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In order to determine the membership of an element to a set owing to ambiguity between a few different values, the hesitant
fuzzy set (HFS) has been proposed and widely diffused to deal with vagueness and uncertainty involved in the process of multiple
criteria group decision making (MCGDM) problems. In this paper, we develop novel definitions of score function and distance
measure for HFSs. Some examples are given to illustrate that the proposed definitions are more reasonable than the traditional
ones. Furthermore, our study extends the MULTIMOORA (Multiple Objective Optimization on the basis of Ratio Analysis plus
Full Multiplicative Form) method with HFSs.The proposed method thus provides the means for multiple criteria decision making
(MCDM) regarding uncertain assessments. Utilization of hesitant fuzzy power aggregation operators also enables facilitating the
process of MCGDM. A numerical example of software selection demonstrates the possibilities of application of the proposed
method.

1. Introduction

The fuzzy set (FS) theory, which is a generalization of classical
set theory introduced by Zadeh [1], has drawn the attention
of many researchers. Several classical extensions such as the
interval-valued fuzzy set (IVFS) [2], intuitionistic fuzzy set
(IFS) [3–6], interval-valued intuitionistic fuzzy set (IVIFS)
[7], linguistic fuzzy set (IFS) [8, 9], type-2 fuzzy set (T-2FS)
[10–13], type-𝑛 fuzzy set [14], and fuzzy multiset [15] have
been developed. In general, many scholars have noticed that
the difficulty in establishing the degree of membership of an
element in a set does not arise from a margin of error (as
in IFS or IVFSs) or a specified possibility distribution of the
possible values (as in T-2FSs) but instead originates from our
hesitation between a few different values [16]. In fact, it is
usually difficult to reach a final agreement during the decision
making process when people are hesitant and irresolute for
one thing or another. For example, two decision makers
(DMs) may differ on the membership degree of an element
𝑥 to a set 𝐴 to be assigned, one perhaps wants to assign 0.5
but the other 0.6 and they cannot persuade each other. As
such, there is a set of possible values when describing the
membership degree of an element. In such cases, the concept

of a hesitant fuzzy set (HFS) naturally introduced by Torra
and Narukawa [17] and Torra [18] was aimed at dealing
with the inherent hesitation in humankind when making a
decision. The membership degree of an element to a HFS,
called the hesitant fuzzy element (HFE), can be represented
by a collection of possible values between 0 and 1 [19]. In
this sense, it can provide a relative accurate representation of
people’s hesitancy when they are describing their preferences
over objects, whereas the fuzzy set or its classical extensions
cannot handle this situation well. Recently, a great number
of other extensions of the HFSs have been developed such
as dual hesitant fuzzy sets (DHFSs) [20], interval-valued
hesitant fuzzy sets (IVHFS) [21], generalized hesitant fuzzy
sets (GHFSs) [22, 23], and hesitant fuzzy linguistic term sets
(HFLTSs) [8, 24]. It is worth noticing that the HFS theory
has been applied tomany practical problems, especially in the
area of decision making [9, 21–28].

The main task of multiple criteria group decision mak-
ing (MCGDM) is to find the most desirable alternative(s)
among a set of feasible alternatives based on the preferences
provided by a group of decision makers or experts [27,
28]. In recent years, MCGDM with HFSs has attracted a
great deal of attention by experts in decision making area
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[9, 23, 26–28]. Xia and Xu [25] proposed several aggregation
operators for hesitant fuzzy information and discussed the
relationship between IFS and HFS, based on which they
developed some operations and aggregation operators for
HFEs. They also illustrated the correlations among the
aggregation operators and gave their application in solving
decision making problems. Zhang [16] developed a series
of hesitant fuzzy power aggregation operators for hesitant
fuzzy information, demonstrated several useful properties
of the operators and discussed the relationships between
them. The new aggregation operators are utilized to develop
techniques for MCGDM with hesitant fuzzy information. To
differently process and effectively aggregate hesitant fuzzy
information and capture their interrelationship Zhou [19]
proposed the hesitant fuzzy reducible weighted Bonferroni
mean (HFRWBM) and studied some of its prominent charac-
teristics. They further investigated its generalized form, that
is, the generalized hesitant fuzzy reducible weighted Bonfer-
roni mean (GHFRWBM). They finally applied the proposed
aggregation operators to multicriteria aggregation. Yu et al.
[26] investigated aggregationmethods for prioritized hesitant
fuzzy elements and their application on personnel evaluation.
The generalized hesitant fuzzy prioritized weighted aver-
age (GHFPWA) and generalized hesitant fuzzy prioritized
weighted geometric (GHFPWG) operators are proposed and
some desirable properties of the methods are discussed. A
procedure and algorithm for MCGDM was provided using
GHFPWA or GHFPWG and applied to a representative
personnel evaluation problem that involves a prioritization
relationship over the evaluation index. Xu and Zhang [28]
developed a novel approach based on TOPSIS (Technique
for Order Preference by Similarity to Ideal Solution) and the
maximizing deviation method for solving multiple criteria
decisionmaking (MCDM) problems, in which the evaluation
information provided by the decision maker is expressed
in HFEs and the information about criterion weights is
incomplete.

Based on theMOORA (Multi-Objective Optimization by
Ratio Analysis), the MULTIMOORA (Multi-Objective Opti-
mization by Ratio Analysis plus the Full Multiplicative From)
method was initially proposed by Brauers and Zavadskas
[29, 30]. In general, the MULTIMOORA is regarded as a
supplement for MOORA, which consists of the Ratio System
and the Reference Point, with the Full Multiplicative Form.
Brauers and Zavadskas [30] applied the MULTIMOORA
method in MCDM process. Brauers and Zavadskas [31, 32]
discussed the issues of information aggregation and data
normalization inMULTIMOORA.TheMOORAmethod has
been employed for material selection [33, 34]. Brauers and
Zavadskas [35] extended MULTIMOORA with triangular
fuzzy numbers and Baležentis et al. [36] further proposed
fuzzyMULTIMOORA for group decisionmaking. Baležentis
and Zeng [37] updated the MULTIMOORA method with T-
2FSs, namely, generalized interval-valued trapezoidal fuzzy
numbers. Balezentiene et al. [38] offered a MCDM frame-
work for prioritization of energy crops based on fuzzy MUL-
TIMOORA method which enables to tackle uncertain infor-
mation. Streimikiene and Balezentis [39] applied the MUL-
TIMOORA method for prioritization of the climate change

mitigation strategies. Given selection of sustainable energy
sources involves some conflicting criteria, Streimikiene et
al. [40] employed multicriteria decision methods MULTI-
MOORA and TOPSIS to facilitate the analysis. In this paper,
we propose an improved MULTIMOORA method with
HFEs. By ameliorating the definitions of score function and
distancemeasure forHFEs, the proposedmethod can address
the hesitant fuzzy MCGDM problems and therefore reach
more accurate decision results. In addition, the comparisons
with other methods show the reasonability and efficiency of
our algorithms.

Thepaper proceeds as follows. Section 2 discusses prelim-
inaries for some basic notions, definitions, and properties of
PA operator and HFSs. Section 3 presents novel definitions
of the score function and the distance measure for HFEs.
Section 4 introduces the crisp MULTIMOORA. Section 5
treats the MULTIMOORA method updated with HFEs
and puts forward two algorithms for addressing MCGDM
problems. Finally, Section 6 presents an application of the
proposed methods in group decision making.

2. Preliminaries

This section is devoted to introduce some basic notions,
definitions, and properties of PA operator and HFSs, which
will facilitate our further analysis.

2.1. Power Average Operator. Information aggregation is a
process that fuses data from multiple resources by using
a proper aggregation technique. As one of the well-known
aggregation techniques, the power-average (PA) operator,
which is a nonlinear weighted-average aggregation tools
whose weighting vectors depend on the input arguments,
was initially introduced by Yager [41] and has been receiving
extensive attention from researchers and practitioners over
the past decades.This subsection aims to briefly introduce the
notion of PA operator.

Definition 1 (see [41]). Let (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) be a collection of

crisp numbers; then, a nonlinear weighted-average aggre-
gation tool, which is called PA operator, can be defined as
follows:

PA (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) =

∑
𝑛

𝑖=1
(1 + 𝑇 (𝑎

𝑖
)) 𝑎

𝑖

∑
𝑛

𝑖=1
(1 + 𝑇 (𝑎

𝑖
))

=

𝑛

∑

𝑖=1

1 + 𝑇 (𝑎
𝑖
)

∑
𝑛

𝑖=1
(1 + 𝑇 (𝑎

𝑖
))

𝑎
𝑖
,

(1)

where

𝑇 (𝑎
𝑖
) =

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

sup (𝑎
𝑖
, 𝑎
𝑗
) , (2)

and sup(𝑎
𝑖
, 𝑎
𝑗
) is the support for 𝑎

𝑖
from 𝑎

𝑗
, which satisfies the

following properties:

(1) sup(𝑎
𝑖
, 𝑎
𝑗
) ∈ [0, 1];

(2) sup(𝑎
𝑖
, 𝑎
𝑗
) = sup(𝑎

𝑗
, 𝑎
𝑖
);

(3) sup(𝑎
𝑖
, 𝑎
𝑗
) > sup(𝑎

𝑠
, 𝑎
𝑡
), if |𝑎

𝑖
− 𝑎
𝑗
| < |𝑎

𝑠
− 𝑎
𝑡
|.
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Generally, the support (i.e., Sup) measure is recognized
as a similarity index. The more the similarity, the closer
the two crisp numbers are and the more they support
each other. Following Definition 1, the nonlinear weights
of the input arguments are (1 + 𝑇(𝑎

𝑖
))/∑

𝑛

𝑖=1
(1 + 𝑇(𝑎

𝑖
)),

𝑖 = 1, 2, . . . , 𝑛. If the inherent information of 𝑎
𝑖
is closer

to the aggregated information, that is, the support of 𝑎
𝑖
is

considerably larger than others, then 𝑎
𝑖
should be assigned

more weight. Conversely, if the support of 𝑎
𝑖
is considerably

smaller than others, then 𝑎
𝑖
should be assigned less weight.

