑟
𝑤
is the size of the support domain for the weight function.

The matrices P andW in (4) are

P =

[

[

[

[

[

𝑝
1
(x
1
) 𝑝
1
(x
2
) ⋅ ⋅ ⋅ 𝑝

1
(x
𝑛
)

𝑝
2
(x
1
) 𝑝
2
(x
2
) ⋅ ⋅ ⋅ 𝑝

2
(x
𝑛
)

...
... d

...
𝑝
𝑚
(x
1
) 𝑝
𝑚
(x
2
) ⋅ ⋅ ⋅ 𝑝

𝑚
(x
𝑛
)

]

]

]

]

]𝑚×𝑛

,

W =

[

[

[

[

[

𝑤
1 (
x) 0 ⋅ ⋅ ⋅ 0

0 𝑤
2 (
x) ⋅ ⋅ ⋅ 0

...
... d

...
0 ⋅ ⋅ ⋅ 0 𝑤

𝑛 (
x)

]

]

]

]

]𝑛×𝑛

(6)
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and û = [�̂�
1
, �̂�
2
, . . . , �̂�

𝑛
]. Because the number of nodes 𝑛

used in the MLS approximation is usually much larger than
the number of unknown coefficients 𝑚, the approximated
function does not pass through the nodal values.Thus �̂�

𝑖
(𝑖 =

1, 2, . . . , 𝑛) are the fictitious nodal values, not the nodal values
in general.

To find a(x), we obtain the extremum of J in (4) by [2, 10]

𝜕J
𝜕a

= A (x) a (x) − B (x) û = 0, (7)

where

A (x) = PWP𝑇 =
𝑛

∑

𝑖=1

𝑤
𝑖 (
x) p (x

𝑖
) p𝑇 (x

𝑖
) ,

B (x) = PW

= [𝑤
1 (
x) p (x

1
) , 𝑤
2 (
x) p (x

2
) , . . . , 𝑤

𝑛 (
x) p (x

𝑛
)] .

(8)

If A(x) is nonsingular, then from (7) we obtain

a (x) = A−1 (x)B (x) û. (9)

Substituting a(x) into (1), the expression of the local
approximation 𝑢

ℎ
(x) is thus

𝑢
ℎ
(x) = Φ (x) û =

𝑛

∑

𝑖=1

𝜙
𝑖 (
x) �̂�𝑖, (10)

where Φ(x) = {𝜙
1
(x) ⋅ ⋅ ⋅ 𝜙

𝑛
(x)} = p𝑇(x)A−1(x)B(x) is the

shape function and

𝜙
𝑖 (
x) =
𝑚

∑

𝑗=1

𝑝
𝑗 (
x) [A−1 (x)B (x)]

𝑗𝑖
. (11)

The derivative of these shape functions can also be obtained

𝜙
𝑖,𝑘 (

x) =
𝑚

∑

𝑗=1

[𝑝
𝑗,𝑘

(A−1B)
𝑗𝑖
+ 𝑝
𝑗
(A−1
,𝑘
B + A−1B

,𝑘
)
𝑗𝑖
] ,

𝑖 = 1, . . . , 𝑛,

(12)

where A−1
,𝑘

= −A−1A
,𝑘
A−1 and the index following a comma

is a spatial derivative. Since A(x) = PWP𝑇, we should only
solve the derivative ofP andW to get the derivative ofA(x). It
should be noted that the above expression is a standardway to
compute the derivative. Some novel and numerically accurate
schemes for computations of derivatives of shape functions
have also been studied; see [21].

As wementioned above, (7) must be solved accurately for
every point to retain the accuracy of theMLS approximation.
In themeshfreemethods, it may be time consuming and even
cannot obtain desired accuracy whenA(x) is ill-conditioned.
To overcome these shortcomings, weighted orthogonal basis
functions are proposed to derive the improved moving least-
squares approximation (IMLS). Using weighted orthogonal
basis functions in the MLS approximation, the moment
matrix A(x) in (7) is a diagonal matrix and the necessity

for solving (7) can be eliminated. Moreover, the condition
number of the matrix A(x) can be improved to some extent,
but we cannot obtain a well-conditioned matrix A(x) when
ill-conditioned matrix or singular problems occur; see the
discussion in [16] and Section 3.

To diagonalize the moment matrix A(x) for arbitrary
computational point x, the following orthogonality condition
is imposed at any point x where a(x) is to be computed:

(𝑞
𝑘
, 𝑞
𝑗
) =

𝑛

∑

𝑖=1

𝑤
𝑖 (
x) 𝑞𝑘 (x𝑖) 𝑞𝑗 (x𝑖)

= {

0, 𝑘 ̸= 𝑗,

𝐴
𝑘
, 𝑘 = 𝑗,

(𝑘, 𝑗 = 1, 2, . . . , 𝑛) ,

(13)

where the function set {𝑞
1
(x), 𝑞
2
(x), . . . , 𝑞

𝑚
(x)} can be termed

aweighted orthogonal function setwithweight functions {𝑤
𝑖
}

about points {x
𝑖
}.

