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The robust synchronization of hyperchaotic systems with uncertainties and external disturbances is investigated. Based on
the Lyapunov stability theory, the appropriate adaptive controllers and parameter update laws are designed to achieve the
synchronization of uncertain hyperchaotic systems. The robust synchronization of two hyperchaotic Chen systems is taken as an
example to verify the feasibility of the presented schemes. The size of the subcontroller gain’s influences on the convergence speed
is discussed. Finally, numerical simulations are given to demonstrate the effectiveness of the proposed synchronization schemes.

1. Introduction

Since the method of synchronization between identical
chaotic systems with different initial conditions was pre-
sented by Pecora and Carroll [1], chaos synchronization has
attracted considerable attention because of its wide range
of applications in many important research fields, such as
secure communication, chemical reactions, artificial neural
networks, and biological systems [2, 3]. The idea of synchro-
nization is to use the output of the drive system to control
the response system so that the output of the response system
follows the one of the drive system asymptotically. Up to
now, many types of synchronization phenomena have been
reported, such as generalized synchronization [4, 5], adaptive
synchronization [6–9], projective synchronization [10–12],
impulsive synchronization [13], lag synchronization [14, 15],
and function projective synchronization [16, 17]. And a wide
variety of control approaches, such as backstepping design
technique [18], fuzzy sliding mode control [19, 20], adaptive
control [21], optimal control [22], and𝐻

∞
control [23], have

been proposed to synchronize chaotic systems.
However, most of the reported schemes are mainly

concerned with the synchronization of chaotic systems with-
out uncertainties and external disturbances. This behaviour
results in that the complexity of chaotic dynamics is limited
while, in real world applications, there exist a mass of
phenomena of the uncertainties and external disturbances in

chaotic systems. In this regard, a number of researchers have
paid their attention to the synchronization of chaotic systems
with uncertainties and external disturbances [24–30]. The
corresponding works have solved the problem of synchro-
nization of chaotic systems with uncertainties and external
disturbances. However, these studies have not considered the
synchronization of the hyperchaotic systems.

The chaos-hyperchaos transition occurs when the second
Lyapunov exponent becomes positive [31]. Compared with
chaotic systems with one positive Lyapunov exponent, hyper-
chaotic systems are characterized by at least two positive
Lyapunov exponents which indicates that they have more
complex dynamics and much wider application. Moreover,
the chaotic systems with higher-dimensional attractors have
much more randomness and higher unpredictability of the
corresponding system [32]. So the hyperchaos may be more
useful in some fields such as communication and encryption.
Motivated by this, robust synchronization of uncertain hyper-
chaotic systems is investigated. Aghababa [33] proposed
finite-time chaos control and synchronization of fractional-
order nonautonomous chaotic (hyperchaotic) systems. In
[34, 35], Fu considered robust adaptive modified function
projective synchronization and robust adaptive antisynchro-
nization of different hyperchaotic systems subject to external
disturbances. Jawaada et al. [36] proposed robust active
sliding mode antisynchronization of hyperchaotic systems
with uncertainties and external disturbances. Li et al. [37]
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studied generalized function projective synchronization of
two different hyperchaotic systems with unknown parame-
ters. However, these studies have not considered the effects
of both uncertainties and the different kinds of characteristics
of external disturbances in the dynamics of the hyperchaotic
systems.

In this paper, depending on the characteristics of external
disturbance signals, appropriate adaptive controllers and
parameter update laws are proposed for the robust syn-
chronization of hyperchaotic systems with uncertainties and
external disturbances. The uncertainties are bounded by a
nonlinear state-dependent function, instead of a real con-
stant. In the first adaptive controller, assuming that external
disturbances are square integrable signals, the adaptive-
based controllers and parameter update laws are designed to
remove the effects of uncertainties. In the second proposed
adaptive controller, the uncertainties and the external distur-
bances are not square integrable signals. The uncertainties
and external disturbances are combined into an uncertain
time-varying function with unknown bound.The robustness
properties with respect to uncertainties and external distur-
bances are provided by the proposed controllers.