With the aid of the PA operator, the input arguments are
allowed to be aggregated to support and reinforce each other.
This operator allows for aggregations inwhich a subset of data
clustered around a common value can combine in a nonlinear
fashion to a ct in concert in determining the aggregated value.
As such, the influence of the input arguments with large
deviation will be reduced.

Two useful types of support function are proposed by
Yager [41], and they both lie in the unit interval.

Theorem 2 (see [41]). Let (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) be a collection of

crisp numbers, and they will be aggregated by the PA operator.
The support functions of the PA operator can be defined as

(1) sup(𝑎
𝑖
, 𝑎
𝑗
) = 𝐾𝑒

−𝛼(𝑎𝑖−𝑎𝑗)
2

;
(2) sup(𝑎

𝑖
, 𝑎
𝑗
) = 𝐾(1 − |𝑎

𝑖
− 𝑎
𝑗
|
𝛼
),

where sup(𝑎
𝑖
, 𝑎
𝑗
) is the support for 𝑎

𝑖
from 𝑎

𝑗
and 𝛼 ≥ 0, 𝐾 ∈

[0, 1].

To facilitate further application, this work assumes that
sup(𝑎

𝑖
, 𝑎
𝑗
) = 0.5(1 − |𝑎

𝑖
− 𝑎

𝑗
|) is the calculation form of the

support function when the input arguments take the form of
crisp numbers.

2.2. Hesitant Fuzzy Sets. In this subsection, we review the
basic concepts of hesitant fuzzy sets (HFSs) and hesitant fuzzy
elements (HFEs).

Definition 3 (see [18]). A HFS𝑀 on 𝑋 is defined in terms of
a function ℎ

𝑀
(𝑥) when applied to 𝑋, which returns a finite

subset of [0, 1]; that is,
𝑀 = {⟨𝑥, ℎ

𝑀
(𝑥)⟩ | 𝑥 ∈ 𝑋} , (3)

where ℎ
𝑀
(𝑥) is a set of some different values in [0, 1],

representing the possible membership degrees of the element
𝑥 ∈ 𝑋 to𝑀.

For convenience, we call ℎ
𝑀
(𝑥) the hesitant fuzzy element

(HFE) andH the set of all HFEs.
Given three HFEs ℎ, ℎ

1
, and ℎ

2
, Torra and Narukawa [17,

42] defined the following HFE operations.

Definition 4 (see [17, 42]). Let ℎ, ℎ
1
, and ℎ

2
be three HFEs

defined on𝑋; then, we have
(1) ℎ𝐶 = ⋃

𝛾∈ℎ
{1 − 𝛾};

(2) ℎ
1
⋃ℎ

2
= ⋃

𝛾1∈ℎ1 ,𝛾2∈ℎ2
{𝛾
1
∨ 𝛾
2
};

(3) ℎ
1
⋂ℎ

2
= ⋃

𝛾1∈ℎ1 ,𝛾2∈ℎ2
{𝛾
1
∧ 𝛾
2
}.

To facilitate the aggregation of hesitant fuzzy information,
Xia and Xu [25] presented the following new operations on
HFEs ℎ, ℎ

1
, and ℎ

2
.

Definition 5 (see [25]). Letℎ,ℎ
1
, andℎ

2
be threeHFEs defined

on𝑋; then, we have

(1) ℎ𝜆 = ⋃
𝛾∈ℎ

{𝛾
𝜆
}, 𝜆 ≥ 0;

(2) 𝜆ℎ = ⋃
𝛾∈ℎ

{1 − (1 − 𝛾)
𝜆
}, 𝜆 ≥ 0;

(3) ℎ
1
⊕ ℎ

2
= ⋃

𝛾1∈ℎ1 ,𝛾2∈ℎ2
{𝛾
1
+ 𝛾
2
− 𝛾
1
𝛾
2
};

(4) ℎ
1
⊗ ℎ

2
= ⋃

𝛾1∈ℎ1 ,𝛾2∈ℎ2
{𝛾
1
𝛾
2
}.

In order to compareHFEs, the comparison rules forHFEs
defined by Xia and Xu [25] have been widely applied.

Definition 6 (see [25]). Let ℎ be a HFE defined on𝑋; then,

𝑠 (ℎ) =

∑
𝛾∈ℎ

𝛾

𝛿 (ℎ)

(4)

is called the score function of ℎ, where 𝛿(ℎ) is the number of
elements in ℎ. For any two HFEs, ℎ

1
and ℎ

2
, if 𝑠(ℎ

1
) > 𝑠(ℎ

2
),

then ℎ
1
> ℎ

2
; if 𝑠(ℎ

1
) = 𝑠(ℎ

2
), then ℎ

1
= ℎ

2
.

Let ℎ
1
and ℎ

2
be two HFEs. In most cases, 𝛿(ℎ

1
) ̸= 𝛿(ℎ

2
).

To make a comparison of these two HFEs, Xu and Xia [25]
extended the shorter HFE until the length of both HFEs was
the same, which in fact simply extended the shorter HFE by
appending the same value repeatedly. In real application, the
appended values reflect the risk preferences of DMs. Opti-
mistic DMs expect desirable outcomes and would append
the maximum value, and those with pessimistic anticipate
unfavorable results and would append the minimum value
[25]. In this paper, we assume that all of the DMs are
pessimistic.

Another important concept for HFEs is the distance
measure of HFEs and it has been applied to areas such as
pattern recognition, cluster analysis, approximate reasoning,
image processing, and decision making [8, 9, 21–28, 43, 44].
We first introduce the axiom for distance measure.

Definition 7 (see [27]). Let ℎ
1
and ℎ

2
be two HFEs defined on

𝑋; then, the distance measure between ℎ
1
and ℎ

2
is defined as

𝑑(ℎ
1
, ℎ
2
), which satisfies the following properties:

(1) 0 ≤ 𝑑(ℎ
1
, ℎ
2
) ≤ 1;

(2) 𝑑(ℎ
1
, ℎ
2
) = 0 if and only if ℎ

1
= ℎ

2
;

(3) 𝑑(ℎ
1
, ℎ
2
) = 𝑑(ℎ

2
, ℎ
1
).

A variety of distance measures of HFEs have been
proposed based on Definition 7; two most commonly used
of them, which are called hesitant normalized Hamming
distance and hesitant normalized Euclidean distance, are
introduced as follows.
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Definition 8 (see [16]). Let ℎ
1
and ℎ

2
be two HFEs defined on

𝑋; then,

𝑑
ℎ𝑛𝐻𝑑

(ℎ
1
, ℎ
2
) =

1

𝛿

𝛿

∑

𝑖=1






ℎ
𝜎(𝑖)

1
− ℎ

𝜎(𝑖)

2







(5)

is defined as the hesitant normalized Hamming distance
between ℎ

1
and ℎ

2
, where ℎ𝜎(𝑖)

1
and ℎ

𝜎(𝑖)

2
are the ith largest

values in ℎ
1
and ℎ

2
and 𝛿 = max{𝛿(ℎ

1
), 𝛿(ℎ

2
)}.

Definition 9 (see [16]). Let ℎ
1
and ℎ

2
be two HFEs defined on

𝑋; then,

𝑑
ℎ𝑛𝐸𝑑

(ℎ
1
, ℎ
2
) = (

1

𝛿

𝛿

∑

𝑖=1






ℎ
𝜎(𝑖)

1
− ℎ

𝜎(𝑖)

2







2

)

1/2

(6)

is defined as the hesitant normalized Euclidean distance
between ℎ

1
and ℎ

2
, where ℎ𝜎(𝑖)

1
and ℎ

𝜎(𝑖)

2
are the 𝑖th largest

values in ℎ
1
and ℎ

2
and 𝛿 = max{𝛿(ℎ

1
), 𝛿(ℎ

2
)}.

2.3. Hesitant Fuzzy Power Average Operators. Generally, the
power aggregation operators have been widely diffused to
situations in which the input arguments are exact numerical
values. Recently, Zhang [16] has extended the power average
operator to accommodate hesitant fuzzy information as
input.

Definition 10 (see [16]). Let ℎ
𝑖
(𝑖 = 1, 2, . . . , 𝑛) be a collection

of HFEs. If

HFPA (ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) =

⨁
𝑛

𝑖=1
(1 + 𝑇 (ℎ

𝑖
)) ℎ

𝑖

∑
𝑛

𝑖=1
(1 + 𝑇 (ℎ

𝑖
))

, (7)

thenHFPA is called the hesitant fuzzy power average (HFPA)
operator, where

𝑇 (ℎ
𝑖
) =

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

sup (ℎ
𝑖
, ℎ
𝑗
) (8)

and sup(ℎ
𝑖
, ℎ
𝑗
) is the support for ℎ

𝑖
from ℎ

𝑗
, which satisfies

the following three properties:

(1) sup(ℎ
𝑖
, ℎ
𝑗
) ∈ [0, 1];

(2) sup(ℎ
𝑖
, ℎ
𝑗
) = sup(ℎ

𝑗
, ℎ
𝑖
);

(3) sup(ℎ
𝑖
, ℎ
𝑗
) > sup(ℎ

𝑠
, ℎ
𝑡
), if 𝑑(ℎ

𝑖
, ℎ
𝑗
) < 𝑑(ℎ

𝑠
, ℎ
𝑡
), where

𝑑 is a distance measure between any two HFEs.

