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The Wigner-Ville distribution (WVD) based on the linear canonical transform (LCT) (WDL) not only has the advantages of the
LCT but also has the good properties of WVD. In this paper, some new and important properties of the WDL are derived, and the
relationships between WDL and some other time-frequency distributions are discussed, such as the ambiguity function based on
LCT (LCTAF), the short-time Fourier transform (STFT), and the wavelet transform (WT). The WDLs of some signals are also
deduced. A novel definition of the WVD based on the LCT and generalized instantaneous autocorrelation function (GWDL)
is proposed and its applications in the estimation of parameters for QFM signals are also discussed. The GWDL of the QFM
signal generates an impulse and the third-order phase coefficient of QFM signal can be estimated in accordance with the position
information of such impulse. The proposed algorithm is fast because it only requires 1-dimensional maximization. Also the new
algorithm only has fourth-order nonlinearity thus it has accurate estimation and low signal-to-noise ratio (SNR) threshold. The
simulation results are provided to support the theoretical results.

1. Introduction

The main elements of the modern signal processing are
nonstationary, non-Gaussian, and nonlinear signals. Among
these signals, the development of the nonstationary signal
processing theory is especially remarkable. There are many
time-frequency analysis tools for nonstationary signals, such
as short-time Fourier transform (STFT), fractional Fourier
transform (FRFT), Gabor transform (GT), Wigner-Ville dis-
tribution function (WVD), ambiguity function (AF), linear
canonical transform (LCT), and so forth [1]. The WVD is
regarded as the mother of all the time-frequency distribution
and has become an important distribution in signal analysis
and processing, especially in the nonstationary signal analysis
and processing [2–4]. The LCT as the generalization of the
Fourier transform (FT) and the FRFT was first introduced by
Moshinsky and Quesne [5] and Collins and Stuart [6]. Now

it has been applied for filter designing, time-frequency signal
separating, signal synthesis, and signal encryption [7–9].

The quadratic frequency modulated (QFM) signal exists
widely in nature and is an important nonlinear module in
the signal processing field. It is applied widely in radar,
sonar, speech, and communication fields, mostly in radar
systems [10]. There are many algorithms for estimating the
parameters of QFM signal, such as the maximum likeli-
hood (ML) method [11], the adaptive short-time Fourier
transform method [12], the polynomial Wigner-Ville dis-
tributions (PWVDs) [13], the product high-order matched-
phase transform (PHMT) [14], and the ambiguity function
based on the LCT method (LCTAF) [15]. Because the ML
method and LCTAF method need 3-dimensional (3D) and
2D maximizations, respectively, these methods suffer from
computational burden.The adaptive STFTmethod has lower
resolution. The PWVDs and PHMT algorithms need high
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order of nonlinearity (sixth-order to be exact) and this leads
to high signal-to-noise ratio (SNR) threshold. Therefore,
methods to estimate the QFM signal parameters quickly and
accurately are still an important issue to be solved.

In [15, 16], Tao et al. and Bai et al. have defined the
Wigner-Ville distribution based on linear canonical trans-
form (WDL) separately. For the WDL, Bai has derived some
properties and used them to detect the linear frequency
modulated (LFM) signal. The WDL is a new and important
signal processing tool, but they have not discussed the
WDL in depth enough. In this paper we deduce some new
properties of WDL and investigate the relationship between
WDL and other transforms. We also derive WDLs of some
common signals. In order to estimate QFM signal param-
eters, we define a new kind of Wigner-Ville distribution—
the generalized Wigner-Ville distribution based on the linear
canonical transform (GWDL). The GWDL algorithm just
needs 1D maximization, so the amount of calculations is
smaller compared to ML method and LCTAF method. And
the new algorithm only needs fourth-order nonlinearity, so
it has lower SNR threshold than the PHMT algorithm and
PWVDs algorithm. The simulation results are provided to
support the theoretical results.