The organization of this paper is as follows. In Section 2,
the robust synchronization of uncertain hyperchaotic Chen
systems is formulated. According to the Lyapunov stability
theory, the robust adaptive synchronization techniques and
the error dynamical system’s stability analysis are proposed in
Section 3. Then, the simulation results in Section 4 are given
to illustrate the effectiveness of the advised methods. Finally,
the concluding remarks are given in Section 5.

2. Problem Formulation

Throughout the paper, for a vector 𝑉 ∈ 𝑅
𝑛, ‖𝑉‖ denotes the

Euclidean vector norm and ‖𝑉‖2
𝑄
:= 𝑉
𝑇

𝑄𝑉, with the weight-
ing matrix 𝑄. Make ‖𝑉‖2 := ‖𝑉‖

2

𝑄=𝐼
= 𝑉
𝑇

𝑉. Furthermore,
𝑉 ∈ 𝐿

2
[0, 𝑇], if ∫𝑇

0

‖𝑉(𝑡)‖
2

𝑑𝑡 < ∞, 𝑇 ∈ [0,∞).
Consider the nonlinear systems in the form of

�̇� = 𝐹 (𝑋) ,

𝑋 (0) = 𝑋
0
∈ 𝑅
𝑛

,
(1)

�̇� = 𝐺 (𝑌) + Δ𝐺 + ℎ + 𝑢,

𝑌 (0) = 𝑌
0
∈ 𝑅
𝑛

,

(2)

where 𝑌 = [𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
]
𝑇 and 𝑋 = [𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
]
𝑇.

The unstructured uncertainties are denoted as Δ𝐺 =

[Δ𝐺
1
, Δ𝐺
2
, . . . , Δ𝐺

𝑛
]
𝑇 and the external disturbances are

denoted as ℎ = [ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
]
𝑇. The controller is 𝑢 =

[𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
]
𝑇 which will be designed in the following

section. The errors between system (1) and system (2) are
denoted as 𝑒

𝑖
= 𝑦
𝑖
− 𝑥
𝑖
(𝑖 = 1, 2, . . . , 𝑛). And the error system

is

�̇� = 𝐺 (𝑌) − 𝐹 (𝑋) + Δ𝐺 + ℎ + 𝑢, (3)

where 𝐸 = [𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
]
𝑇.

The aim of the robust synchronization is to find an adap-
tive controller 𝑢 = [𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
]
𝑇, such that the states of

the nonlinear system (2) can follow the ones of the nonlinear
system (1) asymptotically. Now, we adopt the adaptive control
theory to achieve the robust synchronization of hyperchaotic
Chen systems.

The hyperchaotic Chen system [38] is given by

�̇� = 𝑎 (𝑦 − 𝑥) + 𝑤,

̇𝑦 = 𝑑𝑥 − 𝑥𝑧 + 𝑐𝑦,

�̇� = 𝑥𝑦 − 𝑏𝑧,

�̇� = 𝑦𝑧 + 𝑟𝑤,

(4)

where 𝑥, 𝑦, 𝑧, and𝑤 are state variables and 𝑎, 𝑏, 𝑐, 𝑑, and 𝑟 are
the real constants.

When 𝑎 = 35, 𝑏 = 3, 𝑐 = 12, 𝑑 = 7, and 0 ≤ 𝑟 ≤ 0.085,
system (4) is chaotic; when 𝑎 = 35, 𝑏 = 3, 𝑐 = 12, 𝑑 = 7, and
0.085 < 𝑟 ≤ 0.798, system (4) is hyperchaotic; when 𝑎 = 35,
𝑏 = 3, 𝑐 = 12, 𝑑 = 7, and 0.798 < 𝑟 ≤ 0.9, system (4) is
periodic [38].