The support measure is essentially a similarity measure.
It can be used to measure the proximity of a hesitant
fuzzy preference value by one DM to another hesitant fuzzy
preference value provided by a different DM. Without loss
of generality, the support function for HFEs being used is
sup(ℎ

𝑖
, ℎ
𝑗
) = 1 − 𝑑(ℎ

𝑖
, ℎ
𝑗
) in this study.

Theorem 11 (see [16]). Let ℎ
𝑖
(𝑖 = 1, 2, . . . , 𝑛) be a collection of

HFEs. The aggregated value using the HFPA operator is also a
HFE, and

HFPA (ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

= ⋃

𝛾1∈ℎ1 ,𝛾2∈ℎ2 ,...,𝛾𝑛∈ℎ𝑛

{1 −

𝑛

∏

𝑖=1

(1 − 𝛾
𝑖
)
(1+𝑇(ℎ𝑖))/∑

𝑛

𝑖=1
(1+𝑇(ℎ𝑖))

} .

(9)

Definition 12 (see [16]). Let ℎ
𝑖
(𝑖 = 1, 2, . . . , 𝑛) be a collec-

tion of HFEs. A generalized hesitant fuzzy power average
(GHFPA) operator is a mapping𝐻𝑛 → 𝐻 such that

GHFPA (ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) = (

⨁
𝑛

𝑖=1
(1 + 𝑇 (ℎ

𝑖
)) ℎ

𝜆

𝑖

∑
𝑛

𝑖=1
(1 + 𝑇 (ℎ

𝑖
))

)

1/𝜆

,

(10)

where 𝑇(ℎ
𝑖
) satisfies conditions (1) to (3) in Definition 7.

Theorem 13 (see [16]). Let ℎ
𝑖
(𝑖 = 1, 2, . . . , 𝑛) be a collection of

HFEs. The aggregated value using the HFPA operator is also a
HFE, and

𝐺𝐻𝐹𝑃𝐴𝜆 (ℎ1, ℎ2, . . . , ℎ𝑛)

= ⋃

𝛾1∈ℎ1 ,𝛾2∈ℎ2 ,...,𝛾𝑛∈ℎ𝑛

{(1 −

𝑛

∏

𝑖=1

(1 − 𝛾
𝜆

𝑖
)
(1+𝑇(ℎ𝑖))/∑

𝑛

𝑖=1
(1+𝑇(ℎ𝑖))

)

1/𝜆

} .

(11)

Definition 14 (see [16]). Let ℎ
𝑖
(𝑖 = 1, 2, . . . , 𝑛) be a collection

of HFEs. A weighted generalized hesitant fuzzy power aver-
age (WGHFPA) operator is a mapping𝐻𝑛 → 𝐻 such that

WGHFPA (ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) = (

⨁
𝑛

𝑖=1
𝑤
𝑖
(1 + 𝑇 (ℎ

𝑖
)) ℎ

𝜆

𝑖

∑
𝑛

𝑖=1
𝑤
𝑖
(1 + 𝑇 (ℎ

𝑖
))

)

1/𝜆

,

(12)

where

𝑇 (ℎ
𝑖
) =

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑤
𝑗
Sup (ℎ

𝑖
, ℎ
𝑗
) (13)

with the conditions thatw = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇,𝑤

𝑖
∈ [0, 1] for

𝑖 = 1, 2, . . . , 𝑛, and ∑𝑛
𝑖=1

𝑤
𝑖
= 1.

Theorem 15 (see [16]). Let ℎ
𝑖
(𝑖 = 1, 2, . . . , 𝑛) be a collection of

HFEs. The aggregated value using the HFPA operator is also a
HFE, and

𝑊𝐺𝐻𝐹𝑃𝐴w,𝜆 (ℎ1, ℎ2, . . . , ℎ𝑛)

= ⋃

𝛾1∈ℎ1 ,𝛾2∈ℎ2 ,...,𝛾𝑛∈ℎ𝑛

{(1 −

𝑛

∏

𝑖=1

(1 − 𝛾
𝜆

𝑖
)
𝑤𝑖(1+𝑇(ℎ𝑖))/∑

𝑛

𝑖=1
𝑤𝑖(1+𝑇(ℎ𝑖))

)

1/𝜆

} .

(14)



Journal of Applied Mathematics 5

3. Novel Definitions of the Score Function and
the Distance Measure for HFEs

In this section, we propose novel definitions of the score
function and the distance measure for HFEs.

3.1. Score Function for HFEs. In fact, the score function
advocated in Definition 6 can be interpreted as the simple
arithmetic average of the HFEs if we assume that all the HFEs
are of sameweights. For aHFS ⟨𝑥, ℎ

𝐸
(𝑥)⟩, where theHFEs are

listed in the set ℎ = {0.90, 0.85, 0.83, 0.82, 0.10}, it is obvious
that four out of the five DMs believe the membership degree
of𝑥 to𝑀 is greater than 0.82, and only one of them recognizes
the membership degree as 0.1. In most cases, we can infer
that the membership degree of 𝑥 to 𝑀 is probably greater
than 0.82 rather than around0.1.Therefore, the score function
in Definition 6 may be unreasonable in some cases. In what
follows, we define a novel definition of the score function of
HFSs based on the PA operator.

Definition 16. Let ℎ be a HFE defined on𝑋; then, we define

𝑠 (ℎ) = PA (ℎ) (15)

as the score function of ℎ, where PA(ℎ) is the power average
of ℎ.

The proposed score function can be simply interpreted as
the power average of the elements of a HFE. An important
characteristic of this score function is that it can reduce the
influence caused by the HFE(s) of unduly large (or small)
deviation. In another words, if a HFE or some of the HFSs
is/are far frommost of the others, then it/theywill be assigned
less weight when aggregated by the PA operator. From this
point of view, the score function defined in this study will be
more reasonable. In addition, the comparison rules of HFEs
are same to that of Definition 6.

Example 17. Suppose that there are two HFEs ℎ
1
= {0.8, 0.6,

0.3, 0.2} and ℎ
2
= {0.9, 0.4, 0.1}. According to Definition 6,

the scores for ℎ
1
and ℎ

2
are, respectively, 𝑠(ℎ

1
) = 0.4750

and 𝑠(ℎ
2
) = 0.46667. However, if we use the score function

in Definition 16 to calculate their scores, we have 𝑇(0.8) =

1.2186, 𝑇(0.6) = 1.3634, 𝑇(0.3) = 1.3414, and 𝑇(0.2) =

1.2699 for ℎ
1
, and 𝑇(0.9) = 0.6530, 𝑇(0.4) = 0.8464, and

𝑇(0.1) = 0.7206 for ℎ
2
, based on which we obtain 𝑠(ℎ

1
) =

0.4731 and 𝑠(ℎ
2
) = 0.4595.

From Example 17, we can know that the weights of each
element in ℎ

1
are 0.25 and the weights of each value in

ℎ
2
are 0.33 according to Definition 6. However, following

Definition 16, we obtain that the weights of each element in
ℎ
1
are 0.2413, 0.2571, 0.2547, and 0.2469, respectively, and

besides, the weights of each value in ℎ
2
are 0.3167, 0.3537,

and 0.3296, respectively. Obviously, the elements of unduly
large deviation in ℎ

1
, that is, 0.8 and 0.2, are assigned lower

weights if we utilize the proposed score function, which
means that the score function defined in this study can
alleviate the influence of unduly large (or small) deviations
on the aggregation results.

3.2. Distance Measure for HFEs. The hesitant normalized
Hamming distance and the hesitant normalized Euclidean
distance are widely applied in decision making. However,
for two HFEs ℎ

1
and ℎ

2
, if 𝛿(ℎ

1
) ̸= 𝛿(ℎ

2
), the hesitant

normalized Hamming distance in Definition 8 and hesitant
normalized Euclidean distance in Definition 9 will be some-
what unreasonable because some elements of the shorterHFE
are appended subjectively. Hence, this work utilizes a new
distance measure defined in the following.

Definition 18. Let ℎ
1
and ℎ

2
be two HFEs defined on𝑋; then,

𝑑 (ℎ
1
, ℎ
2
) =





PA (ℎ

1
) − PA (ℎ

2
)





(16)

is defined as distance measure between ℎ
1
and ℎ

2
, where

PA(ℎ
1
) and PA(ℎ

2
) are, respectively, the power average of ℎ

1

and ℎ
2
.

The proof of the fact that the proposed distance measure
satisfies the properties in Definition 7 is omitted here because
it is trivial. Noteworthy, the proposed distance measure is
more objective than those in Definitions 8 and 9, and it
completely incorporates the inherent information of any two
HFEs ℎ

1
and ℎ

2
, which can be illustrated in Example 19.