The remainder of this paper is organized as follows.
Section 2 reviews the preliminaries about the WVD and the
LCT. In Section 3, some new properties of WDL are deduced
and the relationship between WDL and other transforms is
investigated. The GWDL is defined and its application to
QFM signal parameter estimation is illustrated in Section 4.
Finally, Section 5 gives the conclusion.

2. Preliminary

2.1. The Winger-Ville Distribution. The instantaneous auto-
correlation function 𝑘𝑓(𝑡, 𝜏) of signal 𝑓(𝑡) is

𝑘𝑓 (𝑡, 𝜏) = 𝑓(𝑡 +
𝜏

2
)𝑓

∗
(𝑡 −

𝜏

2
) . (1)

The WVD of 𝑓(𝑡) is defined as the Fourier transform of
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Another definition of WVD is
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where 𝐹(𝜔) is the Fourier transform of 𝑓(𝑡).
The WVD has many important properties, such as con-

jugation symmetry property, time marginal property, and
energy distribution property. For more results about the
WVD, one can refer to [17–19].

2.2. Linear Canonical Transform (LCT). The LCT of a signal
𝑓(𝑡) with parameter matrix 𝐴 = (𝑎, 𝑏, 𝑐, 𝑑) is defined as

𝐹𝐴 (𝑢) = 𝐿𝐴 [𝑓] (𝑢)

=
{
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(4)

where the kernel function𝐾𝐴(𝑢, 𝑡) is

𝐾𝐴 (𝑢, 𝑡) =
1
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and parameters 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅 and satisfy 𝑎𝑑−𝑏𝑐 = 1.The LCT
has additive property
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), and reversible property

𝐿𝐴 [𝐿𝐴−1 [𝑓 (𝑡)]] = 𝑓 (𝑡) . (7)

Other properties of LCT such as sampling and dis-
cretization, uncertainty principles, product and convolution
theorems, and Hilbert Transform are discussed in detail in
[20–23].

When the parameter matrix𝐴 is with some special cases,
the LCT reduces to FT, FRFT, Fresnel transform, and scaling
operation [24]. So the LCT is the generalization of these
transforms. From (4) we can see that when the parameter
𝑏 = 0, the LCT is a scaling transform operation multiplying a
linear frequency modulation signal, so we suppose that 𝑏 ̸= 0

in the following discussion.

3. The Wigner-Ville Distribution Based on
Linear Canonical Transform

In [16], the authors have defined the WDL according to
the actual needs, but they have missed some important
properties. In this section, we deduce some new properties
of WDL and investigate the relationship between WDL and
other transforms.

3.1. The Definition of WDL

Definition 1. Keeping the instantaneous autocorrelation
function 𝑘𝑓(𝑡, 𝜏) unchanged and replacing the kernel func-
tion 𝑒−𝑗𝑤𝜏 of FT by the kernel function𝐾𝐴(𝑢, 𝜏) of LCT in the
WVD definition, the WDL is defined as [15]

WD𝐴𝑓 (𝑡, 𝑢) = ∫
+∞

−∞
𝑘𝑓 (𝑡, 𝜏)𝐾𝐴 (𝑢, 𝜏) 𝑑𝜏, (8)

where the 𝑘𝑓(𝑡, 𝜏) is given by (1) and𝐾𝐴(𝑢, 𝜏) is shown by (5).

Obviously, when 𝐴 = (0, 1, −1, 0), the LCT reduces to FT.
Accordingly, the WDL reduces to classical WVD:

WD𝐴𝑓 (𝑡, 𝑢) = √
1

𝑗2𝜋
𝑊𝑓 (𝑡, 𝑢) . (9)
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When 𝐴 = (cos𝛼, sin𝛼, − sin𝛼, cos𝛼),

WD𝐴𝑓 (𝑡, 𝑢) = √𝑒−𝑗𝛼𝑊
𝛼
𝑓 (𝑡, 𝑢) . (10)

From (9) and (10) one can see that the WDL is a gener-
alization of WVD based on the Fourier transform and the
fractional Fourier transform.