For the given arbitrary basis functions 𝑝
𝑘
(x) (𝑘 =

1, 2, . . . , 𝑚), the orthogonal basis functions 𝑞
𝑘
(x) can be

obtained by using the Schmidt orthogonalization procedure
as follows:

𝑞
𝑘 (
x) = 𝑝

𝑘 (
x) −
𝑘−1

∑

𝑗=1

𝛼
𝑘𝑗 (

x) 𝑞𝑗 (x) , 𝑘 = 1, . . . , 𝑚, (14)

where

𝛼
𝑘𝑗 (

x) =
(𝑝
𝑘
, 𝑞
𝑗
)

(𝑞
𝑗
, 𝑞
𝑗
)

=

∑
𝑛

𝑖=1
𝑤
𝑖 (
x) 𝑝𝑘 (x𝑖) 𝑞𝑗 (x𝑖)

∑
𝑛

𝑖=1
𝑤
𝑖 (
x) 𝑞2
𝑗
(x
𝑖
)

. (15)

If the weighted orthogonal basis function set about {x
𝑖
} is

used, then (7) becomes

̃A (x) ã (x) =
[

[

[

[

[

(𝑞
1
, 𝑞
1
) 0 ⋅ ⋅ ⋅ 0

0 (𝑞
2
, 𝑞
2
) ⋅ ⋅ ⋅ 0

...
... d

...
0 ⋅ ⋅ ⋅ 0 (𝑞

𝑚
, 𝑞
𝑚
)

]

]

]

]

]

[

[

[

[

[

𝑎
1 (
x)

𝑎
2 (
x)
...

𝑎
𝑚 (

x)

]

]

]

]

]

=

[

[

[

[

[

(𝑞
1
, �̂�
𝑖
)

(𝑞
2
, �̂�
𝑖
)

...
(𝑞
𝑚
, �̂�
𝑖
)

]

]

]

]

]

=
̃B (x) û,

(16)

where ̃A(x) = QWQ𝑇, ̃B(x) = QW, and

Q =

[

[

[

[

[

𝑞
1
(x
1
) 𝑞
1
(x
2
) ⋅ ⋅ ⋅ 𝑞

1
(x
𝑛
)

𝑞
2
(x
1
) 𝑞
2
(x
2
) ⋅ ⋅ ⋅ 𝑞

2
(x
𝑛
)

...
... d

...
𝑞
𝑚
(x
1
) 𝑞
𝑚
(x
2
) ⋅ ⋅ ⋅ 𝑞

𝑚
(x
𝑛
)

]

]

]

]

]

. (17)

From (16), we can see that ̃A(x) is a diagonal matrix.
If (𝑞
𝑘
, 𝑞
𝑘
) ̸= 0 (𝑘 = 1, 2, . . . , 𝑚), then we can obtain the

coefficients 𝑎
𝑖
(x) directly:

𝑎
𝑖 (
x) =

(𝑞
𝑖
, �̂�
𝑖
)

(𝑞
𝑖
, 𝑞
𝑖
)

, 𝑖 = 1, 2, . . . , 𝑚. (18)
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That is,

ã (x) = A (x) ̃B (x) û, (19)

where

A (x) =

[

[

[

[

[

[

[

[

[

[

[

1

(𝑞
1
, 𝑞
1
)

0 ⋅ ⋅ ⋅ 0

0

1

(𝑞
2
, 𝑞
2
)

⋅ ⋅ ⋅ 0

...
... d

...
0 ⋅ ⋅ ⋅ 0

1

(𝑞
𝑚
, 𝑞
𝑚
)

]

]

]

]

]

]

]

]

]

]

]

. (20)

Equations (17) and (1) give the following expressions of the
approximation function 𝑢

ℎ
(x) as

𝑢
ℎ
(x) = Φ̃ (x) û =

𝑛

∑

𝑖=1

̃
𝜙
𝑖 (
x) �̂�𝑖, (21)

where ̃
𝜙
𝑖
(x) = ∑

𝑚

𝑗=1
𝑞
𝑗
(x)[A(x)B̃(x)]

𝑗𝑖
(𝑖 = 1, 2, . . . , 𝑛) are the

shape functions. The derivative of these shape functions can
also be obtained:

̃
𝜙
𝑖,𝑘 (

x) =
𝑚

∑

𝑗=1

[𝑞
𝑗,𝑘

(AB)
𝑗𝑖
+ 𝑞
𝑗
(A
,𝑘
B + AB

,𝑘
)
𝑗𝑖
] ,

𝑖 = 1, . . . , 𝑛,

(22)

where A
,𝑘

= −AÃ
,𝑘
A and the index following a comma is a

spatial derivative.

3. A Modified Moving Least-Squares
Approximation

In this section, more comprehensive analysis of the use of
orthogonal basis functions in the MLS approximation is
discussed, although some of them are described in [16]. MLS
approximation with orthogonal basis functions possesses
some distinguished advantages, but there is also a possible
singularity problem of the moment matrix ̃A in its way. A
typical example which shows the MLS approximation with
orthogonal basis functions fails is presented.Themain reason
for the singularity problem is analyzed.Then amodifiedMLS
approximation is proposed to overcome this problem.