Example 19. Suppose that there are two HFEs ℎ
1
= {0.8, 0.6,

0.3, 0.2} and ℎ
2
= {0.9, 0.4, 0.1}. According to Definitions

7 and 8, the distances between ℎ
1
and ℎ

2
are, respectively,

𝑑
ℎ𝑛𝐻𝑑

(ℎ
1
, ℎ
2
) = 0.1500 and 𝑑

ℎ𝑛𝐸𝑑
(ℎ
1
, ℎ
2
) = 0.0791. However,

if we use the distancemeasure inDefinition 18 to calculate the
distance between ℎ

1
and ℎ

2
, we have 𝑑(ℎ

1
, ℎ
2
) = 0.0019.

Using Definitions 8 and 9, the distance between ℎ
1
and ℎ

2

can only be calculated by extending the ℎ
2
until the length

of ℎ
1
and ℎ

2
was the same, which in fact simply extended

the ℎ
2
by appended the minimum value 0.1. Therefore, these

two distances 𝑑
ℎ𝑛𝐻𝑑

(ℎ
1
, ℎ
2
) and 𝑑

ℎ𝑛𝐸𝑑
(ℎ
1
, ℎ
2
) are obtained

based on the two HFEs ℎ
1
= {0.8, 0.6, 0.3, 0.2} and ℎ



2
=

{0.9, 0.4, 0.1, 0.1}, which is subjective to some extent.Whereas
the new distance does not need to append values to the
shorter HFE until the length of the HFEs are the same,
which makes the calculation more objective. In addition, the
PA of ℎ

1
and ℎ

2
can reduce the influence of unduly large

(or small) deviations on the aggregation results, so PA(ℎ
1
)

and PA(ℎ
2
) are capable of representing the people’s hesitancy

more reasonable and more accurate.

4. The Crisp MULTIMOORA Method

This section is devoted to briefly introduce the MULTI-
MOORA (MOORA plus full multiplicative form) method.
As already mentioned earlier, Multi-Objective Optimization
by Ratio Analysis (MOORA) method was first introduced in
[29], and it was then extended to MULTIMOORA because
the extension made it more robust.
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Let 𝑋 be a matrix where its elements 𝑥
𝑖𝑗
denote 𝑖th (𝑖 =

1, 2, . . . , 𝑚) alternative of jth (𝑗 = 1, 2, . . . , 𝑛) objective as

X = (𝑥
𝑖𝑗
)
𝑚×𝑛

=

𝑓
1

𝑓
2

⋅ ⋅ ⋅ 𝑓
𝑛

(

𝑥
11

𝑥
12

⋅ ⋅ ⋅ 𝑥
1𝑛

𝑥
21

𝑥
22

⋅ ⋅ ⋅ 𝑥
2𝑛

.

.

.

.

.

.

.

.

.

.

.

.

𝑥
𝑚1

𝑥
𝑚2

⋅ ⋅ ⋅ 𝑥
𝑚𝑛

)

𝑎
1

𝑎
2

.

.

.

𝑎
𝑚

. (17)

In general, the criteria comprise benefit type and cost
type. If 𝑓

𝑗
is of benefit type, then the greater 𝑥

𝑖𝑗
is the better

it will be; if 𝑓
𝑗
is of cost type, then the smaller 𝑥

𝑖𝑗
is the

better it will be. MOORA method consists of two parts:
the Ratio System and the Reference Point approach. The
MULTIMOORA method includes internal normalization
and treats originally all the objectives equally important.
In principle, all stakeholders interested in the issue only
could give more importance to an objective. Therefore they
could eithermultiply the dimensionless number representing
the response on an objective with a significance coefficient
or they could decide beforehand to split an objective into
different subobjectives [29–37, 45].

The Ratio System of MOORA. Ratio system defines data
normalization by comparing alternative of an objective to all
values of the objective:

𝑥
∗

𝑖𝑗
=

𝑥
𝑖𝑗

√∑
𝑚

𝑖=1
𝑥
2

𝑖𝑗

, (18)

where 𝑥
∗

𝑖𝑗
denotes 𝑖th alternative of 𝑗th objective. These

numbers usually belong to the interval [0, 1]; that is, 𝑥∗
𝑖𝑗
∈

[0, 1](𝑖 = 1, 2, . . . , 𝑚; 𝑗 = 1, 2, . . . , 𝑛). The normalized matrix
is denoted as X∗. These indicators are added (if desirable
value of indicator is maximum) or subtracted (if desirable
value is minimum). Thus, the summarizing index of each
alternative is derived in this way:

𝑦
∗

𝑖
=

𝑔

∑

𝑗=1

𝑥
∗

𝑖𝑗
−

𝑛

∑

𝑗=𝑔+1

𝑥
∗

𝑖𝑗
, (19)

where 𝑔 = 1, 2, . . . , 𝑛 denotes number of objectives to be
maximized.Then, every ratio is given the rank: the higher the
index 𝑦∗

𝑖
, the higher the rank.

The Reference Point of MOORA. Reference point approach
is based on the Ratio System. The Maximal Objective Ref-
erence Point (vector) is found according to ratios found by
employing (18).The 𝑗th coordinate of the reference point can
be described as 𝑟

𝑗
= max

𝑖
𝑥
∗

𝑖𝑗
in case of maximization. Every

coordinate of this vector represents maximum or minimum
of certain objective (indicator). Then, every element of
normalized response matrix is recalculated and final rank is
given according to deviation from the reference point and the
Min–Max Metric of Tchebycheff:

min
𝑖

(max
𝑗






𝑟
𝑗
− 𝑥

∗

𝑖𝑗






) . (20)

The Full Multiplicative Form and MULTIMOORA. Brauers
and Zavadskas [29] proposed MOORA to be updated by the
Full Multiplicative Form method embodying maximization
as well as minimization of purely multiplicative utility func-
tion. Overall utility of the ith alternative can be expressed as
dimensionless number:

𝑈


𝑖
=

𝐴
𝑖

𝐵
𝑖

, (21)

where 𝐴
𝑖
= ∏

𝑔

𝑗=1
𝑥
𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑚 denotes the product of

objectives of the 𝑖th alternative to be maximized with 𝑔 =

1, 2, . . . , 𝑛 being the number of objectives to be maximized
and where 𝐵

𝑖
= ∏

𝑛

𝑗=𝑔+1
𝑥
𝑖𝑗
denotes the product of objectives

of the 𝑖th alternative to be minimized with 𝑛 − 𝑔 being
the number of objectives (indicators) to be minimized. Thus
MULTIMOORA summarizes MOORA (i.e., Ratio System
and Reference point) and the Full Multiplicative Form. The
Dominance theory was proposed to summarize three ranks
provided by respective parts of MULTIMOORA into a single
one [35].

5. MULTIMOORA Based upon HFEs

The MULTIMOORA method is aimed at helping DMs
analyze the problem as part of the decision-making process.
In this section, we investigate an MCGDM problem, where
the criterion values take the form of HFEs, the weight
information on criteria is unknown. First, some notations are
used to denote the indices, sets, and variables in anMCGDM
problem in the following.

(i) 𝑚: Total number of alternatives.
(ii) 𝑛: Total number of criteria.
(iii) 𝑠: Total number of DMs involved in the decision

process.
(iv) 𝑖 ∈ 𝑀 = {1, 2, . . . , 𝑚}: Index of alternatives.
(v) 𝑗 ∈ 𝑁 = {1, 2, . . . , 𝑛}: Index of criteria.
(vi) 𝑘 ∈ 𝑆 = {1, 2, . . . , 𝑠}: Index of DMs.
(vii) 𝐴

𝑖
: The 𝑖th alternative.

(viii) 𝐴 = {𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
}: A set of𝑚 alternatives.

(ix) 𝐶
𝑗
: The 𝑗th criterion.

(x) 𝐶 = {𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑛
}: A set of 𝑛 criteria, which are

considered to be independent.
(xi) 𝐷

𝑘
: The 𝑘th DM.

(xii) 𝐷 = {𝐷
1
, 𝐷
2
, . . . , 𝐷

𝑠
}: A set of 𝑠 DMs.

(xiii) 𝛿
𝑘
: Weight of the 𝑘th DM, where ∑𝑠

𝑘=1
𝛿
𝑘
= 1, 0 ≤

𝛿
𝑘
≤ 1 and 𝑘 = 1, 2, . . . , 𝑠.

(xiv) 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇: Significant coefficient vector of

criteria (which indicates the important degree of each
criterion); suppose that ∑𝑛

𝑗=1
𝜔
𝑗
= 1, 0 ≤ 𝜔

𝑗
≤ 1, and

𝑗 = 1, 2, . . . , 𝑛.
(xv) 𝑁

𝐵
: A collection of benefit criteria (i.e., large values of

𝑥
𝑘

𝑖𝑗
s indicate great preference).
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(xvi) 𝑁
𝐶
: A collection of cost criteria (i.e., small values of

𝑥
𝑘

𝑖𝑗
s indicate great preference) such that𝑁

𝐵
⋃𝑁

𝐶
= 𝑁

and𝑁
𝐵
⋂𝑁

𝐶
= ⌀.

(xvii) ℎ𝑘
𝑖𝑗
: Evaluation on alternative 𝐴

𝑖
concerning criterion

𝐶
𝑗
that is given by decision maker𝐷

𝑘
and is a HFE.

(xviii) R = (R1,R2, . . . ,R𝑘)𝑇: Vector of hesitant fuzzy
decision matrices with respect to all DMs.