We know that some nonbandlimited signals in the clas-
sical Fourier domain, especially some nonstationary signals
and non-Gaussian signals in the Fourier domain, can be
bandlimited in the LCT domain [20]. The WVD can be seen
as a FT of the instantaneous autocorrelation function and the
WDL can be seen as a LCT of the instantaneous autocorre-
lation function. So signals which are nonbandlimited after
WVDmay be bandlimited in the WDL domain, and then we
can use bandlimited theory to process this kind of signals.
The traditional nonbandlimited signals processing problems
in the Fourier domain can be solved in the LCT domain.This
is one of the reasons why we discuss the WVD based on the
LCT.

The cross-WVD is the FT of crosscorrelation function
for 𝜏. It has more information and making full use of this
information can improve signal processing ability. So we
provide the definition of the cross-WVD based on the LCT
here.

Definition 2. The cross-WVD based on LCT of signal 𝑓(𝑡)
and signal 𝑔(𝑡) is defined as
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3.2. Basic Properties of WDL. In this subsection some new
properties of WDL which are different from those in [16] are
investigated and the proofs of some complex properties will
be given in detail. All the properties are based on the fact that
the WDL of 𝑓(𝑡) is WD𝐴𝑓(𝑡, 𝑢).

Property 1 (symmetry and conjugation property). The WDL
of signal 𝑓∗(−𝑡) is

WD𝐴𝑓∗(−𝑡) (𝑡, 𝑢) = [WD𝐴
−1

𝑓 (−𝑡, 𝑢)]
∗

. (12)

Property 2 (shifting properties). TheWDL of signal 𝑓(𝑡)𝑒𝑗𝜔𝑡
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𝑗𝜔𝑡 is

WD𝐴
𝑓(𝑡−𝑡0)𝑒

𝑗𝜔𝑡 (𝑡, 𝑢) = 𝑒
𝑗(𝑢𝑑𝜔−𝑏𝑑𝜔2/2)

×WD𝐴𝑓 (𝑡 − 𝑡0, 𝑢 − 𝜔1𝑏) .
(14)
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Especially when 𝑓(𝑡) = 1, 𝑔(𝑡) = 𝑒𝑗𝜔1𝑡+𝑗𝜔2𝑡
2

is the LFM signal,
and its WDL is

WD𝐴𝑔(𝑡) (𝑡, 𝑢)

=

{{{{{

{{{{{

{

√
2𝜋𝑏

𝑗
𝑒
𝑗(𝑑/2𝑏)𝑢2

𝛿 (2𝜔2𝑏𝑡 + 𝜔1𝑏 − 𝑢) , 𝑎 = 0,

√
1

𝑎
𝑒
𝑗(𝑑/2𝑏)𝑢2−𝑗((𝑢−𝜔

1
𝑏−2𝑏𝜔

2
𝑡)2/2𝑎𝑏)

, 𝑎 ̸= 0.

(16)

Proof. Firstly, a useful formula is given below that will be used
in this paper:

∫
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where 𝑂, 𝑃, 𝑄 ∈ C, 𝑂 ̸= 0 and Re(𝑂) ≥ 0.
Equation (15) is easy to get, so we only prove (16):
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So 𝑂 = −𝑗(𝑎/2𝑏), 𝑃 = (𝑤1𝑏 − 𝑢)/2𝑏 + 𝜔2𝑡.
When 𝑎 = 0, (18) is
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When 𝑎 ̸= 0, 𝑂 ̸= 0 and the condition Re(𝑂) ≥ 0 is met.
According to (24), we can get

WD𝐴𝑔(𝑡) (𝑡, 𝑢) = √
1

𝑎
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Then we obtain (16).