3.1. Aspects of Use of Orthogonalization. As discussed in [12,
13, 16, 17], the aim of the orthogonalization process is to
enhance the computational efficiency and remove inaccura-
cies in theMLS approximation by avoiding the inversion of an
ill-conditioned matrix. Using the orthogonal basis functions,
the moment matrix Ã is a diagonal matrix; thus the matrix
inversion at each computational point is avoided, which
can accelerate the computation especially for large problem.
Moreover, the condition number of the diagonal moment
matrix ̃A can be improved greatly for a lot of problems. But
this process fails when the original moment matrix A is a
singular (ill-conditioned) matrix. That is to say the source of

inaccuracy causing the ill-conditioning is not removed by this
procedure.

It is shown in [12] that orthogonal basis functions 𝑞
𝑘
(x)

can be obtained from Pascal basis 𝑝
𝑘
(x) by using the Schmidt

orthogonalization. Thus, there is a linear relation between
them; that is, each 𝑞

𝑗
(x) can be written as

𝑞
𝑗 (
x) =
𝑚

∑

𝑖=1

𝑔
𝑗𝑖
𝑝
𝑖 (
x) , 𝑗 = 1, . . . , 𝑚, (23)

or in matrix form

q (x) = Gp (x) , (24)

whereG ∈ R𝑚×𝑚 is a transformmatrix mapping p(x) to q(x).
The Schmidt orthogonalization makes G a lower triangular
matrix with all diagonal entries of unit value. Thus we obtain
det(G) = 1, where det(♯)means the determinant of matrix ♯.
Equation (24) makes the following equality hold:

Q = GP, (25)

where P andQ are defined in (6) and (17), respectively. Then
we have

Ã = QWQ𝑇 = GPWP𝑇G𝑇 = GAG𝑇,

̃B = QW = GPW = GB.
(26)

From (26), we can find the following.

(1) ̃A is congruent with A, and these two matrices have
the same inertia, which means these two matrices
have same numbers of positive, negative, and zero
eigenvalues.

(2) Solving (16) is equivalent to solving

GAG𝑇G−𝑇a (x) = GB, (27)

which means the matrix G can be viewed as a
split preconditioner [22] for solving (7). Using a
preconditioner, the condition number of the system
matrix may be reduced. That is to say, the condition
number of ̃A = GAG𝑇may be improved frommatrix
theory. This has been proved for a lot of problems in
applications when A is ill-conditioned.

(3) Since G is a lower triangular matrix with all diagonal
entries of unit value, that is, det(G) = 1, therefore






det (Ã)






=






det (G) det (A) det (G𝑇)



= |det (G) ‖det (A)‖ det (G)| = |det (A)| ,

(28)

whichmeans ifA is ill-conditioned, then the determi-
nant of A is close to zero. And we can get that det(̃A)

is also close to zero.
(4) If A and ̃A are well defined, then the shape functions

derived using either bases are identical; that is,

Φ̃ (x) = q𝑇 (x) ̃A−1 (x) ̃B (x) = p𝑇 (x)G𝑇G−𝑇A−1G−1GB

= p𝑇 (x)A−1B (x) = Φ (x) .
(29)
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Table 1: Degradation cases and perturbation of shape functions.

Node 8 cond(𝐴) cond(𝐴) min𝐴

𝜙
1

𝜙
2

𝜙
3

𝜙
4 ∑

𝑖

𝜙
𝑖

𝜙
5

𝜙
6

𝜙
7

𝜙
8

(3.0, 1.0) 1.70𝑒28 1.08𝑒34 0.0

NaN NaN NaN NaN NaN
NaN NaN NaN NaN

(2.999, 0.999) 4.47𝑒9 1.57𝑒8 7.86𝑒 − 11

−99.96 100.39 99.85 −100.02 1.00
−50.02 350.03 −549.52 250.25

(2.99, 0.99) 3.87𝑒7 1.33𝑒6 9.29𝑒 − 9

−9.96 10.39 9.85 −10.03 1.00
−5.01 35.03 −54.52 25.25

(2.9, 0.9) 3.47𝑒5 7.47𝑒3 1.87𝑒 − 6

−0.96 1.38 0.82 −1.03 1.00
−0.51 3.53 −5.01 2.78

(3.0, 0.9) 3.83𝑒5 9.46𝑒3 1.39𝑒 − 6

−1.10 1.55 0.95 −1.18 1.00
−0.62 3.98 −5.36 2.78

Moreover, the derivatives of these shape functions are also
identical; that is,

Φ̃
,𝑘 (

x) = q𝑇
,𝑘
̃A−1̃B + q𝑇̃A−1

,𝑘
̃B + q𝑇̃A−1̃B

,𝑘

= q𝑇
,𝑘
̃A−1̃B − q𝑇̃A−1̃A

,𝑘
̃A−1̃B + q𝑇̃A−1̃B

,𝑘

= p𝑇
,𝑘
G𝑇G−𝑇A−1G−1GB

− p𝑇G𝑇G−𝑇A−1G−1GA
,𝑘
G𝑇G−𝑇A−1G−1G

+ p𝑇G𝑇G−𝑇A−1G−1GB
,𝑘

= p𝑇
,𝑘
A−1B − p𝑇A−1A

,𝑘
A−1B + p𝑇A−1B

,𝑘

= Φ
,𝑘 (

x) .
(30)

From these aspects, we know that ifA is not well defined (ill-
conditioned or even singular), then we cannot obtain a well-
conditioned diagonal moment matrix Ã. But the accuracy
may be improved for many applications; this is because
the transformation matrix G, which can be considered as a
preconditioner, can reduce the condition number in some
extent (see also Table 1). That is why many researchers
believe that using the orthogonal basis functions in MLS
approximation can improve the accuracy of solution [13–
15]. The following example also shows the above discussion.
Consider a computational point x located at (1.5, 0.5), whose
influence domain contains eight nodes; see Figure 1. These
eight nodes are located in parallel lines in both 𝑥 and 𝑦

directions. The rectangle domain was chosen as the support
domain of the computational point x. The radiuses of the
support domain are 𝛼

𝑥
= 2.0 in 𝑥 direction and 𝛼

𝑦
= 0.6

in 𝑦 direction. These values are not of significance but mean
that all eight nodes are located in the influence domain of x.