In this work, we focus on addressing an MCGDM
problem aimed at ranking alternatives and selecting the most
desirable alternative(s) from a finite set 𝐴 based on the set
𝐶. The basic process for solving this MCGDM problem is
illustrated in Figure 1. The algorithm involves the following
steps.

Algorithm 20. Consider the following.
Step 1. Each DM provides his or her evaluations and con-
structs his or her own hesitant decision matrix R𝑘(𝑘 ∈ 𝑆)

with elements 𝑟𝑘
𝑖𝑗
(𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁

𝐵
, 𝑘 ∈ 𝑆) being responses

of alternatives.

Step 2. Utilize the HFPA operator (9)

𝑟
𝑖𝑗
= HFPA (𝑟

1

𝑖𝑗
, 𝑟
2

𝑖𝑗
, . . . , 𝑟

𝑠

𝑖𝑗
) =

⨁
𝑠

𝑘=1
(1 + 𝑇 (𝑟

𝑘

𝑖𝑗
)) 𝑟

𝑘

𝑖𝑗

∑
𝑠

𝑘=1
(1 + 𝑇 (𝑟

𝑘

𝑖𝑗
))

= ⋃

𝛾
(1)

𝑖𝑗
∈ℎ
(1)

𝑖𝑗
,𝛾
(2)

𝑖𝑗
∈ℎ
(2)

𝑖𝑗
,...,𝛾
(𝑠)

𝑖𝑗
∈ℎ
(𝑠)

𝑖𝑗

{1 −

𝑠

∏

𝑘=1

(1 − 𝛾
(𝑘)

𝑖𝑗
)

(1+𝑇(𝑟
𝑘

𝑖𝑗
))/∑
𝑠

𝑘=1
(1+𝑇(𝑟

𝑘

𝑖𝑗
))

}

(22)

to aggregate all of the individual hesitant fuzzy decision
matrices R𝑘 = (𝑟

𝑘

𝑖𝑗
)
𝑚×𝑛

(𝑘 = 1, 2, . . . , 𝑠) into the collective
hesitant fuzzy decision matrix R = (𝑟

𝑖𝑗
)
𝑚×𝑛

.

Step 3. Because all of the criteria are expressed by the
hesitant fuzzy elements, the normalization procedure for the
collective hesitant fuzzy decision matrix R = (𝑟

𝑖𝑗
)
𝑚×𝑛

is not
necessary.

Step 4 (the ratio system). The hesitant fuzzy elements in R =

(𝑟
𝑖𝑗
)
𝑚×𝑛

are added up for the benefit criteria and subtracted for
the cost criteria, which can be represented by ⨁

𝑗∈𝑁𝐵
𝑟
𝑖𝑗
and

⨁
𝑗∈𝑁𝐶

𝑟
𝑖𝑗
, respectively. Following Definition 16, the scores

for ⨁
𝑗∈𝑁𝐵

𝑟
𝑖𝑗
and ⨁

𝑗∈𝑁𝐶
𝑟
𝑖𝑗
can be calculated and denoted

𝑠(⨁
𝑗∈𝑁𝐵

𝑟
𝑖𝑗
) and 𝑠(⊕

𝑗∈𝑁𝐶
𝑟
𝑖𝑗
), and then we obtain the overall

utility of the 𝑖th alternative in terms of the Ratio System,
which can be represented by

𝑟
𝑖
= 𝑠(⨁

𝑗∈𝑁𝐵

𝑟
𝑖𝑗
) − 𝑠(⨁

𝑗∈𝑁𝐶

𝑟
𝑖𝑗
) . (23)

The alternatives are ranked by comparing their overall
utility values. Specifically, alternatives with higher overall
utility value receive higher ranks.

Step 5 (TheReference Point Approach).TheMaximalObjective
Reference Vector (MORV) 𝜑 = (𝜑

1
, 𝜑
2
, . . . , 𝜑

𝑗
, . . . , 𝜑

𝑛
) is

obtained according to the following two principles: (1) if the
criteria are of benefit type, that is, 𝐶

𝑗
(𝑗 ∈ 𝑁

𝐵
), then 𝜑

𝑗
=

max
𝑖∈𝑀

{𝑟
𝑖𝑗
}, 𝑗 ∈ 𝑁; (2) if the criteria are of cost type, that is,

𝐶
𝑗
(𝑗 ∈ 𝑁

𝐶
), then 𝜑

𝑗
= min

𝑖∈𝑀
{𝑟
𝑖𝑗
}, 𝑗 ∈ 𝑁.

Thereafter, the novel distance measure proposed in
Definition 18 can be utilized to identify the collective devi-
ation from the MORV for each alternative:

D
𝑖
= min

𝑖

(max
𝑗






PA (𝑟

𝑖𝑗
) − PA (𝜑

𝑗
)






) . (24)

Then, the alternatives are ranked in ascending order of
D
𝑖
.

Step 6 (the full multiplicative form). The hesitant fuzzy
elements in R = (𝑟

𝑖𝑗
)
𝑚×𝑛

are, respectively, multiplied for
the benefit criteria and the cost criteria, which can be rep-
resented by ⨂

𝑗∈𝑁𝐵
𝑟
𝑖𝑗
and ⨂

𝑗∈𝑁𝐶
𝑟
𝑖𝑗
, respectively. Following

Definition 16, the scores for ⊗
𝑗∈𝑁𝐵

𝑟
𝑖𝑗
and ⨂

𝑗∈𝑁𝐶
𝑟
𝑖𝑗
can be

calculated and denoted 𝑠(⨂
𝑗∈𝑁𝐵

𝑟
𝑖𝑗
) and 𝑠(⨂

𝑗∈𝑁𝐶
𝑟
𝑖𝑗
), and

then we obtain the utility of the 𝑖th alternative in terms of the
Full Multiplicative Form, which can be represented by

𝑈
𝑖
=

𝑠 (𝑈
+

𝑖
)

𝑠 (𝑈
−

𝑖
)

, (25)

where 𝑈+
𝑖
= ⨂

𝑗∈𝑁𝐵
𝑟
𝑖𝑗
(𝑖 ∈ 𝑀) denotes the product of the

criteria of the 𝑖th alternative to the maximized with𝑁
𝐵
being

the set of criteria to be maximized, and 𝑈−
𝑖
= ⨂

𝑗∈𝑁𝐶
𝑟
𝑖𝑗
(𝑖 ∈

𝑀) denotes the product of criteria of the 𝑖th alternative to
the minimized with 𝑁

𝐶
being the set of criteria to be min-

imized. The alternatives are ranked in descending order of
𝑈
𝑖
.

Step 7. Utilize the Dominance theory [31] to aggregate the
three ranks provided by respective parts of MULTIMOORA.

Algorithm 20 is designed for situations in which the
information regarding the weights of the DMs and the
significant coefficients of the criteria is unknown. For the
situations that the information regarding the weights of the
DMs and the significant coefficients of the criteria has been
obtained, we utilize the WGHFPA operator to aggregate the
individual hesitant fuzzy decision matrices and construct
Algorithm 21 to deal with these situations.

Algorithm 21. Consider the following.

Step 1. Each DM provides his or her evaluations and con-
structs his or her own hesitant decision matrix R𝑘(𝑘 ∈ 𝑆)

with elements 𝑟𝑘
𝑖𝑗
(𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁

𝐵
, 𝑘 ∈ 𝑆) being responses

of alternatives.

Step 2. Utilize the WGHFPA operator (12)
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Figure 1: The basic process for solving the MCGDM problem.



Journal of Applied Mathematics 9

𝑟
𝑖𝑗
= WGHFPA (𝑟1

𝑖𝑗
, 𝑟
2

𝑖𝑗
, . . . , 𝑟

𝑠

𝑖𝑗
) = (

⨁
𝑠

𝑘=1
𝛿
𝑘
(1 + 𝑇 (𝑟

𝑘

𝑖𝑗
)) (𝑟

𝑘

𝑖𝑗
)

𝜆

∑
𝑠

𝑘=1
𝛿
𝑘
(1 + 𝑇 (𝑟

𝑘

𝑖𝑗
))

)

1/𝜆

= ⋃

𝛾
(1)

𝑖𝑗
∈ℎ
(1)

𝑖𝑗
,𝛾
(2)

𝑖𝑗
∈ℎ
(2)

𝑖𝑗
,...,𝛾
(𝑠)

𝑖𝑗
∈ℎ
(𝑠)

𝑖𝑗

{

{

{

(1 −

𝑠

∏

𝑘=1

(1 − (𝛾
(𝑘)

𝑖𝑗
)

𝜆

)

𝛿𝑘(1+𝑇(𝑟
𝑘

𝑖𝑗
))/∑
𝑠

𝑘=1
𝛿𝑘(1+𝑇(𝑟

𝑘

𝑖𝑗
))

)

1/𝜆

}

}

}

(26)

to aggregate all of the individual hesitant fuzzy decision
matrices R𝑘 = (𝑟

𝑘

𝑖𝑗
)
𝑚×𝑛

(𝑘 = 1, 2, . . . , 𝑠) into the collective
hesitant fuzzy decision matrix R = (𝑟

𝑖𝑗
)
𝑚×𝑛

.

Step 3. Because all of the criteria are expressed by the
hesitant fuzzy elements, the normalization procedure for the
collective hesitant fuzzy decision matrix R = (𝑟

𝑖𝑗
)
𝑚×𝑛

is not
necessary.

