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We consider in this paper expansions of functions based on the rational orthogonal basis for the space of square integrable functions.
The basis functions have nonnegative instantaneous frequencies so that the expansions make physical sense. We discuss the almost
everywhere convergence of the expansions and develop a fast algorithm for computing the coefficients arising in the expansions by
combining the characterization of the coefficients with the fast Fourier transform.

1. Introduction

A common approach for understanding a function is to
expand it as a sum of basic functions. These basic functions
should be chosen for different practical purpose. In the time-
frequency analysis, the instantaneous frequency is one of
the most important information for understanding a given
signal. Then the basic functions used to express a compli-
cated signal are expected to have nonnegative instantaneous
frequencies so that the expansion of a signal makes physical
sense. In this point of view, recent works have contributed
to characterize and construct the basic functions [1–7] and
establish numerical algorithms for decomposing a signal
based on the basic functions [8–10].

Motivated by the analytic signal approach [11, 12], the
authors in [7] constructed rational orthogonal basis for
𝐿
2
(R), the space of square integrable functions on R, with

each element of the basis enjoying physically meaningful
instantaneous frequency. Specifically, let N denote the set of
all positive integers. The sequence 𝜓

𝑛
, |𝑛| ∈ N, forms an

orthogonal basis for 𝐿2(R), where for each 𝑛 ∈ N

𝜓
2𝑛−1

(𝑥) := −
𝑥

1 + 𝑥2
(
𝑥 − 𝑖

𝑥 + 𝑖
)

2𝑛−1

, 𝑥 ∈ R,

𝜓
2𝑛
(𝑥) := −

1

1 + 𝑥2
(
𝑥 − 𝑖

𝑥 + 𝑖
)

2𝑛−1

, 𝑥 ∈ R,

(1)

and for each −𝑛 ∈ N, 𝜓
𝑛
:= 𝜓

−𝑛
. As pointed out in

[7], the basis functions all have nonnegative instantaneous
frequencies in the sense of the analytic signal. Based upon
this basis, we focus in this paper on decomposing a function
in 𝐿2(R) into a sum of the basis functions 𝜓

𝑛
, |𝑛| ∈ N. For

simplicity, we first transform the basis into an orthonormal
one by normalization. A direct computation shows that there
holds, for each 𝑛 ∈ N,

∫
R

|𝜓
2𝑛−1
(𝑥)|
2
𝑑𝑥 = ∫

R

𝑥
2

(1 + 𝑥2)
2
𝑑𝑥 =

𝜋

2
,

∫
R

|𝜓
2𝑛
(𝑥)|
2
𝑑𝑥 = ∫

R

1

(1 + 𝑥2)
2
𝑑𝑥 =

𝜋

2
.

(2)

Hence, we obtain the resulting orthonormal basis {𝜙
𝑛
: |𝑛| ∈

N} for 𝐿2(R), where

𝜙
𝑛
:= √

2

𝜋
𝜓
𝑛
, |𝑛| ∈ N. (3)

In fact, due to the completeness of {𝜙
𝑛
, |𝑛| ∈ N} in 𝐿2(R), each

𝑓 ∈ 𝐿
2
(R) can be represented as the infinite series

∑

|𝑛|∈N

𝑑
𝑛
(𝑓) 𝜙
𝑛
, (4)
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where the coefficients are defined by

𝑑
𝑛
(𝑓) := ∫

R

𝑓 (𝑥) 𝜙
𝑛
(𝑥)𝑑𝑥, |𝑛| ∈ N. (5)

However, for practical purpose, one often needs to decom-
pose a function into a finite sum of basic functions. Thus, we
have to approximate a function 𝑓 ∈ 𝐿2(R) by the partial sum
of the series (4) defined by

S
𝑁
(𝑓) (𝑥) :=

𝑁

∑

|𝑛|=1

𝑑
𝑛
(𝑓) 𝜙
𝑛
(𝑥) , 𝑥 ∈ R. (6)

From this point of view, we have to deal with two issues. The
first one is to study the convergence of the partial sum (6)
as 𝑁 tends to infinity. Since it is known that the sequence
of the partial sums converges to 𝑓 in the sense of norm, we
will aim in this paper at discussing the almost everywhere
convergence of them. The second one is to develop a fast
algorithm for computing the partial sum so that this type of
decomposition can be carried out in practical applications.