When quadratic basis and cubic weight functions are
utilized to automatically construct the shape function,we find
that the moment matrix is
A (x)

= PWP𝑇

=

[

[

[

[

[

[

[

[

0.01235 0.01852 0.00617 0.03189 0.00926 0.00617

0.01852 0.03189 0.00926 0.06019 0.01595 0.00926

0.00617 0.00926 0.00617 0.01595 0.00926 0.00617

0.03189 0.06019 0.01595 0.12139 0.03009 0.01595

0.00926 0.01595 0.00926 0.03009 0.01595 0.00926

0.00617 0.00926 0.00617 0.01595 0.00926 0.00617

]

]

]

]

]

]

]

]

(31)

̃A (x) = diag (0.01235, 0.00412, 0.00309, 0.00197,

0.00103, 0.00000) .

(32)

It is easy to see that Ã is also rank deficiency. This
example shows that it is possible to form an ill-conditioned or
singular linear system of equations, even if orthogonalization
procedure is used. If A is singular or there is a zero on the
diagonal of ̃A, then no shape functions can be derived. If
some nodes are perturbed, for example, node 8 is perturbed
to node 8 (see Figure 1), then A becomes nonsingular but
may be an ill-conditioned matrix. It should be noted that
node 8 shown in Figure 1 is just one case; it can be perturbed
in any direction indeed. In the perturbed case, using the
orthogonalization process may be more effective than the
traditional MLS approximation, since the condition number
decreases and no matrix inversion is needed to compute.
Table 1 presents theminimumvalues of the condition number
of A and ̃A, the minimum values of ̃A

𝑗𝑗
, and the values of

shape functions. 𝜙
1
−𝜙
8
stand for the shape functions of node

1–node 8, respectively. Σ indicates the sum of these shape
functions.

3.2. The Cause of Singularity Problem. From above discus-
sion, we know that the MLS approximation with orthogo-
nal basis functions may also fail, although the number of
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1 (0, 0); 2 (1, 0); 3 (2, 0); 4 (3, 0)

5 (0, 1); 6 (1, 1); 7 (2, 1); 8 (3, 1)

x (1.5, 0.5)

Figure 1: An example with eight nodes and their coordinates.

nodes in the support domain of a computational point x is
larger than the number of bases. The cause of singularity
problem has been discussed in the original paper of the MLS
approximation [11] and a recent paper [18], where the authors
also presented the optimal radius of the support domain of a
computational point for polynomial basis. In this subsection,
we discuss the cause of singularity problem from matrix
theory.

Close examination has shown that the problem of sin-
gularity arises from rank deficiency of matrix P. In fact, the
matrix W = diag(𝑤(x − x

1
), . . . , 𝑤(x − x

𝑛
)) is a diagonal

positive definite matrix for a given set of nodes in the support
domain. If we further assume that the number of these nodes
is larger than the number of monomial bases and P has
full row rank, then we can obtain a nonsingular moment
matrix A(x) from the matrix theory of view. The following
proposition gives the nonsingular condition of the moment
matrix A(x). The proof of this proposition is given in the
appendix.

Proposition 1. The moment matrix A(x) is symmetric.
Assume that a set of nodes are located in the support domain
of a computational node x; then the moment matrix A(x) is a
nonsingular matrix provided that

𝑛 ≥ 𝑚, rank (P) = 𝑚; (33)

that is, P has full row rank, where 𝑛 is the number of nodes in
the support domain and 𝑚 is the number of basis functions.

3.3. Techniques to Avoid the Singularity. To avoid a singular
moment matrix, some techniques have been proposed, such
as the perturbation method [16] and finding appropriate
support domain for a computational point [18]. Using a per-
turbation method, one could not determine the disturbance
beforehand. If the disturbance is too small, the condition
number will be very large; see Table 1 for a degradation
example. If the disturbance is too large, the moment matrix
may be well defined, but the nodes are not the original
nodes; this will take large error for discrete linear systems.
Finding appropriate support domain for a computational
point is a good choice to avoid the singularity problem, but
it is only efficient for regular nodes distribution and special
basis functions, such as monomial bases. For irregular nodes
distribution and general basis functions, this method is not

very efficient. In this subsection, we discuss a new technique,
which is similar to the matrix triangularization algorithm
(MTA) [20].

As discussed above, the reason of the singularity problem
of the moment matrix A(x) is the rank deficiency of P due
to the improper enclosure of nodes and basis functions. For a
given set of nodes, the basis functions are very important.The
main idea of this technique is, therefore, to automatically find
the monomials that are responsible for the rank deficiency
for a given set of nodes. These monomials should be done
specially to ensure a full rank moment matrix. But this
technique should be an automatic procedure, and it has to
be done without increasing toomuch computational cost and
should not be too complex.

