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We consider one family 𝑆 of 2-valued transformations on the interval [0, 1] with measure 𝜇, endowed with a set of weight functions.
We construct invariant measure 𝜇

𝑆
= 𝜇 for this multivalued dynamical system with weights and show the interplay between such

systems and masked dynamical systems, which leads to image processing.

1. Introduction

Let 𝑋 be a space with finite measure 𝜇 on 𝜎-field B of
subsets of 𝑋, 𝑁 ∈ N an integer, 𝐼 = {1, . . . , 𝑁}, and 𝑆

𝑖
:

𝑋 → 𝑋—some measurable transformations. Consider a set
of measurable functions (endowment):

{𝛼
𝑖
: 𝑋 󳨀→ [0, 1] , 𝑖 ∈ 𝐼 | ∑

𝑖∈𝐼

𝛼
𝑖
≡ 1} . (1)

A collection

(𝑋;B; 𝜇; 𝑆
1
, . . . , 𝑆

𝑁
; 𝛼
1
, . . . , 𝛼

𝑁) (2)

is called multivalued dynamical system with weights, and the
map 𝑆 = ∪𝑖∈𝐼𝑆𝑖 with fixed pairs {(𝑆𝑖, 𝛼𝑖)}𝑖∈𝐼—endowed 𝑁-
transformation (see [1]). Regarding this, we can establish a
new measure onB:

𝜇
𝑆 (𝐵) = ∑

𝑖∈𝐼

∫
𝑆
−1

𝑖

(𝐵)

𝛼
𝑖 (𝑥) 𝑑𝜇. (3)

One of the important questions of dynamical system theory
is finding an invariant measure 𝜇

𝑆
= 𝜇.

The endowment 𝛼 plays a role of a parameter which con-
trols measure 𝜇

𝑆
. On the other hand, 𝛼

𝑖
(𝑥) could be consid-

ered as a probability of choosing and applying the transfor-
mation 𝑆

𝑖
(out of 𝑆) to a point 𝑥 ∈ 𝑋 in stochastic dynami-

cal system. Finally, as we show further, this parameter can

uniquely define some single-valued dynamical system con-
nected to 𝑆.

In this paper we continue (after [2]) studying the follow-
ing 2-transformation 𝑆 = 𝑆

1
∪ 𝑆
2
of the interval [0, 1] (see

Figure 1):

𝑆
1 (𝑥) =

{{

{{

{

1

1 − 𝑎
𝑥, 𝑥 ∈ [0, 1 − 𝑎) ;

1

1 − 𝑎
𝑥 −

𝑎

1 − 𝑎
, 𝑥 ∈ [1 − 𝑎, 1] ,

𝑆2 (𝑥) =

{{

{{

{

1

1 − 𝑎
𝑥, 𝑥 ∈ [0, 𝑎) ;

1

1 − 𝑎
𝑥 −

𝑎

1 − 𝑎
, 𝑥 ∈ [𝑎, 1] ,

(4)

with a shift 𝑎 ∈ (0, 1/2] as its parameter. Dynamical system
([0, 1], 𝑆) is tightly connected to the theory of 𝛽-decomposi-
tions (see [3–6]).

As amotivation for this paper in introductionwe examine
two points: invariance of measure for this endowed 2-trans-
formation and masked dynamical system associated with it.

1.1. Invariance of Measure. Let 𝜆 be the Lebesgue measure
on [0, 1] and B the Borel 𝜎-field on [0, 1]. Let also 𝜇(𝐵) =
∫
𝐵
𝑝(𝑥) 𝑑𝜆 be a measure, absolutely continuous with respect

to the Lebesgue measure (𝜇 ≪ 𝜆), with density 𝑝(𝑥) ∈

𝐿
1
([0, 1],B, 𝜆) and 𝑝(𝑥) ≥ 0.
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Figure 1: The design of 2-transformation 𝑆.

