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We consider the following inverse eigenvalue problem: to construct a special kind of matrix (real symmetric doubly arrow matrix)
from the minimal and maximal eigenvalues of all its leading principal submatrices. The necessary and sufficient condition for
the solvability of the problem is derived. Our results are constructive and they generate algorithmic procedures to construct such
matrices.

1. Introduction

Peng et al. in [1] solved two inverse eigenvalue problems
for symmetric arrow matrices and, in the other article [2],
a correction, for one of the problems stated in [1], has been
presented as well. In recent paper [3], Nazari and Beiranvand
introduced an algorithm to construct symmetric quasi-
antibidiagonal matrices that having its given eigenvalues.
Pickmann et al. in [4] introduced an algorithm for inverse
eigenvalue problem on symmetric tridiagonal matrices. In
this paper we introduced symmetric doubly arrow matrix as
follows:

𝐴 =

(
(
(
(
(
(
(

(

𝑎
1

𝑏
1

⋅ ⋅ ⋅ 𝑏
𝑠−1

0 ⋅ ⋅ ⋅ 0

𝑐𝑏
1

𝑎
2

⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0

...
... d 0 0 ⋅ ⋅ ⋅ 0

𝑏
𝑠−1

0 ⋅ ⋅ ⋅ 𝑎
𝑠

𝑏
𝑠

⋅ ⋅ ⋅ 𝑏
𝑛−1

0 0 ⋅ ⋅ ⋅ 𝑏
𝑠

𝑎
𝑠+1

⋅ ⋅ ⋅ 0

...
... ⋅ ⋅ ⋅

...
... d

...
0 0 0 𝑏

𝑛−1
0 ⋅ ⋅ ⋅ 𝑎

𝑛

)
)
)
)
)
)
)

)

, 𝑎
𝑗
, 𝑏
𝑗

∈ R,

(1)

where 𝑏
𝑗

≥ 0, 1 ≤ 𝑠 ≤ 𝑛. If 𝑠 = 1 or 𝑠 = 𝑛; then the matrix 𝐴

of the form (1) is a symmetric arrow matrix as follows:

𝐵 = (

𝑎
1

𝑏
1

⋅ ⋅ ⋅ 𝑏
𝑛−1

𝑏
1

𝑎
2

⋅ ⋅ ⋅ 0

...
... d

...
𝑏
𝑛−1

0 ⋅ ⋅ ⋅ 𝑎
𝑛

) , 𝑎
𝑗
, 𝑏
𝑗

∈ R. (2)

This family of matrices appears in certain symmetric
inverse eigenvalue and inverse Sturm-Liouville problems
[5, 6], which arise in many applications [7–12], including
modern control theory and vibration analysis [7, 8]. In this
paper, we construct matrix 𝐴 of the form (1), from a special
kind of spectral information, which only recently is being
considered. Since this type ofmatrix structure generalizes the
well-known arrowmatrices, we think that it will also become
of interest in applications.

We will denote 𝐼
𝑗
as the identity matrix of order 𝑗; 𝐴

𝑗

as the 𝑗 × 𝑗 leading principal submatrix of 𝐴; 𝑃
𝑗
(𝜆) as the

characteristic polynomial of 𝐴
𝑗
; and 𝜆

(𝑗)

1
≤ 𝜆
(𝑗)

2
≤ ⋅ ⋅ ⋅ ≤ 𝜆

(𝑗)

𝑗

as the eigenvalues of 𝐴
𝑗
.

We want to solve the following problem.
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Problem 1. Given the 2𝑛 − 1 real numbers 𝜆
(𝑗)

1
and 𝜆

(𝑗)

𝑗
,

𝑗 = 1, 2, . . . , 𝑛, find an 𝑛 × 𝑛 matrix 𝐴 of the form (1) such
that 𝜆

(𝑗)

1
and 𝜆

(𝑗)

𝑗
are, respectively, the minimal and maximal

eigenvalues of 𝐴
𝑗
, 𝑗 = 1, 2, . . . , 𝑛.

Our work is motivated by the results in [2]. There, the
authors solved this kind of inverse eigenvalue problem for
symmetric arrow matrix 𝐵 of the form (2).

Theorem 2 (see [2]). Let the real numbers 𝜆
(𝑗)

1
and 𝜆

(𝑗)

𝑗
, 𝑗 =

1, 2, . . . , 𝑛, be given. Then there exists an 𝑛 × 𝑛 matrix 𝐵 of the
form (2), such that 𝜆

(𝑗)

1
and 𝜆

(𝑗)

𝑗
are, respectively, the minimal

and maximal eigenvalues of its leading principal submatrix 𝐵
𝑗
,

𝑗 = 1, 2, . . . , 𝑛, if and only if

𝜆
(𝑛)

1
≤ ⋅ ⋅ ⋅ ≤ 𝜆

(3)

1
≤ 𝜆
(2)

1
≤ 𝜆
(1)

1
≤ 𝜆
(2)

2
≤ 𝜆
(3)

3
≤ ⋅ ⋅ ⋅ ≤ 𝜆

(𝑛)

𝑛
.