Step 4 (the ratio system). The hesitant fuzzy elements in R =

(𝑟
𝑖𝑗
)
𝑚×𝑛

are added up for the benefit criteria and subtracted
for the cost criteria, which can be represented by⨁

𝑗∈𝑁𝐵
𝜔
𝑗
𝑟
𝑖𝑗

and ⨁
𝑗∈𝑁𝐶

𝜔
𝑗
𝑟
𝑖𝑗
, respectively. Following Definition 16, the

scores for ⨁
𝑗∈𝑁𝐵

𝜔
𝑗
𝑟
𝑖𝑗
and ⨁

𝑗∈𝑁𝐶
𝜔
𝑗
𝑟
𝑖𝑗
can be calculated

and denoted 𝑠(⨁
𝑗∈𝑁𝐵

𝜔
𝑗
𝑟
𝑖𝑗
) and 𝑠(⨁

𝑗∈𝑁𝐶
𝜔
𝑗
𝑟
𝑖𝑗
), and then we

obtain the overall utility of the 𝑖th alternative in terms of the
Ratio System, which can be represented by

𝑟
𝑖
= 𝑠(⨁

𝑗∈𝑁𝐵

𝜔
𝑗
𝑟
𝑖𝑗
) − 𝑠(⨁

𝑗∈𝑁𝐶

𝜔
𝑗
𝑟
𝑖𝑗
) . (27)

The alternatives are ranked by comparing their overall
utility values. Specifically, alternatives with higher overall
utility value receive higher ranks.

Step 5 (the reference point approach). The Maximal Objective
Reference Vector (MORV) 𝜑 = (𝜑

1
, 𝜑
2
, . . . , 𝜑

𝑗
, . . . , 𝜑

𝑛
) is

obtained according to the following two principles: (1) if the
criteria are of benefit type, that is, 𝐶

𝑗
(𝑗 ∈ 𝑁

𝐵
), then 𝜑

𝑗
=

max
𝑖∈𝑀

{𝑟
𝑖𝑗
}, 𝑗 ∈ 𝑁; (2) if the criteria are of cost type, that is,

𝐶
𝑗
(𝑗 ∈ 𝑁

𝐶
), then 𝜑

𝑗
= min

𝑖∈𝑀
{𝑟
𝑖𝑗
}, 𝑗 ∈ 𝑁.

Thereafter, the novel distance measure proposed in
Definition 18 can be utilized to identify the collective devi-
ation from the MORV for each alternative:

D
𝑖
= min

𝑖

(max
𝑗






PA (𝜔

𝑗
𝑟
𝑖𝑗
) − PA (𝜔

𝑗
𝜑
𝑗
)






) . (28)

Then, the alternatives are ranked in ascending order ofD
𝑖
.

Step 6 (the full multiplicative form). The hesitant fuzzy
elements in R = (𝑟

𝑖𝑗
)
𝑚×𝑛

are, respectively, multiplied for
the benefit criteria and the cost criteria, which can be
represented by ⨂

𝑗∈𝑁𝐵
𝜔
𝑗
𝑟
𝑖𝑗

and ⨂
𝑗∈𝑁𝐶

𝜔
𝑗
𝑟
𝑖𝑗
, respectively.

Following Definition 16, the scores for ⨂
𝑗∈𝑁𝐵

𝜔
𝑗
𝑟
𝑖𝑗

and
⨂
𝑗∈𝑁𝐶

𝜔
𝑗
𝑟
𝑖𝑗
can be calculated and denoted 𝑠(⨂

𝑗∈𝑁𝐵
𝜔
𝑗
𝑟
𝑖𝑗
)

and 𝑠(⨂
𝑗∈𝑁𝐶

𝜔
𝑗
𝑟
𝑖𝑗
), and then we obtain the utility of the 𝑖th

alternative in terms of the FullMultiplicative Form,which can
be represented by

𝑈
𝑖
=

𝑠 (𝑈
+

𝑖
)

𝑠 (𝑈
−

𝑖
)

, (29)

where 𝑈+
𝑖
= ⨂

𝑗∈𝑁𝐵
𝜔
𝑗
𝑟
𝑖𝑗
(𝑖 ∈ 𝑀) denotes the product of the

criteria of the 𝑖th alternative to the maximized with𝑁
𝐵
being

the set of criteria to bemaximized, and𝑈−
𝑖
= ⨂

𝑗∈𝑁𝐶
𝜔
𝑗
𝑟
𝑖𝑗
(𝑖 ∈

𝑀) denotes the product of criteria of the 𝑖th alternative to the
minimized with𝑁

𝐶
being the set of criteria to be minimized.

The alternatives are ranked in descending order of 𝑈
𝑖
.

Step 7. Utilize the Dominance theory [31] to aggregate the
three ranks provided by respective parts of MULTIMOORA.

6. Numerical Example

In this section, the use of the proposed algorithm is illustrated
by the following example.

Wang and Lee [46] considered a software selection prob-
lem in which the alternatives are the software packages to be
selected and the criteria are the criteria under consideration.
Let us reconsider this problem. Suppose that the manager
of a computer center at a university wants to select a
new information system to improve work productivity. Four
alternatives 𝐴

𝑖
(𝑖 = 1, 2, 3, 4) remain on the candidate list

after preliminary screening. Three decision makers 𝐷
𝑘
(𝑘 =

1, 2, 3) are chosen from the computer center and form a
decision-making committee with the weight vector 𝛿 =

(0.4, 0.3, 0.3)
T. The computer center must make a decision

according to the following four criteria: (1) the costs of the
hardware/software investment (𝐶

1
); (2) the contribution to

the performance of the organization (𝐶
2
); (3) the effort to

transfer from the current system (𝐶
3
); and (4) the reliability

of the outsourcing software developer (𝐶
4
). Among the

considered criteria, 𝐶
1
is of cost type, and 𝐶

𝑗
(𝑗 = 2, 3, 4) are

of benefit type.The significant coefficient vector of the criteria
𝐶
𝑗
(𝑗 = 1, 2, 3, 4) is 𝜔 = (0.3, 0.25, 0.25, 0.2)T.
In this context, the information regarding the weights of

the DMs and the significant coefficients of the criteria has
been obtained. However, it is common to encounter with
situations in which the information regarding the weights
of the DMs and the significant coefficients of the criteria
is unknown; we first apply Algorithm 20 to support the
DMs when making a decision by conducting the following
steps.
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Table 1:The hesitant fuzzy decision matrix R1 provided by decision
maker𝐷

1
.

𝐶
1

𝐶
2

𝐶
3

𝐶
4

𝐴
1

{0.7, 0.6, 0.5} {0.4, 0.3} {0.5, 0.4} {0.6}

𝐴
2

{0.6, 0.5} {0.4, 0.3, 0.2} {0.8} {0.7, 0.5}

𝐴
3

{0.8} {0.2, 0.1} {0.6, 0.4, 0.3} {0.8, 0.7}

𝐴
4

{0.9} {0.9, 0.8} {0.7} {0.8, 0.7, 0.6}

Table 2:The hesitant fuzzy decisionmatrixR2 provided by decision
maker𝐷

2
.

𝐶
1

𝐶
2

𝐶
3

𝐶
4

𝐴
1

{0.8, 0.7, 0.6} {0.9, 0.7} {0.3, 0.2} {0.6, 0.5, 0.3}

𝐴
2

{0.3} {0.6} {0.7} {0.4, 0.3}

𝐴
3

{0.7, 0.5} {0.4, 0.3} {0.9, 0.8, 0.7} {0.5, 0.4}

𝐴
4

{0.9} {0.5, 0.3} {0.5, 0.4, 0.3} {0.8}

Table 3:The hesitant fuzzy decisionmatrixR3 provided by decision
maker𝐷

3
.

𝐶
1

𝐶
2

𝐶
3

𝐶
4

𝐴
1

{0.5} {0.4, 0.3, 0.2} {0.7, 0.6} {0.7, 0.6, 0.5}

𝐴
2

{0.6, 0.5} {0.8, 0.7} {0.5, 0.3, 0.2} {0.5, 0.4}

𝐴
3

{0.8} {0.5, 0.3} {0.9, 0.8} {0.9, 0.8, 0.7}

𝐴
4

{0.9, 0.8} {0.7} {0.6} {0.8, 0.6}

Step 1. The decision makers 𝐷
𝑘
(𝑘 = 1, 2, 3) evaluate the

software packages𝐴
𝑖
(𝑖 = 1, 2, 3, 4)with respect to the criteria

𝐶
𝑗
(𝑗 = 1, 2, 3, 4) and construct three hesitant fuzzy decision

matricesR𝑘 = (ℎ𝑘
𝑖𝑗
) (𝑘 = 1, 2, 3) (see Tables 1, 2, and 3), where

𝑟
𝑘

𝑖𝑗
∈ 𝐻 is a HFE that denotes all of the possible values for the

alternative 𝐴
𝑖
regarding the criterion 𝐶

𝑗
.

Step 2. Calculate the supports 𝑇(𝑟𝑘
𝑖𝑗
) (𝑖 = 1, 2, 3, 4; 𝑗 =

1, 2, 3, 4; 𝑘 = 1, 2, 3) for each HFE 𝑟
𝑘

𝑖𝑗
from the other HFEs

and they are shown in Table 4.
Utilize the HFPA operator to aggregate all of the individ-

ual hesitant fuzzy decision matrices R𝑘 = (𝑟𝑘
𝑖𝑗
)
4×4

(𝑘 = 1, 2, 3)

into the collective hesitant fuzzy decision matrix R = (𝑟
𝑖𝑗
)
4×4

(see Table 5).