In order to observe the synchronization behavior of
the hyperchaotic Chen systems, assume that there are two
identical hyperchaotic Chen systems where the drive system
with subscript 1 drives the response system having identical
equations denoted by subscript 2. For system (4), the drive
system is

�̇�
1
= 𝑎 (𝑦

1
− 𝑥
1
) + 𝑤
1
,

̇𝑦
1
= 𝑑𝑥
1
− 𝑥
1
𝑧
1
+ 𝑐𝑦
1
,

�̇�
1
= 𝑥
1
𝑦
1
− 𝑏𝑧
1
,

�̇�
1
= 𝑦
1
𝑧
1
+ 𝑟𝑤
1
,

(5)

and the response system is

�̇�
2
= 𝑎
1
(𝑦
2
− 𝑥
2
) + 𝑤
2
+ Δ𝑓
1
(𝑥
2
, 𝑦
2
, 𝑧
2
, 𝑤
2
)

+ ℎ
1
(𝑡) + 𝑢

1
(𝑡) ,

̇𝑦
2
= 𝑑𝑥
2
− 𝑥
2
𝑧
2
+ 𝑐
1
𝑦
2
+ Δ𝑓
2
(𝑥
2
, 𝑦
2
, 𝑧
2
, 𝑤
2
)

+ ℎ
2
(𝑡) + 𝑢

2
(𝑡) ,

�̇�
2
= 𝑥
2
𝑦
2
− 𝑏
1
𝑧
2
+ Δ𝑓
3
(𝑥
2
, 𝑦
2
, 𝑧
2
, 𝑤
2
) + ℎ
3
(𝑡) + 𝑢

3
(𝑡) ,

�̇�
2
= 𝑦
2
𝑧
2
+ 𝑟
1
𝑤
2
+ Δ𝑓
4
(𝑥
2
, 𝑦
2
, 𝑧
2
, 𝑤
2
) + ℎ
4
(𝑡) + 𝑢

4
(𝑡) ,

(6)

where 𝑎
1
, 𝑏
1
, 𝑐
1
, and 𝑟

1
are unknown parameters which

need to be estimated; perturbation vectors are denoted as
Δ𝑓 = [Δ𝑓

1
, Δ𝑓
2
, Δ𝑓
3
, Δ𝑓
4
]
𝑇 and ℎ = [ℎ

1
, ℎ
2
, ℎ
3
, ℎ
4
]
𝑇; Δ𝑓
𝑖
(𝑖 =

1, 2, 3, 4) are the bounded unstructured uncertainties and
ℎ
𝑖
(𝑖 = 1, 2, 3, 4) are the external disturbances. The controller

vector is denoted as 𝑢 = [𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
]
𝑇.The synchronization

errors are defined as 𝑒
1
= 𝑥
2
− 𝑥
1
, 𝑒
2
= 𝑦
2
− 𝑦
1
, 𝑒
3
= 𝑧
2
− 𝑧
1
,

and 𝑒
4
= 𝑤
2
− 𝑤
1
.
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Subtract (5) from (6), error dynamical system can be
represented in a matrix form as

�̇� = 𝐴𝐸 + 𝐵𝜃
1
− 𝐵𝜃 + Δ𝑓 + ℎ + 𝑢, (7)

where 𝐸 = [𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
]
𝑇, 𝜃
1
= [𝑎
1
, 𝑏
1
, 𝑐
1
, 𝑟
1
]
𝑇, and 𝜃 = [𝑎, 𝑏,

𝑐, 𝑟]
𝑇. Consider

𝐴 = (

−𝑎
1

𝑎
1

0 1

𝑑 − 𝑧
2

𝑐
1

−𝑥
1

0

𝑦
1

𝑥
2

−𝑏
1

0

0 𝑧
1

𝑦
2

𝑟
1

),

𝐵 = (

𝑦
1
− 𝑥
1

0 0 0

0 0 𝑦
1

0

0 −𝑧
1

0 0

0 0 0 𝑤
1

).