(3)

Theorem 3 (see [2]). Let the real numbers 𝜆
(𝑗)

1
and 𝜆

(𝑗)

𝑗
, 𝑗 =

1, 2, . . . , 𝑛, be given. Then there exists a unique 𝑛 × 𝑛 matrix 𝐵

of the form (2), with 𝑎
𝑗

∈ R and 𝑏
𝑗

> 0, such that 𝜆
(𝑗)

1
and 𝜆

(𝑗)

𝑗

are, respectively, the minimal and the maximal eigenvalues of
its leading principal submatrix 𝐵

𝑗
, 𝑗 = 1, 2, . . . , 𝑛, if and only

if

𝜆
(𝑛)

1
< ⋅ ⋅ ⋅ < 𝜆

(3)

1
< 𝜆
(2)

1
< 𝜆
(1)

1
< 𝜆
(2)

2
< 𝜆
(3)

3
< ⋅ ⋅ ⋅ < 𝜆

(𝑛)

𝑛
.

(4)

In this paper, we will show thatTheorems 2 and 3 are also
right for symmetric doubly arrowmatrix 𝐴 in (1) by a similar
method.

The paper is organized as follows. In Section 2, we discuss
some properties of 𝐴. In Section 3, we solve Problem 1 by
giving a necessary and sufficient condition for the existence of
thematrix𝐴 in (1) and also solve the case in which thematrix
𝐴, in Problem 1, is required to have all its entries 𝑏

𝑖
positive.

Finally, In Section 4 we show some examples to illustrate the
results.

2. Properties of the Matrix 𝐴

Lemma4. Let𝐴 be amatrix of the form (1).Then the sequence
of characteristic polynomials {𝑃

𝑗
(𝜆)}
𝑛

𝑗=1
satisfies the recurrence

relation:

𝑝
1

(𝜆) = (𝜆 − 𝑎
1
) ,

𝑝
𝑗
(𝜆) = (𝜆 − 𝑎

𝑗
) 𝑝
𝑗−1

(𝜆) − 𝑏
2

𝑗−1

𝑗−1

∏

𝑖=2

(𝜆 − 𝑎
𝑖
) ,

𝑗 = 2, 3, . . . , 𝑠,

𝑝
𝑗
(𝜆) = (𝜆 − 𝑎

𝑗
) 𝑝
𝑗−1

(𝜆) − 𝑏
2

𝑗−1

𝑗−1

∏

𝑖=𝑠+1

(𝜆 − 𝑎
𝑖
) 𝑝
𝑠−1

(𝜆) ,

𝑗 = 𝑠 + 1, . . . , 𝑛.

(5)

Proof. It is easy to verify by expanding the determinant.

Lemma 5 (see [2]). Let 𝑝(𝜆) be a monic polynomial of degree
𝑛with all real zeroes. If 𝜆

1
and 𝜆

𝑛
are, respectively, the minimal

and maximal zeroes of 𝑝(𝜆), then
(1) if 𝜇 < 𝜆

1
, we have that (−1)

𝑛
𝑝(𝜇) > 0;

(2) if 𝜇 > 𝜆
𝑛
, we have that 𝑝(𝜇) > 0.

Observe that, from the Cauchy interlacing property, the
minimal and the maximal eigenvalue, 𝜆

(𝑗)

1
and 𝜆

(𝑗)

𝑗
, respec-

tively, of each leading principal submatrix 𝐴
𝑗
, 𝑗 = 1, 2, . . . , 𝑛,

of the matrix 𝐴 in (1) satisfy the relations

𝜆
(𝑛)

1
≤ ⋅ ⋅ ⋅ ≤ 𝜆

(3)

1
≤ 𝜆
(2)

1
≤ 𝜆
(1)

1
≤ 𝜆
(2)

2
≤ 𝜆
(3)

3
≤ ⋅ ⋅ ⋅ ≤ 𝜆

(𝑛)

𝑛
,

(6)

𝜆
(𝑗)

1
≤ 𝑎
𝑖
≤ 𝜆
(𝑗)

𝑗
, 𝑖 = 1, 2, . . . , 𝑗; 𝑗 = 1, 2, . . . , 𝑛. (7)

Lemma 6. Let {𝑃
𝑗
(𝜆)}
𝑛

𝑗=1
be the polynomials defined in (5),

whose minimal and maximal zeroes, 𝜆
(𝑗)

1
and 𝜆

(𝑗)

𝑗
, 𝑗 =

1, 2, . . . , 𝑛, respectively, satisfy the relations (6) and (7), and

ℎ
𝑗

=

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

𝑝
𝑗−1

(𝜆
(𝑗)

1
)

𝑗−1

∏

𝑖=2

(𝜆
(𝑗)

𝑗
− 𝑎
𝑖
) − 𝑝
𝑗−1

(𝜆
(𝑗)

𝑗
)

𝑗−1

∏

𝑖=2

(𝜆
(𝑗)

1
− 𝑎
𝑖
) ,

𝑗 = 2, 3, . . . , 𝑠,

𝑝
𝑗−1

(𝜆
(𝑗)

1
) 𝑝
𝑠−1

(𝜆
(𝑗)

𝑗
)

×

𝑗−1

∏

𝑖=𝑠+1

(𝜆
(𝑗)

𝑗
− 𝑎
𝑖
) − 𝑝
𝑗−1

(𝜆
(𝑗)

𝑗
) 𝑝
𝑠−1

(𝜆
(𝑗)

1
)

×

𝑗−1

∏

𝑖=𝑠+1

(𝜆
(𝑗)

1
− 𝑎
𝑖
) , 𝑗 = 𝑠 + 1, . . . , 𝑛.