Property 3 (scaling property). If 𝑓(𝑡) = √|𝜆|𝑓(𝜆𝑡) and 𝜆 ̸= 0,
then the WDL of 𝑓(𝑡) is

WD𝐴ℎ (𝑡, 𝑢) = √
1

|𝜆|
WD𝐵𝑓 (𝜆𝑡, 𝑢) , (21)

where 𝐵 = (𝑎/𝜆, 𝑏𝜆, 𝑐/𝜆, 𝑑𝜆).
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3.3. The Relationships between WDL and Other
Time-Frequency Analysis Tools

3.3.1. The Relationship between WDL and the Ambiguity
Function Based on LCT (LCTAF). The LCTAF is defined as
[15]

AF𝐴𝑓 (𝜏, 𝑢) = ∫
+∞

−∞
𝑘𝑓 (𝑡, 𝜏)𝐾𝐴 (𝑢, 𝑡) 𝑑𝑡. (22)

Theorem3. The relationship betweenWDL and LCTAF is [15]

𝑊𝐷
𝐴
𝑓 (𝑡, 𝑢) = ∬

+∞

−∞
𝐴𝐹

𝐴
𝑓 (𝜏, V) 𝐾𝐴,𝐴−1 (𝜏, V, 𝑢, 𝑡) 𝑑𝜏 𝑑V, (23)

where 𝐾𝐴,𝐴−1(𝜏, V, 𝑢, 𝑡) = 𝐾𝐴(𝜏, 𝑢)𝐾𝐴−1(V, 𝑡) is the kernel
function of 2-D LCT [25].

Equation (23) indicates that the WDL is the 2D LCT
of LCTAF, and two parameter matrixes corresponding to
the kernel function of 2D LCT are reciprocal matrixes. This
indicates that not only classical AF and WVD but also the
LCTAF and the WDL have close relationships.

3.3.2. The Relationship between WDL and the STFT. The
STFT of signal 𝑓(𝑡) is defined as

𝑆
𝑤
𝑓 (𝑡, 𝜔) = ∫

+∞

−∞
𝑓 (𝑢) 𝑔

∗
(𝑢 − 𝑡) 𝑒

−𝑗𝜔𝑢
𝑑𝑢. (24)

Theorem 4. TheWDL can be expressed by STFT:

𝑊𝐷
𝐴
𝑓 (𝑡, 𝑢)

= √
1

𝑗2𝜋𝑏
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+∞
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𝑒
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⋅ 𝑆
𝑊
𝑓 (𝜏,

2V − 𝑎𝜏
𝑏

)

× 𝐾𝐴,𝐴−1 (𝜏, V, 𝑢, 𝑡) 𝑑𝜏 𝑑V,

(25)

where 𝑆
𝑊
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󸀠
− 𝜏)

𝑒
−𝑗(𝑎/2𝑏)(𝑡󸀠−𝜏)

2

]
∗
𝑒
−𝑗𝑡󸀠(V/𝑏−(𝑎/2𝑏)𝜏)

𝑑𝑡
󸀠.

Proof. From [15] we know that the LCTAF can be expressed
by STFT as

AF𝐴𝑓 (𝜏, 𝑢) = √
1

𝑗2𝜋𝑏
𝑒
𝑗((𝑑/2𝑏)𝑢2+𝑢𝜏/2𝑏−3𝑎𝜏2/8𝑏)

⋅ 𝑆
𝑊
𝑓 (𝜏,

2𝑢 − 𝑎𝜏

𝑏
) .

(26)

Taking (26) into (23), we can get (25).

3.3.3. The Relationship between WDL and Wavelet Transform
(WT). TheWT of signal 𝑓(𝑡) is defined as

WT𝑓 (𝑎, 𝑏) =
1

√𝑎
∫

+∞

−∞
𝑓 (𝑡) 𝜓

∗
(
𝑡 − 𝑏

𝑎
)𝑑𝑡, (27)

where 𝜓𝑎𝑏(𝑡) = (1/√𝑎)𝜓((𝑡 − 𝑏)/𝑎) is the basic function of
WT.