According to [1], we endow 2-transformation 𝑆 with a
set of weight functions 𝛼 = {𝛼

1
(𝑥), 𝛼
2
(𝑥)}, 𝛼

1
(𝑥), 𝛼
2
(𝑥) ∈

𝐿
1
([0, 1],B, 𝜆) such that 𝛼1(𝑥)+𝛼2(𝑥) = 1 and 𝛼1(𝑥), 𝛼2(𝑥) ≥

0. Then we can introduce a new measure 𝜇𝑆 onB:

𝜇
𝑆 (𝐵) = ∫

𝑆
−1

1

(𝐵)

𝛼
1 (𝑥) 𝑝 (𝑥) 𝑑𝜆 + ∫

𝑆
−1

2

(𝐵)

𝛼
2 (𝑥) 𝑝 (𝑥) 𝑑𝜆. (5)

There are three independent parameters in the above-
mentioned construction: density function 𝑝(𝑥), shift number
𝑎, and endowment 𝛼 = {𝛼

1
(𝑥), 𝛼
2
(𝑥)}. Whether we search for

endowed transformation for a given measure 𝜇 or a measure
𝜇
𝑆
= 𝜇 for a given transformation 𝑆, there is a certain relation

between these parameters, defined by equality 𝜇
𝑆
= 𝜇.

Further on, we fix three parameters: 𝑎 ∈ (0, 1/2],
{𝛼
1
(𝑥), 𝛼
2
(𝑥)}, and 𝑝(𝑥), and let 𝑛 ∈ N be such that

1

𝑛 + 1
< 𝑎 ≤

1

𝑛
(𝑛 ≥ 2) . (6)

Here we cite the following criterion of existence of invari-
ant measure.

Theorem 1 (see [2]). 𝜇
𝑆 = 𝜇 if and only if the following condi-

tions hold true:

𝑛−1

∑

𝑘=−1

𝑝 (𝑥 + 𝑘𝑎) =
1

1 − 𝑎

𝑛−2

∑

𝑘=−1

𝑝(
𝑥 + 𝑘𝑎

1 − 𝑎
) ,

∀𝑥 ∈ [𝑎, 1 − (𝑛 − 1) 𝑎) ;

(7)

𝑛−2

∑

𝑘=−1

𝑝 (𝑥 + 𝑘𝑎) =
1

1 − 𝑎

𝑛−3

∑

𝑘=−1

𝑝(
𝑥 + 𝑘𝑎

1 − 𝑎
) ,

∀𝑥 ∈ [1 − (𝑛 − 1) 𝑎, 2𝑎) ;

(8)

𝛼1 (𝑥 + 𝑚𝑎) 𝑝 (𝑥 + 𝑚𝑎)

= (

𝑚

∑

𝑘=−1

𝑝 (𝑥 + 𝑘𝑎) −
1

1 − 𝑎

𝑚−1

∑

𝑘=−1

𝑝(
𝑥 + 𝑘𝑎

1 − 𝑎
)) ,

(9)

where for 𝑛 = 2, 𝑚 = 0, 𝑥 ∈ [𝑎, 1 − 𝑎), for 𝑛 ≥ 3, 𝑚 = 0,
𝑥 ∈ [𝑎, 2𝑎), for 𝑛 ≥ 3,𝑚 = 1, 2, . . . , 𝑥 ∈ [𝑎, 2𝑎), and 𝑥 + 𝑚𝑎 ∈
[2𝑎, 1 − 𝑎).

There is no restriction on function 𝛼
1
(𝑥) on the sets [0, 𝑎)

and [1 − 𝑎, 1].

Equations (7)-(8) define function 𝑝(𝑥) on the interval
[0, 1], and (9) defines endowment 𝛼. We can revise (9) into
more compact and constructive formula:

𝛼
1 (𝑥) 𝑝 (𝑥) =

𝑠

∑

𝑘=0

𝑝 (𝑥 − 𝑘𝑎) −
1

1 − 𝑎

𝑠

∑

𝑘=1

𝑝(
𝑥 − 𝑘𝑎

1 − 𝑎
) ,

𝑥 ∈ [𝑎, 1 − 𝑎) ,

(10)

where 𝑠 = [𝑥/𝑎] ([𝑥] is an integer part of 𝑥).
To clarify the meaning of the theorem we give two corol-

laries from it.