(8)

Then

ℎ̃
𝑗

= (−1)
𝑗−1

ℎ
𝑗

≥ 0, 𝑗 = 2, 3, . . . , 𝑛. (9)

Proof. From Lemma 5, we have

(−1)
𝑗−1

𝑝
𝑗−1

(𝜆
(𝑗)

1
) ≥ 0, 𝑝

𝑗−1
(𝜆
(𝑗)

𝑗
) ≥ 0,

𝑗 = 2, 3, . . . , 𝑛,

(−1)
𝑠−1

𝑝
𝑠−1

(𝜆
(𝑗)

1
) ≥ 0, 𝑝

𝑠−1
(𝜆
(𝑗)

𝑗
) ≥ 0,

𝑗 = 𝑠 + 1, . . . , 𝑛.

(10)

Moreover, from (7)
𝑗−1

∏

𝑖=2

(𝜆
(𝑗)

𝑗
− 𝑎
𝑖
) ≥ 0, (−1)

𝑗

𝑗−1

∏

𝑖=2

(𝜆
(𝑗)

1
− 𝑎
𝑖
) ≥ 0,

𝑗 = 2, 3, . . . , 𝑠,

𝑗−1

∏

𝑖=𝑠+1

(𝜆
(𝑗)

𝑗
− 𝑎
𝑖
) ≥ 0, (−1)

𝑗−𝑠+1

𝑗−1

∏

𝑖=𝑠+1

(𝜆
(𝑗)

1
− 𝑎
𝑖
) ≥ 0,

𝑗 = 𝑠 + 1, . . . , 𝑛.

(11)

Clearly ℎ̃
𝑗

≥ 0 from (10) and (11).
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Lemma 7 (see [2]). Let 𝐴 be a matrix of the form (2) with
𝑏
𝑖

̸= 0, 𝑖 = 1, 2, . . . , 𝑛 − 1. Let 𝜆
(𝑗)

1
and 𝜆

(𝑗)

𝑗
, respectively, be

the minimal and maximal eigenvalues of the leading principal
submatrix 𝐴

𝑗
, 𝑗 = 1, 2, . . . , 𝑛, of 𝐴. Then

𝜆
(𝑗)

1
< ⋅ ⋅ ⋅ < 𝜆

(3)

1
< 𝜆
(2)

1
< 𝜆
(1)

1
< 𝜆
(2)

2
< 𝜆
(3)

3
< ⋅ ⋅ ⋅ < 𝜆

(𝑗)

𝑗
,

𝜆
(𝑗)

1
< 𝑎
𝑖
< 𝜆
(𝑗)

𝑗
, 𝑖 = 2, 3, . . . , 𝑗

(12)

for each 𝑗 = 2, 3, . . . , 𝑛.

3. Solution of Problem 1

The following theorem solves Problem 1. In particular, the
theorem shows that condition (6) is necessary and sufficient
for the existence of the matrix 𝐴 in (1).

Theorem 8. Let the real numbers 𝜆
(𝑗)

1
and 𝜆

(𝑗)

𝑗
, 𝑗 = 1, 2, . . . , 𝑛,

be given. Then there exists an 𝑛 × 𝑛 matrix 𝐴 of the form
(1), such that 𝜆

(𝑗)

1
and 𝜆

(𝑗)

𝑗
are, respectively, the minimal and

maximal eigenvalues of its leading principal submatrix𝐴
𝑗
, 𝑗 =

1, 2, . . . , 𝑛, if and only if

𝜆
(𝑛)

1
≤ ⋅ ⋅ ⋅ ≤ 𝜆

(3)

1
≤ 𝜆
(2)

1
≤ 𝜆
(1)

1
≤ 𝜆
(2)

2
≤ 𝜆
(3)

3
≤ ⋅ ⋅ ⋅ ≤ 𝜆

(𝑛)

𝑛
.

(13)

Proof. Let 𝜆
(𝑗)

1
and 𝜆

(𝑗)

𝑗
, 𝑗 = 1, 2, . . . , 𝑛, satisfy (13). Observe

that

𝐴
1

= (𝑎
1
) = (𝜆

(1)

1
) (14)

and 𝑝
1
(𝜆) = 𝜆 − 𝑎

1
. FromTheorem 2, there exists 𝐴

𝑗
, 𝑗 = 2,

. . . , 𝑠 with 𝜆
(𝑗)

1
and 𝜆

(𝑗)

𝑗
as its minimal and maximal eigenval-

ues, respectively. To show the existence of 𝐴
𝑗
, 𝑗 = 𝑠 + 1, . . . , 𝑛

with 𝜆
(𝑗)

1
and 𝜆

(𝑗)

𝑗
as its minimal and maximal eigenvalues,

respectively, is equivalent to showing that the system of
equations

𝑝
𝑗
(𝜆
(𝑗)

1
) = (𝜆

(𝑗)

1
− 𝑎
𝑗
) 𝑝
𝑗−1

(𝜆
(𝑗)

1
)

− 𝑏
2

𝑗−1

𝑗−1

∏

𝑖=𝑠+1

(𝜆
(𝑗)

1
− 𝑎
𝑖
) 𝑝
𝑠−1

(𝜆
(𝑗)

1
) = 0,

𝑝
𝑗
(𝜆
(𝑗)

𝑗
) = (𝜆

(𝑗)