The organization of this paper is as follows. In Section 2,
we establish the relation between the coefficients in (5) and
the classical Fourier coefficients and then discuss the almost
everywhere convergence of the sequence of the partial sums
in (6). We develop in Section 3 an algorithm for computing
the coefficients in the expansion (6) by employing the relation
between the coefficients and the classical Fourier coefficients
and the fast Fourier transform. To show that the proposed
algorithm is fast, we also give an estimate of its computational
complexity.

2. Almost Everywhere Convergence

Wediscuss in this section the almost everywhere convergence
of the sequence S

𝑁
(𝑓),𝑁 ∈ N. This will be done by making

use of some classical results about the Fourier series. To this
end, with respect to any 𝑓 ∈ 𝐿𝑝(R), 1 ≤ 𝑝 < ∞, a periodic
function is introduced as follows.

Let 𝜎 : R → (0, 2𝜋) be defined by

𝜎 (𝑥) = 2 arctan (𝑥) + 𝜋, 𝑥 ∈ R. (7)

Then 𝜎󸀠(𝑥) = 2/(𝑥2 + 1) > 0, 𝑥 ∈ R means 𝜎 is a one-to-
one mapping from R onto (0, 2𝜋). Then for any 𝑓 ∈ 𝐿𝑝(R),
1 ≤ 𝑝 < ∞, we set

𝑓p (𝑡) :=
𝑓 (𝜎
−1
(𝑡))

(1 − 𝑒𝑖𝑡)
2
, 𝑓q (𝑡) := 𝑓 (𝜎

−1
(𝑡)) ,

𝑡 ∈ (0, 2𝜋) ,

(8)

where 𝜎−1(𝑡) = tan((𝑡 − 𝜋)/2) = −𝑖(𝑒𝑖𝑡 + 1)/(𝑒𝑖𝑡 − 1). The
following lemma gives a desired properties of the functions
𝑓p and 𝑓q.

Lemma 1. Let 𝑝 ∈ [1, +∞). If 𝑓 ∈ 𝐿𝑝(R) satisfies

∫
R

󵄨󵄨󵄨󵄨𝑓(𝑥)
󵄨󵄨󵄨󵄨

𝑝

(1 + 𝑥
2
)
𝑝−1

𝑑𝑥 < ∞, (9)

then 𝑓p, 𝑓q ∈ 𝐿𝑝(0, 2𝜋).

Proof. Taking the change of variables 𝑥 = 𝜎−1(𝑡), we have

∫

2𝜋

0

󵄨󵄨󵄨󵄨󵄨
𝑓p(𝑡)

󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑡 = ∫

2𝜋

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓(𝜎
−1
(𝑡))

(1 − 𝑒𝑖𝑡)
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑡

=
1

4𝑝−1
∫
R

󵄨󵄨󵄨󵄨𝑓(𝑥)
󵄨󵄨󵄨󵄨

𝑝

(1 + 𝑥
2
)
𝑝−1

𝑑𝑥.

(10)

Similarly, for the function 𝑓q, we get

∫

2𝜋

0

|𝑓q(𝑡)|
𝑝
𝑑𝑡 = 2∫

R

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑝

(1 + 𝑥
2
)
−1

𝑑𝑥.

< 2∫
R

|𝑓(𝑥)|
𝑝
(1 + 𝑥

2
)
𝑝−1

𝑑𝑥.

(11)

Together with the assumption (9), the above equalities lead to
the desired conclusions.

We need onemore lemma to represent the coefficients 𝑑
𝑛
,

|𝑛| ∈ N, in terms of the classical Fourier coefficients of𝑓p. For
any 𝑔 ∈ 𝐿1(0, 2𝜋), the Fourier coefficients of 𝑔 are defined by

𝑐
𝑛
(𝑔) :=

1

√2𝜋
∫

2𝜋

0

𝑔 (𝑡) 𝑒
−𝑖𝑛𝑡
𝑑𝑡, 𝑛 ∈ Z. (12)