Theorem 5. TheWDL can be expressed by WT as

𝑊𝐷
𝐴
𝑓 (𝑡, 𝑢) = √

1

𝑗2𝜋𝑏

×∬

+∞

−∞
𝑒
𝑗((𝑑/2𝑏)V2−V𝜏/2𝑏+𝑎𝜏2/8𝑏)

⋅WT𝑓 (1, 𝜏)

× 𝐾𝐴,𝐴−1 (𝜏, V, 𝑢, 𝑡) 𝑑𝜏 𝑑V,
(28)

where𝑊𝑇𝑓(1, 𝜏) = 𝑓(𝑡 − 𝜏)𝑒
−𝑗(𝑎/2𝑏)(𝑡−𝜏)2+𝑗(𝑡−𝜏)((2𝑢−𝑎𝜏)/2𝑏).

Proof. From [15] we know that the LCTAF can be expressed
by STFT as

AF𝐴𝑓 (𝜏, 𝑢) = √
1

𝑗2𝜋𝑏
𝑒
𝑗((𝑑/2𝑏)𝑢2−𝑢𝜏/2𝑏+𝑎𝜏2/8𝑏)

⋅WT𝑓 (1, 𝜏) .

(29)

Taking (29) into (23), we can get (28).

3.4. WDLs of Some Common Signals. Table 1 gives WDLs of
some common signals. They are easy to get, so we do not
prove them here.

4. The QFM Signal Parameter Estimation
Algorithm Based on the Generalized WDL

4.1. The Algorithm for the Parameter Estimation of QFM
Signal. In [16], the authors have used theWDL for estimating
LFM signals, but is it appropriate for dealing with QFM
signal? Now let us discuss it. The QFM signal considered in
this paper confirms themodel𝑓(𝑡) = 𝐴0𝑒

𝑗(𝑎
1
𝑡+𝑎
2
𝑡2+𝑎
3
𝑡3), where

𝐴0 is the amplitude and 𝑎1, 𝑎2, and 𝑎3 (𝑎3 ̸= 0) are the phase
coefficients to be determined. For the QFM signal, its WDL
is

WD𝐴𝑓 (𝑡, 𝑢) = √
1

𝑗2𝜋𝑏
𝐴
2
0𝑒
𝑗(𝑑/2𝑏)𝑢2

× ∫

+∞

−∞
𝑒
𝑗[(𝑎
1
+2𝑎
2
𝑡+3𝑎
3
𝑡2−𝑢/𝑏)𝜏+(𝑎/2𝑏)𝜏2+𝑎

3
𝜏3/4]

𝑑𝜏.

(30)

Formula (30) shows that we cannot get any information
about phase coefficients, so it is difficult to estimate param-
eters of QFM signals. But we can change the instantaneous
autocorrelation function 𝑘𝑓(𝑡, 𝜏) of WDL to achieve this
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Table 1: WDLs of some common signals.

Signals WDLs
1 √𝑎−1𝑒

(𝑗𝑐/2𝑎) 𝑢2

𝛿(𝑡 − 𝑡0) 𝛿(2(𝑡 − 𝑡0))𝐾𝐴(𝑢, 2𝑡 − 2𝑡0)

𝑒
𝑗𝜆𝑡

{{{{{

{{{{{

{

√
2𝜋𝑏

𝑗
𝑒
𝑗(𝑑/2𝑏) 𝑢2

𝛿(𝑢 − 𝜆𝑏), 𝑎 = 0

√
1

𝑎
𝑒
𝑗(𝑑/2𝑏)𝑢2−𝑗((𝑢−𝜔1𝑏)