𝑗
− 𝑎
𝑗
) 𝑝
𝑗−1

(𝜆
(𝑗)

𝑗
)

− 𝑏
2

𝑗−1

𝑗−1

∏

𝑖=𝑠+1

(𝜆
(𝑗)

𝑗
− 𝑎
𝑖
) 𝑝
𝑠−1

(𝜆
(𝑗)

𝑗
) = 0

(15)

has real solution 𝑎
𝑗
and 𝑏
𝑗−1

, 𝑗 = 𝑠 + 1, . . . , 𝑛. If the deter-
minant

ℎ
𝑗

= 𝑝
𝑗−1

(𝜆
(𝑗)

1
) 𝑝
𝑠−1

(𝜆
(𝑗)

𝑗
)

×

𝑗−1

∏

𝑖=𝑠+1

(𝜆
(𝑗)

𝑗
− 𝑎
𝑖
) − 𝑝
𝑗−1

(𝜆
(𝑗)

𝑗
) 𝑝
𝑠−1

(𝜆
(𝑗)

1
)

×

𝑗−1

∏

𝑖=𝑠+1

(𝜆
(𝑗)

1
− 𝑎
𝑖
)

(16)

of the coefficient matrix of the system (15) is nonzero, then
the system has unique solutions 𝑎

𝑗
and 𝑏
2

𝑗−1
, 𝑗 = 𝑠 + 1, . . . , 𝑛.

In this case, from Lemma 6 we have ℎ̃
𝑗

> 0. By solving the
system (15) we obtain

𝑎
𝑗

= (𝜆
(𝑗)

1
𝑝
𝑗−1

(𝜆
(𝑗)

1
) 𝑝
𝑠−1

(𝜆
(𝑗)

𝑗
)

×

𝑗−1

∏

𝑖=𝑠+1

(𝜆
(𝑗)

𝑗
− 𝑎
𝑖
) − 𝜆
(𝑗)

𝑗
𝑝
𝑗−1

(𝜆
(𝑗)

𝑗
) 𝑝
𝑠−1

(𝜆
(𝑗)

1
)

×

𝑗−1

∏

𝑖=𝑠+1

(𝜆
(𝑗)

1
− 𝑎
𝑖
)) (ℎ

𝑗
)
−1

,

𝑏
2

𝑗−1
=

(𝜆
(𝑗)

𝑗
− 𝜆
(𝑗)

1
) 𝑝
𝑗−1

(𝜆
(𝑗)

1
) 𝑝
𝑗−1

(𝜆
(𝑗)

𝑗
)

ℎ
𝑗

.

(17)

Since

(−1)
𝑗−1

(𝜆
(𝑗)

𝑗
− 𝜆
(𝑗)

1
) 𝑝
𝑗−1

(𝜆
(𝑗)

1
) 𝑝
𝑗−1

(𝜆
(𝑗)

𝑗
) ≥ 0; (18)

then 𝑏
𝑗−1

is a real number and therefore, there exists 𝐴 with
the spectral properties required.

Nowwe will show that, if ℎ
𝑗

= 0, the system (15) still has a
solution.We do this by induction by showing that the rank of
the coefficients matrix is equal to the rank of the augmented
matrix.

Let 𝑗 = 𝑠 + 1. If ℎ
𝑠+1

= 0, then

ℎ̃
𝑠+1

= (−1)
𝑠
ℎ
𝑠+1

= (−1)
𝑠
(𝑝
𝑠
(𝜆
(𝑠+1)

1
) 𝑝
𝑠−1

(𝜆
(𝑠+1)

𝑠+1
)

−𝑝
𝑠
(𝜆
(𝑠+1)

𝑠+1
) 𝑝
𝑠−1

(𝜆
(𝑠+1)

1
)) = 0,

(19)

which, from Lemma 5, is equivalent to

𝑝
𝑠
(𝜆
(𝑠+1)

1
) 𝑝
𝑠−1

(𝜆
(𝑠+1)

𝑠+1
) = 0,

𝑝
𝑠
(𝜆
(𝑠+1)

𝑠+1
) 𝑝
𝑠−1

(𝜆
(𝑠+1)

1
) = 0.

(20)

In this case the augmented matrix is

(

𝑝
𝑠
(𝜆
(𝑠+1)

1
) 𝑝
𝑠−1

(𝜆
(𝑠+1)

1
) 𝜆
(𝑠+1)

1
𝑝
𝑠
(𝜆
(𝑠+1)

1
)

𝑝
𝑠
(𝜆
(𝑠+1)

𝑠+1
) 𝑝
𝑠−1

(𝜆
(𝑠+1)

𝑠+1
) 𝜆
(𝑠+1)

𝑠+1
𝑝
𝑠
(𝜆
(𝑠+1)

𝑠+1
)

) , (21)
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and the ranks of both matrices, the coefficient matrix and the
augmented matrix, are equal. Hence 𝐴

𝑠+1
exists.

Now we consider 𝑗 ≥ 𝑠 + 2. If ℎ
𝑗

= 0, then

ℎ̃
𝑗

= (−1)
𝑗−1

ℎ
𝑗

= (−1)
𝑗−1

(𝑝
𝑗−1

(𝜆
(𝑗)

1
) 𝑝
𝑠−1

(𝜆
(𝑗)

𝑗
)

×

𝑗−1

∏

𝑖=𝑠+1

(𝜆
(𝑗)

𝑗
− 𝑎
𝑖
) − 𝑝
𝑗−1

(𝜆
(𝑗)

𝑗
) 𝑝
𝑠−1

(𝜆
(𝑗)

1
)

×

𝑗−1

∏

𝑖=𝑠+1

(𝜆
(𝑗)

1
− 𝑎
𝑖
)) = 0.