Lemma 2. Suppose that 𝑓 ∈ 𝐿2(R) satisfies

∫
R

󵄨󵄨󵄨󵄨𝑓(𝑥)
󵄨󵄨󵄨󵄨

2

(1 + 𝑥
2
) 𝑑𝑥 < ∞, (13)

and 𝑓p and 𝑓q are defined in (8). Then the coefficients 𝑑
𝑛
(𝑓),

|𝑛| ∈ N, defined in (5) are determined by

𝑑
𝑛
(𝑓)

=

{{{{{{{{{{

{{{{{{{{{{

{

−𝑖𝑐
𝑛
(𝑓p) + 𝑖𝑐𝑛−2 (𝑓p) , 𝑛 = ± (2𝑘 − 1) , 𝑘 ∈ N,

−𝑐
𝑛−1
(𝑓p) + 2𝑐𝑛−2 (𝑓p) − 𝑐𝑛−3 (𝑓p) ,

𝑛 = 2𝑘, 𝑘 ∈ N,

−𝑐
𝑛+1
(𝑓p) + 2𝑐𝑛 (𝑓p) − 𝑐𝑛−1 (𝑓p) ,

𝑛 = −2𝑘, 𝑘 ∈ N,

(14)
or
𝑑
𝑛
(𝑓)

=

{{{{

{{{{

{

−𝑖𝑐
𝑛
(𝑓p) + 𝑖𝑐𝑛−2 (𝑓p) , 𝑛 = ± (2𝑘 − 1) , 𝑘 ∈ N,

−𝑐
𝑛−1
(𝑓q) , 𝑛 = 2𝑘, 𝑘 ∈ N,

−𝑐
𝑛+1
(𝑓q) , 𝑛 = −2𝑘, 𝑘 ∈ N.

(15)

Proof. For simplicity, we only give the proof for the cases of
𝑛 = 2𝑘−1 and 𝑛 = 2𝑘, 𝑘 ∈ N.The proof for the other cases can
be similarly handled. By definition we have for each 𝑘 ∈ N

𝑑
2𝑘−1

(𝑓) = ∫
R

𝑓 (𝑥) 𝜙
2𝑘−1

(𝑥)𝑑𝑥.

= −√
2

𝜋
∫
R

𝑓 (𝑥)
𝑥

1 + 𝑥2
(
𝑥 + 𝑖

𝑥 − 𝑖
)

2𝑘−1

𝑑𝑥.

(16)
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Taking the change of variables 𝑡 = 𝜎(𝑥), we get

𝑑
2𝑘−1

(𝑓)

= −𝑖√
1

2𝜋
∫

2𝜋

0

𝑓 (𝜎
−1
(𝑡))

(1 − 𝑒𝑖𝑡)
2
(𝑒
−𝑖(2𝑘−1)𝑡

− 𝑒
−𝑖(2𝑘−3)𝑡

) 𝑑𝑡,

(17)

where we used the fact that (𝑥/(1 + 𝑥2))(𝜎−1)󸀠 = −(𝑖/2)((𝑒𝑖𝑡 +
1)/(𝑒
𝑖𝑡
− 1)). Combining the assumptions with Lemma 1, we

point out that 𝑓p ∈ 𝐿
2
(0, 2𝜋). Then the above equation leads

to

𝑑
2𝑘−1

(𝑓) = −𝑖𝑐
2𝑘−1

(𝑓p) + 𝑖𝑐2𝑘−3 (𝑓p) . (18)

In the same method, for the case of 𝑛 = 2𝑘, 𝑘 ∈ N, and by the
fact that (1/(1 + 𝑥2))(𝜎−1(𝑡))󸀠 = 1/2, we obtain

𝑑
2𝑘
= −√

1

2𝜋
∫

2𝜋

0

𝑓 (𝜎
−1
(𝑡)) 𝑒
−𝑖(2𝑘−1)𝑡

𝑑𝑡

= −𝑐
2𝑘−1

(𝑓q) .

(19)

According to the relationship between 𝑓p and 𝑓q, we have
another form of 𝑑

2𝑘
, which completes the proof.

It is known that for any 𝑔 ∈ 𝐿
1
(0, 2𝜋), its Fourier

coefficients 𝑐
𝑛
(𝑔) tend to zero as |𝑛| → ∞. This is

the well-known Riemann-Lebesgue lemma [13]. As a direct
consequence of Lemma 2, we have the same decay property
of the coefficients 𝑑

𝑛
(𝑓), |𝑛| ∈ N.