Step 3 (the ratio system). Calculate the scores for⨁4

𝑗=2
𝑟
𝑖𝑗
(𝑖 =

1, 2, 3, 4) and 𝑟
𝑖1
(𝑖 = 1, 2, 3, 4) and we have

𝑠(

4

⨁

𝑗=2

𝑟
1𝑗
) = 0.8960, 𝑠 (𝑟

11
) = 0.6137;

𝑠(

4

⨁

𝑗=2

𝑟
2𝑗
) = 0.9302, 𝑠 (𝑟

21
) = 0.4848;

𝑠(

4

⨁

𝑗=2

𝑟
3𝑗
) = 0.9530, 𝑠 (𝑟

31
) = 0.7526;

𝑠(

4

⨁

𝑗=2

𝑟
4𝑗
) = 0.9691, 𝑠 (𝑟

41
) = 0.8872.

(30)

Then, we obtain the overall utility of the 𝑖th alternative in
terms of the Ratio System, which can be represented by

𝑟
1
= 0.2824, 𝑟

2
= 0.4454, 𝑟

3
= 0.2004,

𝑟
4
= 0.0819.

(31)

The alternatives are ranked by comparing their overall
utility values, and we obtain𝐴

2
≻ 𝐴

1
≻ 𝐴

3
≻ 𝐴

4
(“≻” means

“more important than”).

Step 4 (the reference point approach). The MORV can be
obtained from the collective hesitant fuzzy matirx, which is
as follows:
𝜑
1
= {0.5236, 0.4856, 0.4856, 0.4446} ;

𝜑
2
= {0.7560, 0.7289, 0.6926, 0.6585} ;

𝜑
3
= {0.8480, 0.8282, 0.8200, 0.8069, 0.8059, 0.7817,

0.7807, 0.7761, 0.7713, 0.7702, 0.7534, 0.7470,

0.7349, 0.7213, 0.7155, 0.7080, 0.6785, 0.6632} ;

𝜑
4
= {0.8000, 0.7707, 0.7473, 0.7103, 0.6808} .

(32)

Thereafter, the proposed distance measure is utilized to
identify the collective deviation from the MORV for each
alternative:

D
1
= 0.1332, D

2
= 0.2624, D

3
= 0.3984,

D
4
= 0.1559.

(33)

Then, the alternatives are ranked in descending order of
D
𝑖
(𝑖 = 1, 2, 3, 4) and we have 𝐴

1
≻ 𝐴

4
≻ 𝐴

2
≻ 𝐴

3
.

Step 5 (the full multiplicative form). The product of the
benefit criteria of the 𝑖th alternative and the product of cost
criteria of the ith alternative are calculated and

𝑠 (𝑈
+

1
) = 0.1462, 𝑠 (𝑈

−

1
) = 0.6137;

𝑠 (𝑈
+

2
) = 0.1911, 𝑠 (𝑈

−

2
) = 0.4848;

𝑠 (𝑈
+

3
) = 0.1701, 𝑠 (𝑈

−

3
) = 0.7526;

𝑠 (𝑈
+

4
) = 0.3091, 𝑠 (𝑈

−

4
) = 0.8872.

(34)

Then,

𝑈
1
= 0.2382, 𝑈

2
= 0.3941, 𝑈

3
= 0.2261,

𝑈
4
= 0.3484.

(35)

The alternatives are ranked in descending order of 𝑈
𝑖
and we

have 𝐴
2
≻ 𝐴

4
≻ 𝐴

1
≻ 𝐴

3
.
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Table 4: The supports for each HFE from other HFEs.

𝐶
1

𝐶
2

𝐶
3

𝐶
4

DM
1

DM
2

DM
3

DM
1

DM
2

DM
3

DM
1

DM
2

DM
3

DM
1

DM
2

DM
3

𝐴
1

1.8000 1.7000 1.7000 1.5000 1.0500 1.4500 1.6000 1.4000 1.4000 1.8685 1.7370 1.8685
𝐴
2

1.7500 1.5000 1.7500 1.2500 1.5500 1.4000 1.4315 1.5315 1.1630 1.6000 1.6500 1.7500
𝐴
3

1.8000 1.6000 1.8000 1.5500 1.7500 1.7000 1.2130 1.5815 1.5315 1.6500 1.3500 1.6000
𝐴
4

1.9500 1.9500 1.9000 1.4000 1.2500 1.5500 1.6000 1.5000 1.7000 1.9000 1.8000 1.9000

Table 5: The collective hesitant fuzzy decision matrix R.

𝐶
1

𝐶
2

𝐶
3

𝐶
4

𝐴
1

{0.6894, 0.6574, 0.6450,
0.6302, 0.6098, 0.6084,
0.5774, 0.5695, 0.5354}

{0.6450, 0.6253, 0.6249, 0.6074,
0.6041, 0.5851, 0.5102, 0.4831,
0.4825, 0.4583, 0.4538, 0.4277}

{0.5275, 0.5066, 0.4962, 0.4813, 0.4739,
0.4583, 0.4470, 0.4225}

{0.6371, 0.6100, 0.6000, 0.5701,
0.5686, 0.5652, 0.5364, 0.5208,

0.4832}

𝐴
2

{0.5236, 0.4856, 0.4856,
0.4446}

{0.6396, 0.6218, 0.6057, 0.5875,
0.5671, 0.5487} {0.6949, 0.6621, 0.6482} {0.5501, 0.5266, 0.5210, 0.4959,

0.4689, 0.4410, 0.4345, 0.4049}

𝐴
3

{0.7726, 0.7326} {0.3816, 0.3580, 0.3480, 0.3230,
0.3073, 0.2808, 0.2696, 0.2416}

{0.8480, 0.8282, 0.8200, 0.8069, 0.8059,
0.7817, 0.7807, 0.7761, 0.7713, 0.7702,
0.7534, 0.7470, 0.7349, 0.7213, 0.7155,

0.7080, 0.6785, 0.6632}

{0.7905, 0.7784, 0.7587, 0.7447,
0.7345, 0.7191, 0.6950, 0.6942,
0.6773, 0.6764, 0.6487, 0.6283}

𝐴
4

{0.9000, 0.8743} {0.7560, 0.7289, 0.6926, 0.6585} {0.6096, 0.5861, 0.5652} {0.8000, 0.7707, 0.7473, 0.7103,
0.6808}

Table 6: Ranking of the alternatives according to MULTIMOORA.

The ratio
system

The
reference
point

The full
multiplicative

form

MULTIMOORA
(final rank)

𝐴
1 2 1 3 2

𝐴
2 1 3 1 1

𝐴
3 3 4 4 4

𝐴
4 4 2 2 3

Step 6. According to ranks obtained by the ratio sys-
tem, the reference point and the Full Multiplicative Form
(see Table 6), the Dominance theory is employed to sum-
marize these three ranks provided by respective parts of
MULTIMOORA.

By conducting the multiple criteria evaluation process
using the MULTIMOORA method, alternative 𝐴

2
is identi-

fied as the best choice for the DMs.
Back to the concrete context of the software selection

problem, if the information regarding the weights of the
DMs and the significant coefficients of the criteria has been
obtained, thenwe can applyAlgorithm 21 to support theDMs
when making a decision by conducting the following steps.

Step 1. It is the same as Step 1 in Algorithm 20 and hence is
omitted here.

Step 2. Calculate the supports 𝑇(𝑟𝑘
𝑖𝑗
) (𝑖 = 1, 2, 3, 4; 𝑗 =

1, 2, 3, 4; 𝑘 = 1, 2, 3) for each HFE 𝑟
𝑘

𝑖𝑗
from the other HFEs

and they are shown in Table 7.

Utilize the WGHFPA operator (let 𝜆 = 2) to aggregate
all of the individual hesitant fuzzy decision matrices R𝑘 =

(𝑟
𝑘

𝑖𝑗
)
4×4
(𝑘 = 1, 2, 3) into the collective hesitant fuzzy decision

matrix R = (𝑟
𝑖𝑗
)
4×4

(see Table 8).

Step 3 (the ratio system). Calculate the scores for
⨁
4

𝑗=2
𝜔
𝑗
𝑟
𝑖𝑗
(𝑖 = 1, 2, 3, 4) and 𝜔

1
𝑟
𝑖1
(𝑖 = 1, 2, 3, 4) and

we have

𝑠(

4

⨁

𝑗=2

𝜔
𝑗
𝑟
1𝑗
) = 0.3166, 𝑠 (𝜔

1
𝑟
11
) = 0.1670;

𝑠(

4

⨁

𝑗=2

𝜔
𝑗
𝑟
2𝑗
) = 0.3937, 𝑠 (𝜔

1
𝑟
21
) = 0.1750;

𝑠(

4

⨁

𝑗=2

𝜔
𝑗
𝑟
3𝑗
) = 0.4218, 𝑠 (𝜔

1
𝑟
31
) = 0.3012;

𝑠(

4

⨁

𝑗=2

𝜔
𝑗
𝑟
4𝑗
) = 0.5017, 𝑠 (𝜔

1
𝑟
41
) = 0.3319.

(36)

Then, we obtain the overall utility of the ith alternative in
terms of the Ratio System, which can be represented by

𝑟
1
= 0.1496, 𝑟

2
= 0.2186, 𝑟

3
= 0.1206,

𝑟
4
= 0.1698.