(22)

From Lemma 5

𝑝
𝑗−1

(𝜆
(𝑗)

1
) = 0 ⋁ 𝑝

𝑠−1
(𝜆
(𝑗)

𝑗
)

𝑗−1

∏

𝑖=𝑠+1

(𝜆
(𝑗)

𝑗
− 𝑎
𝑖
) = 0,

𝑝
𝑗−1

(𝜆
(𝑗)

𝑗
) = 0 ⋁ 𝑝

𝑠−1
(𝜆
(𝑗)

1
)

𝑗−1

∏

𝑖=𝑠+1

(𝜆
(𝑗)

1
− 𝑎
𝑖
) = 0.

(23)

Then ℎ
𝑗

= 0 leads us to the following cases:

(i) 𝜆
(𝑗)

1
= 𝜆
(𝑗−1)

1
∧𝜆
(𝑗−1)

𝑗−1
= 𝜆
(𝑗)

𝑗
,

(ii) 𝜆
(𝑗)

1
= 𝜆
(𝑗−1)

1
∧𝑝
𝑠−1

(𝜆
(𝑗)

1
)∏
𝑗−1

𝑖=𝑠+1
(𝜆
(𝑗)

1
− 𝑎
𝑖
) = 0,

(iii) 𝑝
𝑠−1

(𝜆
(𝑗)

𝑗
)∏
𝑗−1

𝑖=𝑠+1
(𝜆
(𝑗)

𝑗
− 𝑎
𝑖
) = 0∧𝜆

(𝑗−1)

𝑗−1
= 𝜆
(𝑗)

𝑗
,

(iv) 𝑝
𝑠−1

(𝜆
(𝑗)

𝑗
)∏
𝑗−1

𝑖=𝑠+1
(𝜆
(𝑗)

𝑗
−𝑎
𝑖
) = 0∧𝑝

𝑠−1
(𝜆
(𝑗)

1
)∏
𝑗−1

𝑖=𝑠+1
(𝜆
(𝑗)

1
−

𝑎
𝑖
) = 0,

and the augmented matrix is

(

𝑝
𝑗−1

(𝜆
(𝑗)

1
) 𝑝
𝑠−1

(𝜆
(𝑗)

1
)

𝑗−1

∏

𝑖=𝑠+1

(𝜆
(𝑗)

1
− 𝑎
𝑖
) 𝜆
(𝑗)

1
𝑝
𝑗−1

(𝜆
(𝑗)

1
)

𝑝
𝑗−1

(𝜆
(𝑗)

𝑗
) 𝑝
𝑠−1

(𝜆
(𝑗)

𝑗
)

𝑗−1

∏

𝑖=𝑠+1

(𝜆
(𝑗)

𝑗
− 𝑎
𝑖
) 𝜆
(𝑗)

𝑗
𝑝
𝑗−1

(𝜆
(𝑗)

𝑗
)

) .

(24)

By replacing conditions (i)–(iii) in (24), it is clear that the
coefficients matrix and the augmented matrix have the same
rank. From condition (iv), the system of (15) becomes

𝑝
𝑗−1

(𝜆
(𝑗)

1
) 𝑎
𝑗

= 𝜆
(𝑗)

1
𝑝
𝑗−1

(𝜆
(𝑗)

1
) ,

𝑝
𝑗−1

(𝜆
(𝑗)

𝑗
) 𝑎
𝑗

= 𝜆
(𝑗)

𝑗
𝑝
𝑗−1

(𝜆
(𝑗)

𝑗
) .

(25)

If 𝑝
𝑗−1

(𝜆
(𝑗)

1
) ̸= 0 and 𝑝

𝑗−1
(𝜆
(𝑗)

𝑗
) ̸= 0, then 𝑎

𝑗
= 𝜆
(𝑗)

1
= 𝜆
(𝑗)

𝑗
and

from (13)

𝜆
(𝑗)

1
= 𝜆
(𝑗−1)

1
= ⋅ ⋅ ⋅ = 𝜆

(1)

1
= ⋅ ⋅ ⋅ = 𝜆

(𝑗−1)

𝑗−1
= 𝜆
(𝑗)

𝑗
. (26)

Thus, 𝑝
𝑗−1

(𝜆
(𝑗)

1
) = 𝑝

𝑗−1
(𝜆
(𝑗)

𝑗
) = 0, which is a contradiction.

Hence, under condition (iv) 𝑝
𝑗−1

(𝜆
(𝑗)

1
) = 0 or 𝑝

𝑗−1
(𝜆
(𝑗)

𝑗
) = 0

and therefore the coefficients matrix and the augmented
matrix have also the same rank. By taking 𝑏

2

𝑗−1
≥ 0,

there exists a 𝑗 × 𝑗 matrix 𝐴
𝑗
with the required spectral

properties. The necessity comes from the Cauchy interlacing
property.

We have seen in the proof of Theorem 8 that if the
determinant ℎ

𝑗
of the coefficients matrix of the system (15)

is nonzero, then the Problem 1 has a unique solution except
for the sign of the 𝑏

𝑖
entries.