Corollary 3. If 𝑓 ∈ 𝐿2(R) satisfies (13) then there holds

lim
|𝑛|→∞

𝑑
𝑛
(𝑓) = 0. (20)

Proof. It follows from Lemma 1 that 𝑓p ∈ 𝐿
2
(0, 2𝜋). Thus,

there holds 𝑐
𝑛
(𝑓p) → 0, |𝑛| → ∞. The relation between

𝑑
𝑛
(𝑓), |𝑛| ∈ N and 𝑐

𝑛
(𝑓p), 𝑛 ∈ Z, which is given in Lemma 2,

yields the desired result.

We now turn to the main theorem in this section about
the almost everywhere convergence of the sequence S

𝑁
(𝑓),

𝑁 ∈ N. The almost everywhere convergence of the Fourier
series is one of the most important results in the theory of
Fourier series [14, 15]. It is said that for any 𝑔 ∈ 𝐿𝑝(0, 2𝜋),
1 < 𝑝 < ∞, the partial sum of its Fourier series

S̃
𝑁
(𝑔) (𝑡) =

1

√2𝜋

𝑁

∑

𝑛=−𝑁

𝑐
𝑛
(𝑔) 𝑒
𝑖𝑛𝑡
, 𝑡 ∈ (0, 2𝜋) (21)

converges to 𝑔 almost everywhere on (0, 2𝜋) as 𝑁 → ∞.
We will show that the sequence of S

𝑁
(𝑓),𝑁 ∈ N, enjoys the

same convergence property if 𝑓 satisfies condition (13).

Theorem 4. If 𝑓 ∈ 𝐿
2
(R) satisfies (13), then the sequence

S
𝑁
(𝑓),𝑁 ∈ N, converges to 𝑓 almost everywhere on R.

Proof. Associated with any 𝑓 satisfying (13), due to Lemma 1,
we know that𝑓q = 𝑓∘𝜎

−1
∈ 𝐿
2
(0, 2𝜋); it suffices to prove that

as𝑁 → ∞ there holds almost everywhere on (0, 2𝜋)

S
𝑁
(𝑓) (𝜎

−1
) (𝑡) 󳨀→ 𝑓(𝜎

−1
) (𝑡) . (22)

Consequently, the partial sum of its Fourier series 𝑆
𝑁
(𝑓q)

tends to 𝑓q almost everywhere on (0, 2𝜋) as𝑁 → ∞. Upon
this observation, (22) can be obtained by proving that as
𝑁 → ∞,

S
𝑁
(𝑓) (𝜎

−1
(𝑡)) − S̃

𝑁
(𝑓q) (𝑡) 󳨀→ 0, 𝑡 ∈ (0, 2𝜋) . (23)

To get the difference betweenS
𝑁
(𝑓)(𝜎

−1
(𝑡)) and S̃

𝑁
(𝑓q)

(𝑡), we need to express the two items, respectively. By
definition and change of variables 𝑥 = 𝜎−1(𝑡), we have

S
𝑁
(𝑓) (𝜎

−1
(𝑡)) =

𝑁

∑

|𝑛|=1

𝑑
𝑛
(𝑓) 𝜙
𝑛
(𝜎
−1
(𝑡)) , 𝑡 ∈ (0, 2𝜋) .

(24)

Applying Lemma 2 to the above equation, we can reexpress
S
2𝑁
(𝑓)(𝜎

−1
(𝑡)) through a direct computation. Specifically,

upon introducing four summations

I
1
:=

1

√2𝜋

𝑁

∑

𝑛=1

(𝑐
2𝑛−1

(𝑓p) − 2𝑐2𝑛−2 (𝑓p) + 𝑐2𝑛−3 (𝑓p))

× 𝑒
𝑖(2𝑛−1)𝑡

,

I
2
:=

1

√2𝜋

𝑁

∑

𝑛=1

(𝑐
−(2𝑛−1)

(𝑓p) − 2𝑐−2𝑛 (𝑓p) + 𝑐−(2𝑛+1) (𝑓p))