2/2𝑎𝑏)
, 𝑎 ̸= 0

𝑒
𝑗𝜇𝑡2/2

{{{{{

{{{{{

{

√
2𝜋𝑏

𝑗
𝑒
𝑗(𝑑/2𝑏)𝑢2

𝛿(𝑢 − 2𝜇𝑏𝑡), 𝑎 = 0

√
1

𝑎
𝑒
𝑗(𝑑/2𝑏)𝑢2−𝑗((𝑢−2𝑏𝜇𝑡)2/2𝑎𝑏)

, 𝑎 ̸= 0

𝑒
𝑗𝜇𝑡2/2+𝑗𝜆𝑡+𝑗𝛾

{{{{{

{{{{{

{

√
2𝜋𝑏

𝑗
𝑒
𝑗(𝑑/2𝑏)𝑢2

𝛿(𝑢 − 𝜆𝑏 − 2𝜇𝑏𝑡), 𝑎 = 0

√
1

𝑎
𝑒
𝑗(𝑑/2𝑏)𝑢2 −𝑗((𝑢−𝜆𝑏−2𝑏𝜇𝑡)2/2𝑎𝑏)

, 𝑎 ̸= 0

𝑒
−𝑡2/2

{{{{{

{{{{{

{

√
2𝜋𝑏

𝑗
𝑒
𝑗(𝑑/2𝑏)𝑢2

𝛿(𝑗𝑏𝑡 − 𝑢), 𝑎 = 0

√
1

𝑎
𝑒
(𝑗𝑐/2𝑎)𝑢2−(𝑡𝑢/𝑎)+𝑗(𝑡2𝑏/2𝑎)

, 𝑎 ̸= 0

goal. We define this new WDL as the generalized Wigner-
Ville distribution based on the linear canonical transform
(GWDL).

Definition 6. Given 𝑘󸀠𝑓(𝑡, 𝜏) = 𝑓(𝑡 + 𝜏/2)𝑓(𝑡 − 𝜏/2)𝑓
∗
(−𝑡 +

𝜏/2)𝑓
∗
(−𝑡 − 𝜏/2), one defines the GWDL of signal 𝑓(𝑡) as

follows:

GWD𝐴𝑓 (𝑡, 𝑢) = ∫
+∞

−∞
𝑘
󸀠
𝑓 (𝑡, 𝜏)𝐾𝐴 (𝑢, 𝜏) 𝑑𝜏, (31)

where the superscript ∗ denotes the conjugate and 𝐾𝐴(𝑢, 𝜏)
is given by (5). The definition of GWDL in (31) indicates that
the GWDL has fourth-order nonlinearity. Substituting the
QFM signal 𝑓(𝑡) = 𝐴0𝑒

𝑗(𝑎
1
𝑡+𝑎
2
𝑡2+𝑎
3
𝑡3) into 𝑘󸀠𝑓(𝑡, 𝜏), we obtain

𝑘
󸀠
𝑓(𝑡, 𝜏) = 𝐴

4
0𝑒
𝑗(4(𝑎
1
𝑡+𝑎
3
𝑡3)+3𝑎

3
𝑡𝜏2). So the phase of 𝑘󸀠𝑓(𝑡, 𝜏) is

quadratic for 𝜏, while the phase of 𝑘𝑓(𝑡, 𝜏) is cubic for 𝜏. By
this change we can estimate theQFM signal parameters using
GWDL.

Theorem 7. The GWDL of QFM signal is

GWD𝐴𝑓 (𝑡, 𝑢)

=

{{{{{{{{

{{{{{{{{

{

𝐴
4
0√

2𝜋𝑏

𝑗
𝑒
𝑗((𝑑/2𝑏)𝑢2+4(𝑎

1
𝑡+𝑎
3
𝑡3))
𝛿 (𝑢) , 𝑎 + 6𝑏𝑎3𝑡 = 0,

𝐴
4
0

√𝑎 + 6𝑏𝑎3𝑡

×𝑒
𝑗((𝑑/2𝑏)𝑢2+4(𝑎

1
𝑡+𝑎
3
𝑡3)−𝑢2/(2𝑎𝑏+24𝑏2𝑡𝑎

3
))
, 𝑎 + 6𝑏𝑎3𝑡 ̸= 0.