(37)

The alternatives are ranked by comparing their overall
utility values, and we obtain𝐴

2
≻ 𝐴

4
≻ 𝐴

1
≻ 𝐴

3
(“≻” means

“more important than”).
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Table 7: The supports for each HFE from other HFEs.

𝐶
1

𝐶
2

𝐶
3

𝐶
4

DM
1

DM
2

DM
3

DM
1

DM
2

DM
3

DM
1

DM
2

DM
3

DM
1

DM
2

DM
3

𝐴
1

0.5400 0.6000 0.6000 0.4500 0.3700 0.5300 0.4800 0.5000 0.5000 0.5606 0.6080 0.6606
𝐴
2

0.5250 0.5250 0.6250 0.3750 0.5350 0.4750 0.4294 0.5494 0.4020 0.4800 0.5700 0.6100
𝐴
3

0.5400 0.5600 0.6400 0.4650 0.6050 0.5850 0.3639 0.5376 0.5176 0.4950 0.4750 0.5750
𝐴
4

0.5850 0.6850 0.6650 0.4200 0.4300 0.5500 0.4800 0.5200 0.6000 0.5700 0.6300 0.6700

Table 8: The collective hesitant fuzzy decision matrix R.

𝐶
1

𝐶
2

𝐶
3

𝐶
4

𝐴
1

{0.1984, 0.1929, 0.1851,
0.1696, 0.1656, 0.1598,
0.1472, 0.1443, 0.1401}

{0.0941, 0.0875, 0.0819, 0.0813,
0.0773, 0.0744, 0.0728, 0.0673,
0.0646, 0.0627, 0.0565, 0.0511}

{0.1678, 0.1673, 0.1539, 0.1536, 0.1460,
0.1454, 0.1306, 0.1302}

{0.1518, 0.1495, 0.1477, 0.1345,
0.1321, 0.1301, 0.1216, 0.1189,

0.1169}

𝐴
2

{0.1958, 0.1776, 0.1734,
0.1533}

{0.1833, 0.1757, 0.1705, 0.1510,
0.1422, 0.1361} {0.1940, 0.1782, 0.1736} {0.1428, 0.1413, 0.1339, 0.1324,

0.1041, 0.1033, 0.0930, 0.0922}

𝐴
3 {0.3062, 0.2961} {0.0899, 0.0897, 0.0843, 0.0843,

0.0566, 0.0563, 0.0483, 0.0482}

{0.2550, 0.2518, 0.2467, 0.2358, 0.2345,
0.2324, 0.2300, 0.2293, 0.2281, 0.2064,
0.2027, 0.1968, 0.1840, 0.1824, 0.1799,

0.1770, 0.1761, 0.1747}

{0.2553, 0.2532, 0.2323, 0.2308,
0.2196, 0.2172, 0.1985, 0.1960,
0.1941, 0.1924, 0.1712, 0.1694}

𝐴
4 {0.3548, 0.3089} {0.2960, 0.2888, 0.2431, 0.2381} {0.1905, 0.1888, 0.1865} {0.2012, 0.1809, 0.1668, 0.1637,

0.1402, 0.1235}

Step 4 (the reference point approach). The MORV can be
obtained from the collective hesitant fuzzy matrix, which is
as follows:

𝜑
1
= {0.1984, 0.1929, 0.1851, 0.1696, 0.1656,

0.1598, 0.1472, 0.1443, 0.1401} ;

𝜑
2
= {0.2960, 0.2888, 0.2431, 0.2381} ;

𝜑
3
= {0.2550, 0.2518, 0.2467, 0.2358, 0.2345, 0.2324,

0.2300, 0.2293, 0.2281, 0.2064, 0.2027, 0.1968,

0.1840, 0.1824, 0.1799, 0.1770, 0.1761, 0.1747} ;

𝜑
4
= {0.2553, 0.2532, 0.2323, 0.2308, 0.2196, 0.2172,

0.1985, 0.1960, 0.1941, 0.1924, 0.1712, 0.1694} .

(38)

Thereafter, the proposed distance measure is utilized to
identify the collective deviation from the MORV for each
alternative:

D
1
= 0.0610, D

2
= 0.0449, D

3
= 0.1411,

D
4
= 0.1211.

(39)

Then, the alternatives are ranked in descending order of
D
𝑖
(𝑖 = 1, 2, 3, 4) and we have 𝐴

2
≻ 𝐴

1
≻ 𝐴

4
≻ 𝐴

3
.

Table 9: Ranking of the alternatives according to MULTIMOORA.

The ratio
system

The
reference
point

The full
multiplicative

form

MULTIMOORA
(final rank)

𝐴
1 3 2 4 3

𝐴
2 1 1 2 1

𝐴
3 4 4 3 4

𝐴
4 2 3 1 2

Step 5 (the full multiplicative form). The product of the
benefit criteria of the 𝑖th alternative and the product of cost
criteria of the 𝑖th alternative are calculated and

𝑠 (𝑈
+

1
) = 0.0014, 𝑠 (𝑈

−

1
) = 0.1670;

𝑠 (𝑈
+

2
) = 0.0034, 𝑠 (𝑈

−

2
) = 0.1750;

𝑠 (𝑈
+

3
) = 0.0031, 𝑠 (𝑈

−

3
) = 0.3012;

𝑠 (𝑈
+

4
) = 0.0082, 𝑠 (𝑈

−

4
) = 0.3319.

(40)

Then,

𝑈
1
= 0.0087, 𝑈

2
= 0.0196, 𝑈

3
= 0.0104,

𝑈
4
= 0.0246.

(41)

The alternatives are ranked in descending order of 𝑈
𝑖
and we

have 𝐴
4
≻ 𝐴

2
≻ 𝐴

3
≻ 𝐴

1
.

Step 6. According to ranks obtained by the ratio system, the
reference point and the FullMultiplicative Form (seeTable 9),
the Dominance theory is employed to summarize these three
ranks provided by respective parts of MULTIMOORA.
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By conducting the multiple criteria evaluation process
using the MULTIMOORA method, alternative 𝐴

4
is identi-

fied as the best choice for the DMs.
When 𝜆 varies, we can obtain different results (see

Table 10). The DMs can choose the values of 𝜆 according to
their preferences.

In [16], the application of Zhang’s method in this example
shows that alternative 𝐴

4
is identified as the best choice

for the DMs when 𝜆 = 2, which is different from the
results obtained through the two algorithms proposed in
this study. Particularly, the aggregation operator utilized in
Algorithm 21 is the same to that used in Approach 1 in [16].
If 𝜆 = 2, by comparing the final ranking of the alternatives
obtained by our method and Zhang’s method, we find out
that the rankings obtained by our approach, say 𝐴

2
≻ 𝐴

4
≻

𝐴
1
≻ 𝐴

3
, is totally different from that of Zhang, say 𝐴

4
≻

𝐴
2
≻ 𝐴

3
≻ 𝐴

1
. With the change of the attitudes of the DMs,

we can clearly observe that the most desirable alternative
will be varied from one to another; this result is therefore
more reasonable than that in [16] because the attitudes of the
DMs can be effectively reflected while using our method. We
provide below a summary of the desirable advantages of our
approach over the method of [16].

(i) This study refines the definitions of the score function
and distance measure for HFEs and establishes their
novel formulas based on PA operator. The proposed
score function and distance measure are remarkably
different from those proposed in [16] and are investi-
gated highly effective and reasonable because they can
alleviate the influence caused by theHFE(s) that is/are
of unduly large (or small) deviation. Therefore, the
proposed novel definitions will enhance the accuracy
of the improved MULTIMOORAmethod with HFEs
and finally lead to precise decision results.

(ii) We propose two algorithms for addressing MCGDM
problems to respectively accommodate situations in
which the information regarding the weights of the
DMs and the significant coefficients of the criteria
is unknown or known. That is, our approach is
also capable of dealing with situations where the
weight and significant coefficient information of the
alternatives is unknown or completely known. Fur-
thermore, the improved MULTIMOORA framework
proposed in this paper can be flexibly extended to
other MCGDM processes, in which the criteria take
the forms of high-order fuzzy sets, random variables,
fuzzy random variables, and so forth, for obtaining
satisfactory decision results. As such, the proposed
approaches have a wide applied future.

(iii) We utilize the HFPA and WGHFPA operators in
this study to fuse all of the individual hesitant fuzzy
decision matrices into the collective hesitant fuzzy
decision matrix. Our approach can make the ranking
of the alternatives convertible according to the risk
attitudes of DMs because the values of the parameters
represent the optimistic, pessimistic or neural levels
of DMs.

7. Conclusions

In this paper, we have defined the novel score function
and distance measure for HFEs based on PA operator
in order to alleviate the influence of unduly large (or
small) deviation during the aggregation process. We further
extend the MULTIMOORA method by employing HFEs
and propose two algorithms for addressing MCGDM issues.
Similar to the crisp MULTIMOORA method, the proposed
MULTIMOORA method based on HFEs also consists of
the three parts, namely the Ratio System, the Reference
Point, and the FullMultiplicative Form, representing different
approaches of data aggregation and ranking of alternatives.
Therefore, the proposed method could not only provide the
means for MCDM related to uncertain assessments, but also
facilitate MCGDM with the aid of utilization of information
aggregation operators.

A numerical example of software selection demonstrates
the possibilities of application of the proposed method.
Comparison with other methods further illustrates the rea-
sonability and efficiency of our algorithms. Future studies
should focus on development of theMULTIMOORAmethod
in terms of interval-valued hesitant fuzzy sets.
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