× 𝑒
−𝑖(2𝑛−1)𝑡

,

I
3
:=

1

√2𝜋

𝑁

∑

𝑛=1

(𝑐
2𝑛−2

(𝑓p) − 𝑐2𝑛−3 (𝑓p)) 𝑒
𝑖(2𝑛−2)𝑡

− (𝑐
2𝑛−1

(𝑓p) − 𝑐2𝑛−2 (𝑓p)) 𝑒
𝑖2𝑛𝑡
,

I
4
:=

1

√2𝜋

𝑁

∑

𝑛=1

(𝑐
−2𝑛
(𝑓p) − 𝑐−(2𝑛+1) (𝑓p)) 𝑒

−𝑖2𝑛𝑡

− (𝑐
−(2𝑛−1)

(𝑓p) − 𝑐−2𝑛 (𝑓p)) 𝑒
−𝑖(2𝑛−2)𝑡

,

(25)

we rewrite S
2𝑁
(𝑓)(𝜎

−1
(𝑡)) as follows:

S
2𝑁
(𝑓) (𝜎

−1
(𝑡)) = I

1
+I
2
+I
3
+I
4
. (26)

To be compared with S
2𝑁
(𝑓)(𝜎

−1
(𝑡)), the item S̃

2𝑁

(𝑓q)(𝑡) should be represented in terms of the Fourier
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coefficients of 𝑓p. For this purpose, we rewrite 𝑐𝑛(𝑓q), 𝑛 ∈ Z,
as follows:

𝑐
𝑛
(𝑔) =

1

√2𝜋
∫

2𝜋

0

𝑓 (𝜎
−1
(𝑡))

(1 − 𝑒𝑖𝑡)
2
(1 − 𝑒

𝑖𝑡
)
2

𝑒
−𝑖𝑛𝑡
𝑑𝑡

=
1

√2𝜋
∫

2𝜋

0

𝑓p (𝑡) (𝑒
−𝑖𝑛𝑡
− 2𝑒
−𝑖(𝑛−1)𝑡

+ 𝑒
−𝑖(𝑛−2)𝑡

) 𝑑𝑡

= 𝑐
𝑛
(𝑓p) − 2𝑐𝑛−1 (𝑓p) + 𝑐𝑛−2 (𝑓p) .

(27)

Substituting the above formula into the partial sum of the
Fourier series of 𝑓q, we have

S̃
2𝑁
(𝑓q) (𝑡)

=
1

√2𝜋

2𝑁

∑

𝑛=−2𝑁

(𝑐
𝑛
(𝑓p) − 2𝑐𝑛−1 (𝑓p) + 𝑐𝑛−2 (𝑓p)) 𝑒

𝑖𝑛𝑡
.

(28)

In a similar manner, we split the above equation into five
items as follows:

S̃
2𝑁
(𝑓q) (𝑡) =

5

∑

𝑘=1

J
𝑘
, (29)

where

J
1
:=

1

√2𝜋

𝑁

∑

𝑛=1

(𝑐
2𝑛−1

(𝑓p) − 2𝑐2𝑛−2 (𝑓p) + 𝑐2𝑛−3 (𝑓p))

× 𝑒
𝑖(2𝑛−1)𝑡

,

J
2
:=

1

√2𝜋

𝑁

∑

𝑛=1

(𝑐
−(2𝑛−1)

(𝑓p) − 2𝑐−2𝑛 (𝑓p) + 𝑐−(2𝑛+1) (𝑓p))

× 𝑒
−𝑖(2𝑛−1)𝑡

,

J
3
:=

1

√2𝜋

𝑁

∑

𝑛=1

(𝑐
2𝑛
(𝑓p) − 2𝑐2𝑛−1 (𝑓p) + 𝑐2𝑛−2 (𝑓p))

× 𝑒
𝑖2𝑛𝑡
,

J
4
:=

1

√2𝜋

𝑁

∑

𝑛=1

(𝑐
−2𝑛
(𝑓p) − 2𝑐−(2𝑛+1) (𝑓p) + 𝑐−(2𝑛+2) (𝑓p))

× 𝑒
−𝑖2𝑛𝑡

,

J
5
:=

1

√2𝜋

(𝑐
0
(𝑓p) − 2𝑐−1 (𝑓p) + 𝑐−2 (𝑓p)) .