Corollary 2 (see [2]). Given measure 𝜇 ≪ 𝜆 there exists
endowed 2-transformation 𝑆(𝑎) preserving measure 𝜇 if and
only if 𝑝(𝑥), 𝑎, and {𝛼1(𝑥), 𝛼2(𝑥)} satisfy conditions (7)–(9).

Corollary 3 (see [2]). Given endowed 2-transformation 𝑆(𝑎)
there exists measure 𝜇 ≪ 𝜆 which is preserved by transforma-
tion 𝑆 if and only if 𝑝(𝑥), 𝑎, and {𝛼1(𝑥), 𝛼2(𝑥)} satisfy
conditions (7)–(9).

There is a convenient graphical scheme of summation
intervals placement on the interval [0, 1] for (7)-(8); see
Figures 2 and 3.

Informally, we can depict (7)-(8) as follows:

∑𝑝(∙) =
1

1 − 𝑎
∑𝑝 (◼) . (11)

RegardingTheorem 1, the following question arises.

Question 1. Are there functions satisfying (7)-(8)?

One trivial solution is 𝑝 ≡ 0.
Slightly less trivial example of constant density 𝑝 ≡ 𝑐, 𝑐 ∈

R, 𝑐 > 0, is presented in the following corollary.

Corollary 4 (see [2]). (𝑐 ⋅ 𝜆)𝑆 = 𝑐 ⋅ 𝜆 if and only if 𝑎 = 1/𝑛,
𝑛 = 2, 3, . . ..

However, this 2-valued dynamical system allows even
more sophisticated density: (7)–(9) hold true for some
nonconstant 𝑝(𝑥), as shown in the next theorem.

Let 𝜒
𝐵
(𝑥) = {

0, 𝑥∉𝐵,

1, 𝑥∈𝐵,
be a characteristic function for a

subset 𝐵 ⊂ [0, 1].
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Figure 2: Scheme of summation intervals placement for (7) (upper)
and (8) (lower), here 𝑏 = 1 − (𝑛 − 1)𝑎, even 𝑛.

0 a x b 1

0 2ab 1

x

1 − a

x̃

1 − a

x̃

Figure 3: Scheme of summation intervals placement for (7) (upper)
and (8) (lower), here 𝑏 = 1 − (𝑛 − 1)𝑎, odd 𝑛.

Theorem 5 (see [2]). Given 𝑛 = 2, 3, . . . there exist a shift 𝑎

(1/(𝑛 + 1) < 𝑎 < 1/𝑛), piecewise constant density 𝑝(𝑥), and
endowment {𝛼1(𝑥), 𝛼2(𝑥)}, such that 𝜇𝑆 = 𝜇. Namely,

𝑝 (𝑥) = 𝛽𝜒[0,𝛿) (𝑥) + (𝛽 + 𝛾) (1 − 𝛿) 𝜒[𝛿,1−𝛿) (𝑥)

+ 𝛾𝜒
[1−𝛿,1] (𝑥) , 𝑎

=
𝑛 + 1 − √𝑛2 + 1

𝑛
, 𝛿 =

𝑎𝑛

2
,

𝛽, 𝛾 > 0, 𝑛 𝑖𝑠 𝑒V𝑒𝑛,

𝑝 (𝑥) = 𝛽𝜒[0,1−𝛿) (𝑥) + (𝛽 + 𝛾) (1 − 𝛿) 𝜒[1−𝛿,𝛿) (𝑥)

+ 𝛾𝜒
[𝛿,1] (𝑥) , 𝑎

=
𝑛 + 1 − √𝑛2 − 1

𝑛 + 1
, 𝛿 =

𝑎 (𝑛 + 1)

2
,

𝛽, 𝛾 > 0, 𝑛 𝑖𝑠 𝑜𝑑𝑑.