(8)

The aim of the robust synchronization is to design a
controller vector 𝑢 = [𝑢

1
, 𝑢
2
, 𝑢
3
, 𝑢
4
]
𝑇 such that the drive

system (5) and the response system (6) are synchronized in
the sense that lim

𝑡→∞
‖𝐸(𝑡)‖ = 0.

3. Robust Synchronization of
Two Hyperchaotic Chen Systems

In this section, depending on the characteristics of distur-
bance vector ℎ in (6), two adaptive controllers are designed
to provide the robustness properties with uncertainties.

Two robust adaptive techniques are developed based on a
control input in the form as

𝑢 = − (𝐴 + 𝐾)𝐸 + 𝐵𝜃 − 𝐵𝜃 + 𝑢
𝑐1
+ 𝑢
𝑐2
, (9)

where𝐾 = diag(𝑘
1
, 𝑘
2
, 𝑘
3
, 𝑘
4
) is a positive definite matrix and

𝑘
1
, 𝑘
2
, 𝑘
3
, and 𝑘

4
are control gains. 𝜃 = [𝑎, �̂�, 𝑐, 𝑟]

𝑇 are denoted
as the estimated values of [𝑎

1
, 𝑏
1
, 𝑐
1
, 𝑟
1
]
𝑇. The parameter

estimation errors vector is defined as 𝐸
𝑛
= [𝑒
𝑎
, 𝑒
𝑏
, 𝑒
𝑐
, 𝑒
𝑟
]
𝑇,

where 𝑒
𝑎
= 𝑎
1
− 𝑎, 𝑒

𝑏
= 𝑏
1
− �̂�, 𝑒
𝑐
= 𝑐
1
− 𝑐, and 𝑒

𝑟
= 𝑟
1
− 𝑟.

𝑢
𝑐1
and 𝑢

𝑐2
are denoted as the adaptive subcontrollers, which

will be determined in the following theorems.

Assumption 1. The system external disturbances satisfy ℎ ∈

𝐿
2
[0,∞) and the unstructured uncertainties are bounded

by a smooth nonlinear state-dependent function; that is,
‖Δ𝑓(𝑥

2
, 𝑦
2
, 𝑧
2
, 𝑤
2
)‖ ≤ 𝑀(𝑥

2
, 𝑦
2
, 𝑧
2
, 𝑤
2
).

Theorem 2. With Assumption 1, the robust synchronization
between the drive system (5) and the response system (6) is
realized by controller (9) with

𝑢
𝑐1
= −

𝑀
2

𝐸

𝑀‖𝐸‖ + 𝛿𝑒−𝜎𝑡
,

𝑢
𝑐2
= −

1

2𝜌
𝐸,

(10)

and the parameter update laws

̇̂𝑎 = (𝑦
1
− 𝑥
1
) 𝑒
1
,

̇̂
𝑏 = −𝑧

1
𝑒
3
,

̇̂𝑐 = 𝑦
1
𝑒
2
,

̇̂𝑟 = 𝑤
1
𝑒
4
,

(11)

where 𝜌 > 0 denotes the subcontroller gain; 𝛿 and 𝜎 are positive
constants.

Proof. Choose a Lyapunov function as

𝑉 (𝐸, 𝐸
𝑛
) =

1

2
𝐸
𝑇

𝐸 +
1

2
𝐸
𝑇

𝑛
𝐸
𝑛
. (12)

With the controller (9), the time derivative of (12) along the
error trajectory of (7) is

�̇� = −𝐸
𝑇

𝐾𝐸 + 𝐸
𝑇

𝑛
𝐵
𝑇

𝐸 + Δ𝑓
𝑇

𝐸 + ℎ
𝑇

𝐸

+ 𝑢
𝑇

𝑐1
𝐸 + 𝑢
𝑇

𝑐2
𝐸 + ̇𝑒
𝑎
𝑒
𝑎
+ ̇𝑒
𝑏
𝑒
𝑏
+ ̇𝑒
𝑐
𝑒
𝑐
+ ̇𝑒
𝑟
𝑒
𝑟
.