(30)

It is clear thatI
𝑘
= J
𝑘
, 𝑘 = 1, 2. For 𝑘 = 3, 4, there holds

I
3
−J
3
=

1

√2𝜋

(𝑐
0
(𝑓p) − 𝑐−1 (𝑓p))

+
1

√2𝜋

(𝑐
2𝑁−1

(𝑓p) − 𝑐2𝑁 (𝑓p)) 𝑒
𝑖2𝑁𝑡
,

I
4
−J
4
=

1

√2𝜋

(𝑐
−2
(𝑓p) − 𝑐−1 (𝑓p))

+
1

√2𝜋

(𝑐
−(2𝑁+1)

(𝑓p) − 𝑐−(2𝑁+2) (𝑓p)) 𝑒
−𝑖2𝑁𝑡

.

(31)

Then by subtracting (29) from (26), we obtain

S
2𝑁
(𝑓) (𝜎

−1
(𝑡)) − S̃

2𝑁
(𝑓q) (𝑡)

=
1

√2𝜋

(𝑐
2𝑁−1

(𝑓p) − 𝑐2𝑁 (𝑓p)) 𝑒
𝑖2𝑁𝑡

+
1

√2𝜋

(𝑐
−(2𝑁+1)

(𝑓p) − 𝑐−(2𝑁+2) (𝑓p)) 𝑒
−𝑖2𝑁𝑡

.

(32)

Together with the fact that 𝑓p ∈ 𝐿
2
(0, 2𝜋), Riemann-Lebes-

gue lemma yields for any 𝑡 ∈ (0, 2𝜋)

lim
𝑁→∞

(S
2𝑁
(𝑓) (𝜎

−1
(𝑡)) − S̃

2𝑁
(𝑓q) (𝑡)) = 0. (33)

3. Numerical Algorithm

Since the expansion (6) can serve as a representation of 𝑓
with both mathematical and physical meanings, developing
a fast approach for computing the coefficients 𝑑

𝑛
(𝑓), |𝑛| ∈

N, is practically important. Lemma 2 states that evaluating
the expansion coefficients of 𝑓 can be carried by calculating
the Fourier coefficients of 𝑓p, and then the well-known fast
Fourier transform [16, 17] can be applied to compute the latter
ones.

We first recall the fast Fourier transform. The algorithm
is developed to reduce the computational cost of the discrete
Fourier transform which is defined as follows:

𝑌
𝑛
=
1

𝑁

𝑁−1

∑

𝑘=0

𝑦
𝑘
𝜔
−𝑛𝑘

𝑁
, 0 ≤ 𝑛 ≤ 𝑁 − 1, (34)

where 𝜔
𝑁

:= 𝑒
2𝑖𝜋(1/𝑁). It requires (𝑁 − 1)2 number of

multiplications to compute 𝑌
𝑛
, 0 ≤ 𝑛 ≤ 𝑁 − 1, directly

by formula (34). When 𝑁 is large, the computational cost is
huge.The key idea of the fast Fourier transform is to compute
𝑌
𝑛
by splitting the sum into two parts according to the even

and odd indices. More precisely, assume that𝑁 is an positive
even integer, that is, 𝑁 = 2𝑚. We rewrite formula (34) as
follows:

𝑌
𝑛
=
1

2
(𝑃
𝑛
+ 𝜔
−𝑛

𝑁
𝐼
𝑛
) , (35)

where

𝑃
𝑛
=
1

𝑚
(𝑦
0
+ 𝑦
2
𝜔
−2𝑛

𝑁
+ ⋅ ⋅ ⋅ + 𝑦

𝑁−2
𝜔
−(𝑁−2)𝑛

𝑁
) ,

𝐼
𝑛
=
1

𝑚
(𝑦
1
+ 𝑦
3
𝜔
−2𝑛

𝑁
+ ⋅ ⋅ ⋅ + 𝑦

𝑁−1
𝜔
−(𝑁−2)𝑛

𝑁
) .

(36)
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Note that there holds the relations 𝑃
𝑛+𝑚

= 𝑃
𝑛
and 𝐼
𝑛+𝑚

= 𝐼
𝑛
,

for 𝑛 = 0, 1, . . . , 𝑚 − 1. Thus, one can obtain the same result
for half of the cost by the following three steps.