(32)

Proof. Substituting 𝑘󸀠𝑓(𝑡, 𝜏) = 𝐴
4
0𝑒
𝑗(4(𝑎
1
𝑡+𝑎
3
𝑡3)+3𝑎

3
𝑡𝜏2) into the

definition of GWDL, we obtain

GWD𝐴𝑓 (𝑡, 𝑢) =
𝐴
4
0

√𝑗2𝜋𝑏
𝑒
𝑗((𝑑/2𝑏)𝑢2+4(𝑎

1
𝑡+𝑎
3
𝑡3))

× ∫

+∞

−∞
𝑒
−𝑗(𝑢𝜏/𝑏)+𝑗(𝑎/2𝑏+3𝑎

3
𝑡)𝜏2
𝑑𝜏.

(33)

According to (17), it is easy to obtain (32) by (33).

Formula (32) indicates that the GWDL of QFM signal
will generate an impulse at the point (−𝑎/6𝑏𝑎3, 0) in the (𝑡, 𝑢)
plane and the energy will gather along the line 𝑢 = 0. So
we can get the location information (𝑡󸀠, 0) of the impulse by
searching the peak. According to the formula 𝑡󸀠 = −𝑎/6𝑏𝑎3,
the parameter 𝑎3 can be estimated as

𝑎3 = −
𝑎

6𝑏 argmax𝑡 |GWDL (𝑡, 0)|
. (34)

Equation (34) shows that the condition 𝑎 ̸= 0 must be
satisfied. After 𝑎3 has been estimated, the signal 𝑓(𝑡)𝑒−𝑗𝑎3𝑡

3

can be approximated to a LFM signal. So other parameters
can be estimated by algorithms for estimating the LFM signal,
such as WDL algorithm [16], FRFT algorithm [26], and the
cubic phase function (CPF) algorithm [27] (in Section 4.2 we
choose the CPF algorithm to estimate the LFM signal).

For the discrete QFM signal 𝑓(𝑛), the specification of the
proposed algorithm is as follows.

Step 1. Compute the GWDL of 𝑓(𝑛) and search for the peak
in the time-𝑢 frequency plane to get the location information
(𝑛
󸀠
, 0); then estimate 𝑎3 according to (34).

Step 2. Multiply 𝑓(𝑛)with 𝑒−𝑗𝑎3𝑛
3

and do CPF for 𝑓(𝑛)𝑒−𝑗𝑎3𝑛
3

;
then estimate 𝑎2 according to

𝑎2 =
argmaxΩ |CPF (𝑛, Ω)|

2
, (35)

where CPF(𝑛, Ω) is the CPF of 𝑓(𝑛)𝑒−𝑗𝑎3𝑛
3

.

Step 3. Estimate 𝑎1 by dechirping and finding the Fourier
transform peak:

𝑎1 = argmax
𝜔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑁−1)/2

∑

𝑛=−(𝑁−1)/2

𝑓 (𝑡) 𝑒
−𝑗(𝑎
2
𝑛2+𝑎
3
𝑛3)−𝑗𝜔𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (36)

Step 4. Estimate 𝐴0 by evaluating

𝐴0 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑁

(𝑁−1)/2

∑

𝑛=−(𝑁−1)/2

𝑓 (𝑡) 𝑒
−𝑗(𝑎
1
𝑛+𝑎
2
𝑛2+𝑎
3
𝑛3)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (37)

For the discrete signal, to avoid ambiguities due to the
periodicity of digital spectra, it is also assumed that [28]

󵄨󵄨󵄨󵄨󵄨
𝑎𝑖Δ

𝑖󵄨󵄨󵄨󵄨󵄨
≤

𝜋

𝑖((𝑁 − 1) /2)
𝑖−1
, 𝑖 = 1, 2, 3, (38)

where 𝑁 is the length of the discrete signal and Δ is the
sampling interval.
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Figure 1: The GWDL of QFM signal.