(13)

Substituting subcontrollers 𝑢
𝑐1
and 𝑢

𝑐2
from (10) implies that

�̇� ≤ −𝐸
𝑇

𝐾𝐸 + 𝐸
𝑇

𝑛
𝐵
𝑇

𝐸 +

Δ𝑓
𝑇

‖𝐸‖ + ℎ

𝑇

𝐸 −𝑀‖𝐸‖

+ 𝛿𝑒
−𝜎𝑡

−
1

2𝜌
𝐸
𝑇

𝐸 − ̇̂𝑎𝑒
𝑎
−

̇̂
𝑏𝑒
𝑏
− ̇̂𝑐𝑒
𝑐
− ̇̂𝑟𝑒
𝑟
.

(14)

Then, taking into account the update laws (11) and Assump-
tion 1, one can obtain

�̇� ≤ −𝐸
𝑇

𝐾𝐸 −
1

2𝜌
(𝐸 − 𝜌ℎ)

𝑇

(𝐸 − 𝜌ℎ)

+ 𝛿𝑒
−𝜎𝑡

+
1

2
𝜌‖ℎ‖
2

≤ −𝐸
𝑇

𝐾𝐸 + 𝛿𝑒
−𝜎𝑡

+
1

2
𝜌‖ℎ‖
2

.

(15)

Now, the inequality (15) is integrated from 𝑡 = 0 to 𝑡 = 𝑇, one
can receive

∫

𝑇

0

‖𝐸 (𝑡)‖
2

𝐾
𝑑𝑡 ≤ 𝑉 (𝐸 (0) , 𝐸

𝑛
(0)) − 𝑉 (𝐸 (𝑇) , 𝐸

𝑛
(𝑇))

+
𝛿

𝜎
(1 − 𝑒

−𝜎𝑇

) +
1

2
𝜌∫

𝑇

0

‖ℎ (𝑡)‖
2

𝑑𝑡,

(16)

for all 0 ≤ 𝑇 < ∞. The inequality (16) implies that 𝐸(𝑡) is
square-integrable.

Besides, the external disturbance ℎ is bounded which
means that there exists a 𝐻 > 0 such that ‖ℎ‖ ≤ 𝐻. Due to
inequality (15), �̇� can be bounded as �̇� ≤ −𝜆min‖𝐸‖

2

+𝜌𝐻
2

+𝛿,
where 𝜆min is the minimum eigenvalue of 𝐾. Choose 𝜆min >

(𝜌𝐻
2

+𝛿)/𝜀
2 for any small 𝜀 > 0.There exists 𝜂 = 𝜆min−(𝜌𝐻

2

+

𝛿)/𝜀
2

> 0 such that �̇� ≤ −𝜂‖𝐸‖
2

< 0 for all ‖𝐸‖ > 𝜀. Thus,
there is 𝑇 > 0 such that ‖𝐸‖ ≤ 𝜀 for all 𝑡 ≥ 𝑇.This implies that
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the synchronization error is uniformly ultimately bounded
[39] and all the closed-loop signals are bounded. Because of
the boundedness of all variables, �̇�(𝑡) in the error dynamical
system (7) is also bounded.Therefore, according to Barbalat’s
lemma [39], one can conclude that lim

𝑡→∞
‖𝐸(𝑡)‖ = 0. The

robust synchronization of hyperchaotic systems (5) and (6)
with uncertainties and external disturbances is achieved.The
proof is completed.

Remark 3. Choosing a smaller 𝜌 > 0 causes the faster con-
vergence speed of system (7). In fact, there exists a trade-off
between the value of subcontroller gain 𝜌 and the magnitude
of control input 𝑢.