Step 1. For 𝑛 = 0, 1, 2, . . . , 𝑚 − 1, compute 𝑃
𝑛
and 𝜔−𝑛

𝑁
𝐼
𝑛
.

Step 2. Compute 𝑌
𝑛
, 𝑛 = 0, 1, 2, . . . , 𝑚−1, by 𝑌

𝑛
= (1/2)(𝑃

𝑛
+

𝜔
−𝑛

𝑁
𝐼
𝑛
).

Step 3. Compute 𝑌
𝑛
, 𝑛 = 𝑚,𝑚 + 1, 2, . . . , 2𝑚 − 1, by 𝑌

𝑛
=

(1/2)(𝑃
𝑛−𝑚

− 𝜔
−(𝑛−𝑚)

𝑁
𝐼
𝑛−𝑚
).

Assume that 𝑁 is a power of 2. It is clear that 𝑃
𝑛

and 𝐼
𝑛
are still two discrete Fourier transform of order 𝑚.

Then the above process can be iterated until we arrive at
the discrete Fourier transform of order 2. Consequently, we
get the celebrated fast Fourier transform, which brings the
computational cost for computing 𝑌

𝑛
, 0 ≤ 𝑛 ≤ 𝑁 − 1, down

to O(𝑁log
2
𝑁).

Applying the fast Fourier transform to compute the
Fourier coefficients which are used to represent the coeffi-
cients 𝑑

𝑛
, we have the following fast algorithm for computing

𝑑
𝑛
, |𝑛| = 1, 2, . . . , 𝑁.

Algorithm 5. Let𝑁 > 0 be a power of 2.

Step 1. Compute 𝑓p,𝑛, 𝑛 = 0, 1, . . . , 4𝑁 − 1, by applying the
fast Fourier transform to 𝑓p(𝑘𝜋/2𝑁), 𝑘 = 0, 1, . . . , 4𝑁 − 1.
Set 𝑐
𝑛
:= 𝑓p,𝑛, 𝑛 = 0, 1, . . . , 2𝑁 − 1, and 𝑐𝑛 := 𝑓p,𝑛+4𝑁, 𝑛 =

−1, −2 . . . , −2𝑁.

Step 2. Compute 𝑑
𝑛
, |𝑛| = 1, 3, . . . , 𝑁 − 1, according to

formula 𝑑
𝑛
= 𝑖(𝑐
𝑛−2
− 𝑐
𝑛
).

Step 3. Compute 𝑑
𝑛
, 𝑛 = 2, 4, . . . , 𝑁, according to formula

𝑑
𝑛
= −𝑐
𝑛−1
+ 2𝑐
𝑛−2
− 𝑐
𝑛−3

.

Step 4. Compute 𝑑
𝑛
, 𝑛 = −2, −4, . . . , −𝑁, according to

formula 𝑑
𝑛
= −𝑐
𝑛+1
+ 2𝑐
𝑛
− 𝑐
𝑛−1

.

The output 𝑑
𝑛
, |𝑛| = 1, 2, . . . , 𝑁, of Algorithm 5

is regarded as an approximation of the coefficients
𝑑
𝑛
, |𝑛| = 1, 2, . . . , 𝑁. The number of multiplications

used in Algorithm 5 is estimated in the next theorem.

Theorem 6. The total number of multiplications needed for
Algorithm 5 is O(𝑁log

2
𝑁).

Proof. The number of multiplications of Step 1, used to
compute the discrete Fourier transform of order 4𝑁 by the
fast Fourier transform, is 2𝑁(log

2
4𝑁 − 2) + 1. In the other

steps, the number ofmultiplications for evaluating a family of
𝑑
𝑛
can be obtained as𝑁/2. We useM

𝑁
to denote the number

of multiplications used in Algorithm 5. Then we have

M
𝑁
= 2𝑁 (log

2
4𝑁 − 2) + 1 + 2𝑁 = 2𝑁log

2
𝑁 + 2𝑁 + 1,

(37)

which gives the desired result.

It is noticed that the change of variable could impact the
regularity of the related function 𝑓p in (8), thus impacting

the accuracy of the numerical scheme. Therefore we require
the conditions of Lemma 2 to keep the boundedness of the
coefficients 𝑑

𝑛
(𝑓), 𝑛 ∈ N. Other kinds of change of variable

should be tried in the future study.
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