Now we solve the Problem 1 in the case that the 𝑏
𝑖
entries

are required to be positive. We need the following lemma.

Lemma 9. Let 𝐴 be a matrix of the form (1) with 𝑏
𝑖

̸= 0, 𝑖 =

1, 2, . . . , 𝑛 − 1. Let 𝜆
(𝑗)

1
and 𝜆

(𝑗)

𝑗
, respectively, be the minimal

and maximal eigenvalues of the leading principal submatrix
𝐴
𝑗
, 𝑗 = 1, 2, . . . , 𝑛, of 𝐴. Then

𝜆
(𝑗)

1
< ⋅ ⋅ ⋅ < 𝜆

(3)

1
< 𝜆
(2)

1
< 𝜆
(1)

1
< 𝜆
(2)

2
< 𝜆
(3)

3
< ⋅ ⋅ ⋅ < 𝜆

(𝑗)

𝑗
,

𝜆
(𝑗)

1
< 𝑎
𝑖
< 𝜆
(𝑗)

𝑗
, 𝑖 = 2, 3, . . . , 𝑗

(27)

for each 𝑗 = 2, 3, . . . , 𝑛.

Proof. From Lemma 7, (27) hold for 𝑗 ≤ 𝑠. For 𝑗 = 𝑠 + 1, we
have from (5)

𝑝
𝑠+1

(𝜆) = (𝜆 − 𝑎
𝑠+1

) 𝑝
𝑠
− 𝑏
2

𝑠
𝑝
𝑠−1

(𝜆) . (28)

As 𝑏
𝑠

̸= 0, then from Lemma 7, we have 𝑝
𝑠+1

(𝜆
(𝑠)

1
) ̸= 0,

𝑝
𝑠+1

(𝜆
(𝑠)

𝑠
) ̸= 0, and

𝜆
(𝑠+1)

1
< 𝜆
(𝑠)

1
< ⋅ ⋅ ⋅ < 𝜆

(2)

1
< 𝜆
(1)

1
< 𝜆
(2)

2
< ⋅ ⋅ ⋅ < 𝜆

(𝑠)

𝑠
< 𝜆
(𝑠+1)

𝑠+1
.

(29)

If 𝜆
(𝑠+1)

1
= 𝑎
𝑠+1

or 𝜆
(𝑠+1)

𝑠+1
= 𝑎
𝑠+1

, then

0 = 𝑝
𝑠+1

(𝑎
𝑠+1

) = −𝑏
2

𝑠
𝑝
𝑠−1

(𝑎
𝑠+1

) (30)

contradicts 𝑏
𝑠

̸= 0 or (29) and from (7) we have

𝜆
(𝑠+1)

1
< 𝑎
𝑠+1

< 𝜆
(𝑠+1)

𝑠+1
. (31)

Let 𝑗 = 𝑠 + 2. Then from (5)

𝑝
𝑠+2

(𝜆
(𝑠+1)

1
) = −𝑏

2

𝑠+1
(𝜆
(𝑠+1)

1
− 𝑎
𝑠+1

) 𝑝
𝑠−1

(𝜆
(𝑠+1)

1
) ̸= 0. (32)

In the same way 𝑝
𝑠+2

(𝜆
(𝑠+1)

𝑠+1
) ̸= 0. Hence 𝜆

(𝑠+1)

1
and 𝜆

(𝑠+1)

𝑠+1
are

not zeroes of 𝑝
𝑠+2

(𝜆) and from (6)

𝜆
(𝑠+2)

1
< 𝜆
(𝑠+1)

1
< 𝜆
(𝑠)

1
< ⋅ ⋅ ⋅ < 𝜆

(2)

1
< 𝜆
(1)

1

< 𝜆
(2)

2
< ⋅ ⋅ ⋅ < 𝜆

(𝑠)

𝑠
< 𝜆
(𝑠+1)

𝑠+1
< 𝜆
(𝑠+2)

𝑠+2
.

(33)

Now suppose that 𝜆
(𝑠+2)

1
= 𝑎
𝑠+2

. Then

0 = 𝑝
𝑠+2

(𝑎
𝑠+2

) = −𝑏
2

𝑠+1
(𝑎
𝑠+2

− 𝑎
𝑠+1

) 𝑝
𝑠−1

(𝑎
𝑠+2

)

= −𝑏
2

𝑠+1
(𝜆
𝑠+2

1
− 𝑎
𝑠+1

) 𝑝
𝑠−1

(𝑎
𝑠+2

)

(34)
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contradicts the inequalities (31) and (33). The same occurs if
we assume that 𝜆

(𝑠+2)

𝑠+2
= 𝑎
𝑠+2

. Then from (7) and Lemma 7 we
have

𝜆
(𝑠+2)

1
< 𝑎
𝑖
< 𝜆
(𝑠+2)

𝑠+2
, 𝑖 = 2, 3, . . . , 𝑠 + 2. (35)

Now, suppose that (27) hold for 𝑠+3 ≤ 𝑗 ≤ 𝑛−1 and consider

𝑝
𝑗+1

(𝜆) = (𝜆 − 𝑎
𝑗+1

) 𝑝
𝑗
(𝜆) − 𝑏

2

𝑗

𝑗

∏

𝑖=𝑠+1

(𝜆 − 𝑎
𝑖
) 𝑝
𝑠−1

(𝜆) .