The details of the algorithm are as follows.

(1) Suppose that 𝑚 monomials are chosen to obtain the
basis functions and 𝑛nodes are selected in the support
domain of an interpolation point x. Using (6), the
matrix P can be obtained. It should be noted that
the rows of P correspond to the monomials in the
basis, and its columns associate with the nodes in the
support domain.

(2) The matrix P is triangularized to determine the row
rank 𝑟.

(i) If 𝑟 = 𝑚, it means that P has full row
rank. From Proposition 1, we know that the
moment matrices A(x) and Ã(x) are gener-
ally well defined. In this case, the orthogonal
basis functions q(x) can be obtained by using
the Schmidt orthogonalization process. Thus, a
diagonal moment matrix ̃A(x) and its inversion
A(x) are obtained. Therefore, shape functions
can be easily got. In particular, the moment
matrixA(x)may be ill-conditioned. In this case,
using the Schmidt orthogonalization process is
a good choice and shape functions can also be
easily got (see discussion in Section 3.1).

(ii) If 𝑟 < 𝑚, it means that there is a rank deficiency
in P. Thus, the moment matrix is singular
and we cannot obtain the shape functions. The
reason of the rank deficiency is that some rows
of P (𝑚 − 𝑟 rows) are linearly related to other
rows. Therefore, the 𝑚 − 𝑟 rows should be done
with some special techniques. The procedure is
as follows.
(a) In the row triangularization process, the

permutations of rows are recorded. From
the diagonal elements of the triangularized
matrix, we can find out which rows (total
𝑚 − 𝑟 rows) are related to other rows.
This means that these rows (which corre-
sponded to the monomials) have no effect
in forming shape functions.

(b) We can do the Schmidt orthogonalization
process for the remaining 𝑟 basis functions.
Since basis functions are corresponding to
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the rows of P, we can set the corresponding
𝑚− 𝑟 rows and𝑚− 𝑟 columns of A or ̃A to
be zero except the diagonal entry to be one
and set the𝑚 − 𝑟 rows of B or ̃B to be zero.

(c) Through the above operation, we can
obtain a diagonal moment matrix Ã(x),
which has full rank now. Thus the shape
functions can be obtained easily.

3.4. Flowchart of the Technique. The flowchart of the tech-
nique is briefly given as follows.

(1) Determine the support domain for point x to obtain
an𝑚 × 𝑛matrix P and an 𝑛 × 𝑛 weight matrixW.

(2) Transform P to be a row trapezoidal matrix to get row
rank 𝑟 and record the exchanges of rows.

(3) If 𝑟 = 𝑚, then go to the next step. If 𝑟 < 𝑚, then
determine which𝑚−𝑟 rows are related to other rows.
The remaining 𝑟 basis functions are used to construct
orthogonal basis functions. Set these 𝑚 − 𝑟 rows and
𝑚−𝑟 columns ofA or Ã to be zero except the diagonal
entry to be one, and set the𝑚− 𝑟 rows of B or ̃B to be
zero.

(4) Compute the shape functions from (16)–(18).

3.5. Technique for an Eight-Node Approximation. In order
to show how this technique works, an example of eight-
node approximation, as shown in Figure 1, is presented here
in detail. These eight nodes are included in the support
domain of an interpolation point x = [1.5, 0.5]. The complete
quadratic basis and the cubic weight function (5) are used.
Thus𝑚 = 6 and 𝑛 = 8.

(1) Construct the matrix P: using (6), the matrix P is
constructed as follows:

node 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ node 8

P =

[

[

[

[

[

[

[

[

1 1 1 1 1 1 1 1

0 1 2 3 0 1 2 3

0 0 0 0 1 1 1 1

0 1 4 9 0 1 4 9

0 0 0 0 0 1 2 3

0 0 0 0 1 1 1 1

]

]

]

]

]

]

]

]

1

𝑥
𝑖

𝑦
𝑖

𝑥
2

𝑖

𝑥
𝑖
𝑦
𝑖

𝑦
2

𝑖

.

(34)

It can be easy to find that rows of P correspond to
the monomials in the bases, and its columns associate
with the eight nodes in the support domain.

(2) Row rank and rowdetermination: using some permu-
tation matrices, the matrix P is transformed to a row
trapezoidal matrix to determine the row rank. The
row trapezoidal matrix P̂ is

̂P =

[

[

[

[

[

[

[

[

1 1 1 1 1 1 1 1

0 1 0 3 1 2 2 3

0 0 1 0 1 0 1 1

0 0 0 6 0 2 2 6

0 0 0 0 1 0 2 3

0 0 0 0 0 0 0 0

]

]

]

]

]

]

]

]

. (35)

Table 2: Shape functions obtain by matrix triangular process.

𝜙
𝑖

∑𝜙
𝑖

𝜙
1
= −0.03125 𝜙

2
= 0.28125 𝜙

3
= 0.28125 𝜙

4
= −0.03125 1.0000

𝜙
5
= −0.03125 𝜙

6
= 0.28125 𝜙

7
= 0.28125 𝜙

8
= −0.03125

It can be found that the sixth row of P̂ is zero and the
row rank is 5. It means that there is a rank deficiency
in P. Therefore, there is a rank deficiency in the
moment matrix A(x) from Proposition 1. From ̂P we
can also find that the sixth row is linearly related to
other five rows. It should be noted that there is no row
changed in the row triangularization process, which
means that the sixth row of P̂ is corresponding to the
sixth row of P and the sixth row of P is also linearly
related to other five rows.