Remark 4. To satisfy the smoothness of controller (9) without
violating the convergence property of synchronization error,
the exponential term in subcontroller 𝑢

𝑐1
formed by 𝛿 > 0

and 𝜎 > 0.

Theorem 2 shows those disturbances which belong to
𝐿
2
[0,∞). However, in some applications, this condition may

not be satisfied for some disturbance signals. This fact moti-
vates taking an effective scheme to solve the synchronization
problem for this case. The following assumption is made to
tackle such perturbations.

Assumption 5. In the uncertain response system (6), the
unstructured uncertainties and the external disturbances
are combined into one function, Δ𝑔(𝑥

2
, 𝑦
2
, 𝑧
2
, 𝑤
2
) =

Δ𝑓(𝑥
2
, 𝑦
2
, 𝑧
2
, 𝑤
2
) + ℎ(𝑡) with ‖Δ𝑔‖ ≤ 𝑚, where 𝑚 > 0 is an

unknown parameter.

Theorem 6. With Assumption 5, the robust synchronization
between the hyperchaotic systems (5) and (6) is ensured by
controller (9) with 𝑢

𝑐1
= −�̂�

2

(𝐸/(�̂�‖𝐸‖ + 𝛿𝑒
−𝜎𝑡

)), 𝑢
𝑐2

= 0,
and

̇̂𝑚 = 𝜑 ‖𝐸‖ , (17)

where �̂� is the estimate of 𝑚; 𝜑 > 0 denotes the adaptation
gain.

Proof. Choose a Lyapunov function as

𝑉 (𝐸, 𝐸
𝑛
, �̃�) =

1

2
𝐸
𝑇

𝐸 +
1

2
𝐸
𝑇

𝑛
𝐸
𝑛
+

1

2𝜑
�̃�
2

, (18)

where �̃� = 𝑚 − �̂� denotes the estimation error. The time
derivative of (18) along (7) can be received:

�̇� = −𝐸
𝑇

𝐾𝐸 + 𝐸
𝑇

𝑛
𝐵
𝑇

𝐸 + Δ𝑓
𝑇

𝐸 + ℎ
𝑇

𝐸 + 𝑢
𝑇

𝑐1
𝐸

+ 𝑢
𝑇

𝑐2
𝐸 + ̇𝑒
𝑎
𝑒
𝑎
+ ̇𝑒
𝑏
𝑒
𝑏
+ ̇𝑒
𝑐
𝑒
𝑐
+ ̇𝑒
𝑟
𝑒
𝑟
+
1

𝜑

̇̃𝑚�̃�.

(19)

Replacing 𝑢
𝑐1
and 𝑢

𝑐2
, one can get

�̇� ≤ −𝐸
𝑇

𝐾𝐸 + 𝐸
𝑇

𝑛
𝐵
𝑇

𝐸 +

Δ𝑓
𝑇

+ ℎ
𝑇

‖𝐸‖ − �̂� ‖𝐸‖

+ 𝛿𝑒
−𝜎𝑡

− ̇̂𝑎𝑒
𝑎
−

̇̂
𝑏𝑒
𝑏
− ̇̂𝑐𝑒
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Figure 1:The estimated values of the unknown parameters 𝑎
1
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1
,

and 𝑟
1
.

Taking into account Assumption 5 and the parameter update
laws (11), one can obtain

�̇� ≤ −𝐸
𝑇

𝐾𝐸 +

Δ𝑔
𝑇

‖𝐸‖ − �̂� ‖𝐸‖ + 𝛿𝑒

−𝜎𝑡

−
1

𝜑
�̃� ̇̂𝑚

≤ −𝐸
𝑇

𝐾𝐸 + 𝑚‖𝐸‖ − �̂� ‖𝐸‖ + 𝛿𝑒
−𝜎𝑡

−
1

𝜑
�̃� ̇̂𝑚.