(36)

Since 𝑏
𝑗

̸= 0 and 𝜆
(𝑗)

1
< 𝑎
𝑖

< 𝜆
(𝑗)

𝑗
, 𝑖 = 2, 3, . . . , 𝑗, then

∏
𝑗

𝑖=𝑠+1
(𝜆
𝑗

1
− 𝑎
𝑖
) ̸= 0 and ∏

𝑗

𝑖=𝑠+1
(𝜆
𝑗

𝑗
− 𝑎
𝑖
) ̸= 0. Hence neither 𝜆

𝑗

1

nor 𝜆
𝑗

𝑗
are zeroes of 𝑝

𝑗+1
(𝜆). Then from (6) we have

𝜆
(𝑗+1)

1
< 𝜆
(𝑗)

1
< ⋅ ⋅ ⋅ < 𝜆

(2)

1
< 𝜆
(1)

1
< 𝜆
(2)

2
< ⋅ ⋅ ⋅ < 𝜆

(𝑗)

𝑗
< 𝜆
(𝑗+1)

𝑗+1
.

(37)

Finally, if 𝜆
(𝑗+1)

1
= 𝑎
𝑗+1

, then

0 = 𝑝
𝑗+1

(𝑎
𝑗+1

) = −𝑏
2

𝑗

𝑗

∏

𝑖=𝑠+1

(𝑎
𝑗+1

− 𝑎
𝑖
) 𝑝
𝑠−1

(𝑎
𝑗+1

)

= −𝑏
2

𝑗

𝑗

∏

𝑖=𝑠+1

(𝜆
𝑗+1

1
− 𝑎
𝑖
) 𝑝
𝑠−1

(𝜆
𝑗+1

1
)

(38)

contradicts (33). Then

𝜆
(𝑗+1)

1
< 𝑎
𝑖
< 𝜆
(𝑗+1)

𝑗+1
, 𝑖 = 2, 3, . . . , 𝑗 + 1. (39)

The following theorem solves Problem 1 with 𝑏
𝑗

> 0.

Theorem 10. Let the real numbers 𝜆
(𝑗)

1
and 𝜆

(𝑗)

𝑗
, 𝑗 = 1, 2,

. . . , 𝑛, be given. Then there exists a unique 𝑛 × 𝑛 matrix 𝐴 of
the form (1), with 𝑎

𝑗
∈ R and 𝑏

𝑗
> 0, such that 𝜆

(𝑗)

1
and 𝜆

(𝑗)

𝑗

are, respectively, the minimal and maximal eigenvalues of its
leading principal submatrix 𝐴

𝑗
, 𝑗 = 1, 2, . . . , 𝑛, if and only if

𝜆
(𝑛)

1
< ⋅ ⋅ ⋅ < 𝜆

(3)

1
< 𝜆
(2)

1
< 𝜆
(1)

1
< 𝜆
(2)

2
< 𝜆
(3)

3
< ⋅ ⋅ ⋅ < 𝜆

(𝑛)

𝑛
.

(40)

Proof. The proof is quite similar to the proof of Theorem 8:
Let 𝜆
(𝑗)

1
and 𝜆

(𝑗)

𝑗
, 𝑗 = 2, . . . , 𝑛, satisfy (40). From Theorem 3,

there exists 𝐴
𝑗
, 𝑗 = 2, . . . , 𝑠 with 𝜆

(𝑗)

1
and 𝜆

(𝑗)

𝑗
as its minimal

and maximal eigenvalues, respectively. To show the existence
of 𝐴
𝑗
, 𝑗 = 𝑠 + 1, . . . , 𝑛 with the required spectral properties,

is equivalent to showing that the system of (15) has real
solutions 𝑎

𝑗
and 𝑏
𝑗−1

, with 𝑏
𝑗−1

> 0, 𝑗 = 𝑠 + 1, 𝑠 + 2, . . . , 𝑛.

To do this it is enough to show that the determinant of the
coefficients matrix

ℎ
𝑗

= 𝑝
𝑗−1

(𝜆
(𝑗)

1
) 𝑝
𝑠−1

(𝜆
(𝑗)

𝑗
)

×

𝑗−1

∏

𝑖=𝑠+1

(𝜆
(𝑗)

𝑗
− 𝑎
𝑖
) − 𝑝
𝑗−1

(𝜆
(𝑗)

𝑗
) 𝑝
𝑠−1

(𝜆
(𝑗)

1
)

×

𝑗−1

∏

𝑖=𝑠+1

(𝜆
(𝑗)

1
− 𝑎
𝑖
)

(41)

is nonzero.
From Lemmas 6 and 9 it follows that ℎ̃

𝑗
= (−1)

𝑗−1
ℎ
𝑗

>

0. Hence ℎ
𝑗

̸= 0 and the system (15) has real and unique
solutions:

𝑎
𝑗

= (𝜆
(𝑗)

1
𝑝
𝑗−1

(𝜆
(𝑗)

1
) 𝑝
𝑠−1

(𝜆
(𝑗)

𝑗
)

×

𝑗−1

∏

𝑖=𝑠+1

(𝜆
(𝑗)

𝑗
− 𝑎
𝑖
) − 𝜆
(𝑗)

𝑗
𝑝
𝑗−1

(𝜆
(𝑗)

𝑗
) 𝑝
𝑠−1

(𝜆
(𝑗)

1
)