(3) Since the sixth row is corresponding to the basis func-
tion 𝑦

2, the remaining basis functions {1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦}
are used to construct orthogonal basis functions q(x)
by Schmidt orthogonalization process. Now, the sixth
row and the sixth column of Ã(x) are set to be zero
except the diagonal entry to be one, and the sixth row
of ̃B(𝑥) is set to be zero. In this case, we have the
moment matrix

̃A (x) = diag (0.01235, 0.00412, 0.00309,

0.00197, 0.00103, 1.00000) .

(36)

(4) Compute the MLS shape functions from (16)–(18):
after the above steps, the moment matrix ̃A has full
rank.The shape functions can be obtained easily.They
are listed in Table 2.

4. Element-Free Galerkin Formulation

Consider the 2Dproblemof the deformation of a linear elastic
medium from an undeformed domainΩ, enclosed by Γ:

∇ ⋅ 𝜎 + b = 0, inΩ, (37)

where 𝜎 is the stress tensor corresponding to the displace-
ment field u and b is a body force vector, with boundary
conditions as follows:

𝜎 ⋅ n = t on Γ
𝑡
,

u = u on Γ
𝑢
,

(38)

in which t and u are prescribed tractions and displacements,
respectively, on the traction boundary Γ

𝑡
and on the displace-

ment boundary Γ
𝑢
, and n is the unit outward normal matrix

to the boundary Γ
𝑡
.

Using the standard principle of minimum potential
energy for (37)-(38), that is, to find u ∈ (𝐻

1
(𝜔))
2, such that

Π =

1

2

∫

Ω

𝜀
𝑇D𝜀 dΩ − ∫

Ω

u𝑇 ⋅ b dΩ − ∫

Γt

u𝑇 ⋅ t dΓ (39)
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is stationary, where𝐻𝑖(𝜔) denotes the Sobolev space of order
𝑖 and 𝜔 is a function in the Sobolev space, 𝜀 and 𝜎 =

D𝜀 are strain and stress vectors, and D is the strain-stress
matrix. MLS equation (10) or (21) is used to approximate the
displacements in the Galerkin procedure. Then we can get

u = {

𝑢

V} =

𝑛

∑

𝑗=1

[

𝜙
𝑗

0

0 𝜙
𝑗

]{

𝑢
𝑗

V
𝑗

} =

𝑛

∑

𝑗=1

Φ
𝑗
u
𝑗
. (40)

Then substituting (40) into (39) leads to the following total
potential energy in the matrix form, as

Π =

1

2

u𝑇 ⋅ K ⋅ u − u𝑇 ⋅ f (41)

and invoking 𝛿Π = 0 results in the following linear system of
u:

Ku = f , (42)

in which the stiffness matrixK is built from 2×2matricesK
𝑖𝑗

and the right hand side vector f is built from the 2× 1 vectors
f
𝑖
. These matrices and vectors are defined by

K
𝑖𝑗
= ∫

Ω

B𝑇
𝑖
DB
𝑗
dΩ, 𝑖, 𝑗 = 1, 2, . . . , 𝑛,

f
𝑖
= ∫

Ω

𝜙
𝑖
b dΩ + ∫

Γ
𝑡

𝜙
𝑖
t dΓ, 𝑖 = 1, 2, . . . , 𝑛,

(43)

where

B
𝑖
=

[

[

𝜙
𝑖,𝑥

0

0 𝜙
𝑖,𝑦

𝜙
𝑖,𝑦

𝜙
𝑖,𝑥

]

]

,

D =

𝐸

1 − ]2
[

[

[

1 ] 0

] 1 0

0 0

1 − ]
2

]

]

]

(for plane stress problem) .

(44)

In the sequel and unless mentioned otherwise, EFG method
indicates the element-free Galerkin method with the orig-
inal MLS approximation (10) and MEFG method stands
for the element-free Galerkin method with the modified
MLS approximation (21). These methods employ the moving
least-squares (MLS) approximation or its modified form to
approximate the trial functions. Another problem is that, in
general, they do not have the property of nodal interpolants
as in the FEM; that is, 𝜙

𝑖
(x
𝑗
) ̸= 𝛿
𝑖𝑗
, where 𝜙

𝑖
(x
𝑗
) is the shape

function corresponding to the node at x
𝑖
, evaluated at a nodal

point, x
𝑗
, and 𝛿

𝑖𝑗
is the Kronecker data, unless the weight

functions used in the MLS approximation are singular at
nodal points [11]. Therefore, essential boundary conditions
should be imposed with special techniques [23, 24]. In this
paper, we use the penalty method [23].

5. Numerical Experiments

In this section, two numerical examples are presented to
show the efficiency of the EFG method with the modified

y

H

L

P

x

Figure 2: Cantilever beam.

MLS approximation studied in this paper. In these examples,
quadratic basis function and cubic spline weight function are
used. All runs are performed in MATLAB 7.0 on an Intel
Pentium 4 (2G RAM)Windows XP system.