(21)

Substituting the update law (17) into inequality (21),

�̇� ≤ −𝐸
𝑇

𝐾𝐸 + 𝛿𝑒
−𝜎𝑡

. (22)

Following a procedure, similar to the proof ofTheorem 2, this
implies that the goal of robust synchronization is achieved
despite the systems (5) and (6) with time-varying parameters,
the unstructured uncertainties, and external disturbances.
The proof is completed.

4. Numerical Simulations

To verify and demonstrate the effectiveness of the proposed
schemes, we will discuss the robust synchronization of the
hyperchaotic Chen systems with different external distur-
bances of ℎ ∈ 𝐿

2
[0,∞) and ℎ ∉ 𝐿

2
[0,∞), respectively.

In the numerical simulations, the fourth-order Runge-Kutta
method is used to solve the systems with time step size 0.001.

The performance of the proposed robust adaptive syn-
chronization schemes is demonstrated by the following
two cases. For this numerical simulations, the system
unstructured uncertainties are assumed to be Δ𝑓

𝑖
=

0.02 sin 𝑡√𝑥
2

2
+ 𝑦
2

2
+ 𝑧
2

2
+ 𝑤
2

2
, (𝑖 = 1, 2, 3, 4) which results in
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Figure 2: The states of the hyperchaotic Chen systems (5) and (6)
with 𝜌 = 1.

𝑀 = 0.03√𝑥
2

2
+ 𝑦
2

2
+ 𝑧
2

2
+ 𝑤
2

2
. In each case, the parameters of

the subcontroller 𝑢
𝑐1
are chosen as 𝛿 = 0.01 and 𝜎 = 0.01.

Case I. Choose 𝑎 = 35, 𝑏 = 3, 𝑐 = 12, 𝑑 = 7, and
𝑟 = 0.5 and 𝑎

1
= 35, 𝑏

1
= 3, 𝑐

1
= 12, and 𝑟

1
= 0.5.

The bounded and square-integrable disturbance signals ℎ
𝑖
=

0.01𝑒
−𝑡 sin 𝑡, (𝑖 = 1, 2, 3, 4) perturb the response system (6).

Take 𝑘
1

= 0.1, 𝑘
2

= 0.1, 𝑘
3

= 0.1, and 𝑘
4

= 0.1 and
the initial conditions are 𝑎(0) = 10, �̂�(0) = 0.5, 𝑐(0) = 7,
and 𝑟(0) = 0.1. The initial states of the drive system (5)
and response system (6) are (𝑥

1
(0), 𝑦
1
(0), 𝑧
1
(0), 𝑤

1
(0)) =

(3, −4, 2, 2) and (𝑥
2
(0), 𝑦
2
(0), 𝑧
2
(0), 𝑤

2
(0)) = (−3, 4, −2, −2),

so the initial states of the error dynamical system (7) are
taken as (𝑒

1
, 𝑒
2
, 𝑒
3
, 𝑒
4
) = (−6, 8, −4, −4). The performance of

synchronization is evaluated with subcontroller gains 𝜌 = 1,
𝜌 = 0.2, and 𝜌 = 0.04. The estimated values 𝑎, �̂�, 𝑐, 𝑟 of
the unknown parameters, plotted in Figure 1, show that the
smaller the subcontroller gain 𝜌 > 0, the faster speed the
estimated values 𝑎, �̂�, 𝑐, and 𝑟 converge to 𝑎

1
= 35, 𝑏

1
= 3,

𝑐
1
= 12, and 𝑟

1
= 0.5. The states of the drive system (5) and

0

50

100

z1
z2

0 1 2 3 4 5 6 7 8 9 10
Time (s)