×

𝑗−1

∏

𝑖=𝑠+1

(𝜆
(𝑗)

1
− 𝑎
𝑖
)) (ℎ

𝑗
)
−1

,

𝑏
2

𝑗−1
=

(𝜆
(𝑗)

𝑗
− 𝜆
(𝑗)

1
) 𝑝
𝑗−1

(𝜆
(𝑗)

1
) 𝑝
𝑗−1

(𝜆
(𝑗)

𝑗
)

ℎ
𝑗

,

(42)

where

(−1)
𝑗−1

(𝜆
(𝑗)

𝑗
− 𝜆
(𝑗)

1
) 𝑝
𝑗−1

(𝜆
(𝑗)

1
) 𝑝
𝑗−1

(𝜆
(𝑗)

𝑗
) > 0. (43)

Then it is clear that 𝑏
2

𝑗−1
> 0.Therefore, the 𝑏

𝑗−1
can be chosen

positive and then there exists a unique matrix 𝐴
𝑗
with the

required spectral properties.The necessity of the result comes
from Lemma 9.

4. Examples

Now we give an algorithm to construct the solution 𝐴 of
Problem 1.

Algorithm.

(1) Input a positive integer 𝑠 and real numbers 𝜆
(𝑗)

1
and

𝜆
(𝑗)

𝑗
, 𝑗 = 1, 2, . . . , 𝑛;

(2) let 𝑎
1

= 𝜆
(1)

1
. 𝑝
1
(𝜆) = 𝜆 − 𝑎

1
;

(3) for 𝑗 = 2, . . . , 𝑛, calculate 𝑝
𝑗
(𝜆) according to (5);

(4) compute 𝑎
𝑗
and 𝑏
𝑗−1

according to (17).
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Example 1. The following numbers [2]

𝜆
(5)

1
𝜆
(4)

1
𝜆
(3)

1
𝜆
(2)

1
𝜆
(1)

1
𝜆
(2)

2

−11.2369 −11.1921 −10.9106 −8.7760 −6.0043 −2.6295

𝜆
(3)

3
𝜆
(4)

4
𝜆
(5)

5

1.8532 8.4266 10.4020

(44)

satisfy the necessary and sufficient condition (40) of
Theorem 10. Then the doubly arrow matrix with 𝑏

𝑖
> 0 and

𝑠 = 3 is

𝐴 = (

−6.0043 3.0584 5.2453

3.0584 −5.4011

5.2453 −2.3357 4.4747 1.8880

4.4747 6.1414

1.8880 9.8361

) .

(45)

From the above 5 × 5 doubly arrow matrix 𝐴, we recompute
the spectrum 𝜎(𝐴

𝑗
) of its submatrix 𝐴

𝑗
by MATLAB 7.0, 𝑗 =

1, 2, . . . , 5, and get

𝜎 (𝐴
1
) 𝜆
(1)

1
= −6.0043,

𝜎 (𝐴
2
) 𝜆
(2)

1
= −8.7759 𝜆

(2)

2
= −2.6295,

𝜎 (𝐴
3
) 𝜆
(3)

1
= −10.9106 𝜆

(3)

2
= −4.6837 𝜆

(3)

3
= 1.8532,

𝜎 (𝐴
4
) 𝜆
(4)

1
= −11.1921 𝜆

(4)

2
= −5.0836 𝜆

(4)

3
= 0.2494 𝜆

(4)

4
= 8.4266,

𝜎 (𝐴
5
) 𝜆
(5)

1
= −11.2369 𝜆

(5)

2
= −5.1390 𝜆

(5)

3
= 0.1384 𝜆

(5)

4
= 8.0719 𝜆

(5)

5
= 10.4020.

(46)

Example 2. Wemodify the previous example, that some given
eigenvalues become equal to [2]

𝜆
(5)

1
𝜆
(4)

1
𝜆
(3)

1
𝜆
(2)

1
𝜆
(1)

1
𝜆
(2)

2

−11.2369 −10.9106 −10.9106 −8.7760 −6.0043 −6.0043

𝜆
(3)

3
𝜆
(4)

4
𝜆
(5)

5

1.8532 8.4266 10.4020.

(47)

These numbers satisfy the necessary and sufficient condition
(13) ofTheorem 8. One solution of Problem 1 with 𝑠 = 3 is the

matrix

𝐴 = (

−6.0043 0 6.2090

0 −8.7760

6.2090 −3.0531 0 4.0562

0 8.4266

4.0562 8.9205

) .

(48)

Recomputing the spectrum of 𝐴, we have

𝜎 (𝐴
1
) 𝜆
(1)

1
= −6.0043,

𝜎 (𝐴
2
) 𝜆
(2)

1
= −8.7760 𝜆

(2)

2
= −6.0043,

𝜎 (𝐴
3
) 𝜆
(3)

1
= −10.9106 𝜆

(3)

2
= −8.7760 𝜆

(3)

3
= 1.8532,

𝜎 (𝐴
4
) 𝜆
(4)

1
= −10.9106 𝜆

(4)

2
= −8.7760 𝜆

(4)

3
= 1.8532 𝜆

(4)

4
= 8.4266,

𝜎 (𝐴
5
) 𝜆
(5)

1
= −11.2369 𝜆

(5)

2
= −8.7760 𝜆

(5)

3
= 0.6980 𝜆

(5)

4
= 8.4266 𝜆

(5)

5
= 10.4020.

(49)
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