5.1. Cantilever Beam. Thefirst example is a cantilever beamof
length𝐿 andheight𝐻 subjected to traction at the free end (see
Figure 2). The beam has a unit thickness and hence a plane
stress problem is considered here. The closed-form solution
is available for parabolic traction of force 𝑃

𝑢
𝑥
=

𝑃𝑦

6𝐸𝐼

[(6𝐿 − 3𝑥) 𝑥 + (2 + ]) (𝑦
2
−

𝐻
2

4

)] ,

𝑢
𝑦
= −

𝑃

6𝐸𝐼

[3]𝑦2 (𝐿 − 𝑥) + (4 + 5])
𝐻
2
𝑥

4

+ (3𝐿 − 𝑥) 𝑥
2
] ,

(45)

where themoment of inertia 𝐼of the beam is given 𝐼 = 𝐻
3
/12.

The stresses corresponding to above displacements are

𝜎
𝑥
=

𝑃 (𝐿 − 𝑥) 𝑦

𝐼

, 𝜏
𝑥𝑦

= −

𝑃

2𝐼

(

𝐻
2

4

− 𝑦
2
) , 𝜎

𝑦
= 0.

(46)

The beam parameters are taken as 𝐸 = 3.0 × 10
7 kPa, ] = 0.3,

𝐻 = 12m, 𝐿 = 48m, and 𝑃 = 1000 kN in computation.
To evaluate the accuracy of the coupled method, the

following error norms are used:

𝑟
𝑢
=

‖û − u‖2
‖u‖2

, 𝑟
𝜎
=

‖�̂� − 𝜎‖2

‖𝜎‖2

, (47)

where ‖♯‖
2
is 2-norm of vector “♯”, û and u are the approxi-

mation and exact solution of displacements, and �̂� and 𝜎 are
the approximation and exact value of stresses.

To show the effectiveness of EFG method with the
modified MLS approximation studied in this paper, a typical
regular node distribution (with 37 × 13 nodes) is shown in
Figure 3. To evaluate the integrals, 15×8 background cells are
used. For each background 4 × 4 Gauss points are employed.
The rectangle domain is chosen as the support domain of
the computational point x. We adopt two kinds of radius
of the support domain. The first case is 𝛼

𝑥
= 2.2 in the 𝑥

direction and 𝛼
𝑦
= 1.3 in the 𝑦 direction. The second case is

𝛼
𝑥
= 𝛼
𝑦
= 3.0 in 𝑥 and 𝑦 directions, respectively. In the first

case, singularity problem of the moment matrixA(x) occurs;
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(a) (b)

Figure 3: Typical node distribution: regular 37 × 13 nodes (a); irregular 481 nodes (b).
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Figure 4: Comparison of displacement 𝑢
𝑦
along 𝑦 = 0 between analytical and numerical solution.

Table 3: Convergence study for Example 4.1.

Regular nodes 13 × 4 25 × 7 37 × 13 49 × 16

Background cells 5 × 4 10 × 4 15 × 8 20 × 15

𝑟
𝑢

0.0010 9.7847𝑒 − 4 5.5448𝑒 − 4 1.8456𝑒 − 4

𝑟
𝜎

0.0932 0.0373 0.0150 0.0104
Irregular nodes 52 175 481 784
Background cells 5 × 4 10 × 4 15 × 8 20 × 15

𝑟
𝑢

0.0763 0.0207 0.0239 0.0014
𝑟
𝜎

0.3934 0.1618 0.1677 0.0490

thus the EFGmethod fails, while the MEFGmethod can also
obtain excellent agreement with the analytical solution; see
Figures 4 and 5. In the second case, no singularity problem
appears; that is, the moment matrix A(x) is always well
defined. Thus both the EFG method and the MEFG method
can obtain excellent agreement with the analytical solution;
see also Figures 4 and 5. It should be also noted that, in the
second case, the results of EFG method and MEFG method
are almost the same, which confirms the theoretical analysis
in Section 3.1.

The convergence of the MEFG method and the accuracy
of the MEFG method for irregular node distribution are also

studied. Four different regular node distributions with 52
(13×4: 13 nodes in the𝑥 direction, 4 nodes in the𝑦 direction),
175 (25×7) nodes, 481 (37×13) nodes, and 784 (49×16) nodes
and four different irregular node distributions are considered.
Figure 3 also plots a typical irregular node distribution (with
481 nodes). For intergration for each problem, 5 × 4, 10 × 4,
15 × 8, 20 × 15 background cells are used. Here, the radius
of the support domain is taken as 𝛼

𝑥
= 2.2 in the 𝑥 direction

and 𝛼
𝑦
= 2.3 in the 𝑦 direction.The computational results are

listed in Table 3. The convergence curves for displacements
and stresses with different node distributions are plotted
in Figure 6. In Figure 6, ℎ is the maximum size of node
arrangement. From Table 3 and Figure 6, we can see that the
MEFG method possesses convergence. Convergence for the
regular node distribution problem is better than that for the
irregular distribution problem.