0
50

100

−50

x1

x2

0 1 2 3 4 5 6 7 8 9 10
Time (s)

x
1
,x

2

0
50

100

−50

y1
y2

0 1 2 3 4 5 6 7 8 9 10
Time (s)

y
1
,y

2
z
1
,z

2

0 1 2 3 4 5 6 7 8 9 10

0
100
200

Time (s)

w1

w2

w
1
,w

2

Figure 3: The states of the hyperchaotic Chen systems (5) and (6)
with 𝜌 = 0.2.

the response system (6) with 𝜌 = 1 and 𝜌 = 0.2 are shown
in Figures 2 and 3. The comparison of Figures 2 and 3 shows
that the smaller the subcontroller gain 𝜌 > 0, the faster the
speed of achieving synchronization. The states of the error
dynamical system (7) with 𝜌 = 1, 𝜌 = 0.2, and 𝜌 = 0.04 in
Figure 4 show that the smaller of the subcontroller gain 𝜌 >

0 provides the faster convergence speed of synchronization
errors.

Case II. Take 𝑎 = 35, 𝑏 = 3, 𝑐 = 12, 𝑑 = 7, and 𝑟 = 0.5 and
𝑎
1
= 35, 𝑏

1
= 3, 𝑐

1
= 12, and 𝑟

1
= 0.5. As a general case,

choose the disturbance signals as ℎ
𝑖
= 0.02 + 0.02 sin 𝑡, (𝑖 =

1, 2, 3, 4) which do not belong to 𝐿
2
[0,∞). Take 𝑘

1
= 0.2,

𝑘
2
= 0.2, 𝑘

3
= 0.2, and 𝑘

4
= 0.2 and the initial conditions

are 𝑎(0) = 10, �̂�(0) = 0.5, 𝑐(0) = 7, 𝑟(0) = 0.1, and
�̂�(0) = 0.01. The initial states of the drive system (5) are
(𝑥
1
(0), 𝑦
1
(0), 𝑧
1
(0), 𝑤

1
(0)) = (3, −4, 2, 2) and the initial states

of the response system (6) are (𝑥
2
(0), 𝑦
2
(0), 𝑧
2
(0), 𝑤

2
(0)) =

(−3, 4, −2, −2). Hence the error dynamical system (7) has the
initial states (𝑒

1
, 𝑒
2
, 𝑒
3
, 𝑒
4
) = (−6, 8, −4, −4). The estimated

values 𝑎, �̂�, 𝑐, 𝑟 of the unknown parameters are shown
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â

b̂

ĉ
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in Figure 5. The states of the hyperchaotic Chen systems
(5) and (6) are plotted in Figure 6. The convergence of
synchronization errors are achieved, as depicted in Figure 7.

0
50

100

0
50

100

0

50

100

0 1 2 3 4 5 6 7 8 9 10

0
100
200
300

Time (s)

−50

−50

x1

x2

y1
y2

z1
z2

w1

w2

0 1 2 3 4 5 6 7 8 9 10
Time (s)

0 1 2 3 4 5 6 7 8 9 10
Time (s)

0 1 2 3 4 5 6 7 8 9 10
Time (s)

x
1
,x

2
y
1
,y

2
z
1
,z

2
w
1
,w

2

Figure 6: The states of the hyperchaotic Chen systems (5) and (6).
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5. Conclusion

In this paper, the robust synchronization of two hyperchaotic
Chen systems with uncertainties and external disturbances
is discussed. Depending on the different characteristics of
disturbance signals ℎ ∈ 𝐿

2
[0,∞) or ℎ ∉ 𝐿

2
[0,∞), two

robust adaptive controllers are proposed. The appropriate
adaptive controllers and the suitable parameter update laws
are designed to remove the influence of uncertainties and
external disturbances, so that robust synchronization of
uncertain hyperchaotic Chen systems can be realized. The
stability analysis is presented based on the Lyapunov stability
theory. The smaller of the subcontroller gain causes the
faster convergence speed of the system (7). At last, the
efficiency and applicability of the introduced controllers and
the parameter update laws are demonstrated using some
numerical simulations.
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