4.2. Simulations. The parameter estimation algorithm pro-
posed above is applied to a QFM signal here. The QFM
signal 𝑓(𝑡) is considered and its parameter values are set
to be 𝐴0 = 2, 𝑎1 = 1, 𝑎2 = 0.1, and 𝑎3 = 0.01, the
sampling interval is Δ = 0.02 s, and the observing time
is 𝑡 = 20 s. Obviously parameter values that we chose
above meet condition (38). Figure 1 indicates the GWDL
of 𝑓(𝑡) when (𝑎, 𝑏, 𝑐, 𝑑) = (0.02, 1/24, 0, 50). It shows that
the energy gathers along the line 𝑢 = 0. Figure 2 is the 𝑡-
amplitude distribution of GWDL. Figure 3 is the 𝑢-amplitude
distribution of GWDL and Figure 4 is the 𝑡-𝑢 distribution
of QFM signal in the GWDL domain. Using the GWDL
algorithm described above we get that the estimate values
of 𝐴0, 𝑎1, 𝑎2, and 𝑎3 are 𝐴0 = 1.9059, 𝑎1 = 0.9415, 𝑎2 =

0.1020, and 𝑎3 = 0.0101, respectively. The simulation results
indicate that the algorithm is accurate and the GWDL
applying to the parameter estimation of the QFM signal is
useful and effective.

4.3. Comparison with Other Methods. We know that the
dimension of maximization for an algorithm leads to its
computational complexity and efficiency whereas the nonlin-
earity order of an algorithmdetermines its SNR threshold and
accuracy. So we compare the proposed method with other
methods in the aspects of the dimension ofmaximization and
the nonlinearity order.

The algorithm we proposed above shows that it only
needs three times 1Dmaximization for estimating all the four
parameters, while the MLmethod requires 3Dmaximization
and the LCTAF method needs 2D maximization. So this
algorithm does not have heavy computational burden and is
efficient.

The PWVDs method [13] and the PHMT method [14]
both need the same dimension of maximization as the
proposed method (1D to be exact), but they have sixth-order
nonlinearity, which decreases the estimation accuracy and
increases the SNR threshold. Our method only has fourth-
order nonlinearity, so the estimation values aremore accurate
and have lower SNR threshold.
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Figure 2: 𝑡-amplitude distribution of QFM signal in GWDL
domain.
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Figure 3: 𝑢-amplitude distribution of QFM signal in GWDL
domain.

5. Conclusions

Some theories of the WDL are investigated in this paper.
We first derive some new and important properties of the
WDL. The relationships between WDL and other time-
frequency analysis tools are also discussed, for instance, the
LCTAF, STFT, and WT. The research on these theories of
the WDL lays the foundation for its further application and
enriches theoretical systems of the LCT and WVD. A fast
and precise algorithm based on the generalized WDL for
QFM signal parameter estimation is proposed, too. The new
algorithm only needs 1D maximizations, so it does not have
heavy computational burden and is efficient. Also the new
algorithm is accurate and has a low SNR threshold because
of its moderate order of nonlinearity.
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Figure 4: 𝑡-𝑢 distribution of QFM signal in GWDL domain.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work was partially supported by the National Natural
Science Foundation of China (Grant no. 11201482) and
the science and technology innovation platform of Beijing
education committee (Grant no. PXM2013-014225-000051).

References

[1] D. Gabor, “Theory of communication,” Journal of the IEE, vol.
93, no. 26, pp. 429–457, 1946.
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Wigner distribution—a tool for time-frequency signal analysis.
I. Continuous-time signals,” Philips Journal of Research, vol. 35,
no. 3, pp. 217–250, 1980.

[18] T. A. C. M. Claasen and W. F. G. Mecklenbräuker, “The
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