(12)

Remark 6. Theorem 5 yields a family of densities with two
parameters 𝛽, 𝛾 > 0.

For computational simplicity in this theorem 𝑎 is chosen
in such a way that the middle intervals in the graphical
scheme touch each other; see Figure 4 for even 𝑛.

The resulting piecewise density consists of three domains;
see Figure 5.

However, the same question arises again: are there other
nontrivial (nonconstant) densities satisfying (7)-(8)?

In Section 2 we present a scheme to construct nontrivial
densities in case of 𝑎 = (3 − √5)/2, 𝑛 = 2, and study
some properties of the functions we obtain there. In Section 3

0 1

1 −
n

2

a

1 − a

n

2
a

Figure 4: Special choice of a shift 𝑎: (𝑛/2)𝑎 = 1 − (𝑛/2)(𝑎/(1 − 𝑎)),
even 𝑛.

p(x)

x

Figure 5: Typical view of a piecewise constant density from
Theorem 5.

there is a scheme to construct such densities for arbitrary
𝑎 ∈ (0, 1/2] (𝑛 ≥ 2).

Finally, in this subsection we cite the following lemma
which implies “mirror twoness” of invariant measures densi-
ties (see Corollary 8): if 𝑝(𝑥) is such a density, then the func-
tion 𝑔(𝑥) = 𝑝(1 − 𝑥) is again a density of invariant measure.

Lemma 7 (see [2]). Let 𝐴
𝑖
(𝑥) = 𝛼

𝑖
(𝑥)𝑝(𝑥), 𝑖 = 1, 2. Then

𝜇
𝑆
= 𝜇 if and only if 𝜆-almost everywhere on [0, 1]

𝐴1 ((1 − 𝑎) 𝑥) + 𝜒[(1−2𝑎)/(1−𝑎),1] (𝑥) 𝐴1 ((1 − 𝑎) 𝑥 + 𝑎)

+ 𝐴
2 ((1 − 𝑎) 𝑥 + 𝑎) + 𝜒[0,𝑎/(1−𝑎)) (𝑥) 𝐴2 ((1 − 𝑎) 𝑥)

=
𝑝 (𝑥)

1 − 𝑎
.

(13)

Corollary 8. If 𝑝(𝑥) is invariant measure density, then the
function 𝑔(𝑥) = 𝑝(1−𝑥)with endowment 𝛽𝑖(𝑥) = 𝛼3−𝑖(1−𝑥),
𝑖 = 1, 2, is also invariant measure density.

Proof. Let𝑝(𝑥) be invariantmeasure density, 𝑔(𝑥) = 𝑝(1−𝑥),
and 𝐵

𝑖
(𝑥) = 𝛽

𝑖
(𝑥)𝑔(𝑥) = 𝛼

3−𝑖
(1 − 𝑥)𝑝(1 − 𝑥) = 𝐴

3−𝑖
(1 − 𝑥).

Substituting 1 − 𝑥 instead of 𝑥 in equality (13) yields

𝑔 (𝑥)

1 − 𝑎

=
𝑝 (1 − 𝑥)

1 − 𝑎
= 𝐴
1 ((1 − 𝑎) (1 − 𝑥))

+ 𝜒
[0,𝑎/(1−𝑎)] (𝑥) 𝐴1 ((1 − 𝑎) (1 − 𝑥) + 𝑎)

+ 𝐴
2 ((1 − 𝑎) (1 − 𝑥) + 𝑎)

+ 𝜒
((1−2𝑎)/(1−𝑎),1] (𝑥) 𝐴2 ((1 − 𝑎) (1 − 𝑥))
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= 𝐴
1 (1 − ((1 − 𝑎) 𝑥 + 𝑎))

+ 𝜒
[0,𝑎/(1−𝑎)] (𝑥) 𝐴1 (1 − (1 − 𝑎) 𝑥)

+ 𝐴
2 (1 − (1 − 𝑎) 𝑥)