5.2. Poisson Equation. Consider Poisson equation,

−Δ𝑢 = 2 (𝑥 + 𝑦 − 𝑥
2
− 𝑦
2
) inΩ = [0, 1] × [0, 1] (48)

with boundary conditions

𝑢 = 0.0 on 𝜕Ω (49)
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Figure 5: Comparison of shear stress along 𝑥 = 𝐿/2 between analytical and numerical solution.
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Figure 6: Convergence study for regular and irregular node distributions.

whose analytical solution is given by

𝑢 = (𝑥 − 𝑥
2
) (𝑦 − 𝑦

2
) . (50)

The EFG formulation of Poisson equation can be easily
obtained from the same procedure (39)–(41). A typical 21×21

regular nodes discretization and 10×10 background cells are
shown in Figure 7. We use two kinds of radius of the support
domain to show the effectiveness of the MEFG method. The
first case is 𝛼

𝑥
= 3 in the 𝑥 direction and 𝛼

𝑦
= 1.5 in the 𝑦

direction. The second case is 𝛼
𝑥

= 𝛼
𝑦

= 3.0 in both 𝑥 and
𝑦 directions, respectively. Figures 8 and 9 plot the numerical
solution and analytical solution along 𝑥 = 1/2 and 𝑦 = 0.2.

From these figures, we can see that the EFG method fails for
the first case while the MEFG method can also obtain good
numerical results, since singularity problem for the moment
matrix A(x) occurs when the original MLS approximation
is used. For the second case, both the EFG method and
the MEFG method can obtain excellent agreement with the
analytical solution, and the results of EFGmethod andMEFG
method are almost the same.

For convergence studies, four different regular node
distributions with 121 (11 × 11) nodes, 441 (21 × 21) nodes,
961 (31 × 31) nodes, and 1681 (41 × 41) nodes are employed.
Two kinds of radius of the support domain studied above
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Figure 8: Comparison of analytical and MEFG solution.

are also considered here. The computational results are listed
in Table 4, where 𝑟

1
is the relative error for the case 𝛼

𝑥
=

𝛼
𝑦
= 3.0 (which corresponds to the nonsingularity problem)

and 𝑟
2
is the relative error for the cases 𝛼

𝑥
= 3.0 and

𝛼
𝑦
= 1.5 (which corresponds to the singularity problem).The

convergence curves are depicted in Figure 10. From Table 4
and Figure 10, we can also see that the MEFG method also
possesses convergence.

6. Conclusion and Outlook

In this paper, aspects of MLS approximation with orthogonal
basis functions, which are used to construct shape functions
in the element-free Galerkin method, are analyzed in detail.
It is shown that this method has some advantages; for
example, it avoids computing inversion of moment matrices;

the condition number of moment matrix constructed by
MLS approximation with orthogonal basis functions can
be improved greatly for many problems. But it does not
overcome the singularity problem of moment matrix, either.
The reasonwhy singularity problemoccurs is studied.Anovel
technique based on matrix triangular process is proposed to
solve this problem in detail. Our study relies on monomial
basis functions, but it can be extended to any basis functions.
Numerical examples are illustrated to show the effectiveness
of the new approach. Although the proposed method has
been investigated in the EFG method, it is also suitable for
other meshfree methods based on MLS approximation.

Appendix

In this appendix, we prove Proposition 1.
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Table 4: Convergence study for Example 4.2.

Node distribution 10 × 10 20 × 20 30 × 30 40 × 40

Background cells 5 × 5 10 × 10 15 × 15 20 × 20

𝑟
1

0.0017 8.3331𝑒 − 4 4.9831𝑒 − 4 3.3669𝑒 − 4

𝑟
2

0.0239 0.0062 0.0028 0.0016

Proof. The first part of Proposition 1 is easy to verify since
W(x) is a diagonal matrix. Moreover, from the definition of
the weight function𝑤(x), we know that if a set of nodes are in

the support domain of a computational node x, then 𝑤
𝑖
(x) >

0. Thus,W(x) is a positive definite matrix. Because

A(x)𝑚×𝑚 = P
𝑚×𝑛

W(x)𝑛×𝑛P
𝑇

𝑛×𝑚
, (A.1)

we obtain

rank (A (x)) ≤ min {rank (P) , rank (W) , rank (P𝑇)}

= min {rank (P) , rank (W)} .

(A.2)

If 𝑛 < 𝑚, then rank(P) ≤ 𝑛 and min{rank(P), rank(W)} is
at most 𝑛. Therefore, rank(A(x)) ≤ 𝑛 < 𝑚. Thus, A(x) is a
singular matrix. If 𝑛 ≥ 𝑚, we show that A(x) is a positive
semidefinite matrix. If we further assume that rank(P) =

𝑚, then A(x) is a positive definite matrix; thus A(x) is a
nonsingular matrix. In fact, for a given nonzero vector 𝑧 ∈

R𝑚

𝑧
𝑇A (x) 𝑧 = 𝑧

𝑇PW (x)P𝑇𝑧 = (P𝑇𝑧)
𝑇

W (x)P𝑇𝑧 ≥ 0

(A.3)

sinceW(x) is a diagonal positive definite matrix.The equality
in (A.3) holds if and only ifP𝑇𝑧 = 0.This cannot be truewhen
P𝑇 has full column rank and 𝑧 ̸= 0. Thus 𝑧𝑇A(x)𝑧 > 0 always
holds for a nonzero vector 𝑧. Therefore, A(x) is a positive
definite matrix.

Thus, we complete the proof.
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