+ 𝜒
((1−2𝑎)/(1−𝑎),1] (𝑥) 𝐴2 (1 − ((1 − 𝑎) 𝑥 + 𝑎))

= 𝐵
2 ((1 − 𝑎) 𝑥 + 𝑎) + 𝜒[0,𝑎/(1−𝑎)] (𝑥) 𝐵2 ((1 − 𝑎) 𝑥)

+ 𝐵
1 ((1 − 𝑎) 𝑥) + 𝜒((1−2𝑎)/(1−𝑎),1] (𝑥) 𝐵1 ((1 − 𝑎) 𝑥 + 𝑎) .

(14)

Thus equality (13) holds true for𝑔(𝑥) almost everywhere.

1.2. Masked Dynamical System. As an extra motivation we
consider here the following argument: endowment 𝛼 of
dynamical system 𝑆 can be connected with mask endowment
of some iterated functions systemF (see below).

Consider some disjoint cover M = {𝑀
𝑖
}
𝑖∈𝐼

of the set 𝑋:
𝑀
𝑖
∈ B, 𝑖 ∈ 𝐼, 𝑀

𝑖
∩ 𝑀
𝑗
= 0, 𝑖, 𝑗 ∈ 𝐼, 𝑖 ̸= 𝑗, ∪

𝑖∈𝐼
𝑀
𝑖
= 𝑋.

Let 𝛼
𝑖
= 𝜒
𝑀
𝑖

, 𝑖 ∈ 𝐼, be characteristic functions of the subsets
𝑀𝑖 ⊂ 𝑋.

Wemay say that, regarding the contribution of 𝑆−1
𝑖
(𝐵)∩𝑀𝑖

to the measure

𝜇
𝑆 (𝐵) = ∑

𝑖∈𝐼

𝜇 (𝑆
−1

𝑖
(𝐵) ∩𝑀𝑖) = 𝜇 (∪𝑖∈𝐼 (𝑆

−1

𝑖
(𝐵) ∩ 𝑀𝑖)) ,

(15)

𝑁-valued transformation turns into the following single-
valued one:

𝑆 (𝑥) =

{{{

{{{

{

𝑆1 (𝑥) , 𝑥 ∈ 𝑀1,

.

.

.

𝑆
𝑁 (𝑥) , 𝑥 ∈ 𝑀

𝑁
.

(16)

In the case of arbitrary endowment 𝛼 we may consider
single-valued stochastic dynamical system:

̃̃
𝑆 (𝑥) =

{{{

{{{

{

𝑆
1 (𝑥) with probability 𝛼

1 (𝑥) ,

.

.

.

𝑆
𝑁 (𝑥) with probability 𝛼

𝑁 (𝑥) .

(17)

Such an approach that turns multivalued dynamical
system into single-valued one is implemented in [7] for map-
pings 𝑆, connectedwith iterated function systems (IFS). It lets
us establish and control fractal transformations between IFS
attractors. Such transformations have direct practical value
(see below).Herewe introducemain points from [7] (relevant
to this paper).

Let 𝑋 ̸= 0 be a compact Hausdorff space and 𝐾(𝑋) a set
of nonempty compact subsets of 𝑋. Let 𝐼 = {1, . . . , 𝑁} be a
finite set of positive integers, 𝐼∞ a set of infinite sequences of
numbers from 𝐼, and 𝑓

𝑖
: 𝑋 → 𝑋, 𝑖 ∈ 𝐼, continuous map-

pings. Then F = (𝑋; 𝑓
1
, . . . , 𝑓

𝑁
) is called iterated function

system (IFS).

Due to decreasing monotone inclusion of corresponding
compact subsets one can correctly define the mapping

Π : 𝐼
∞
󳨀→ 𝐾(𝑋) ,

𝜎 = 𝜎
1
𝜎
2
⋅ ⋅ ⋅ 󳨃󳨀→

∞

⋂

𝑘=1

𝑓
𝜎
1

∘ 𝑓
𝜎
2

∘ ⋅ ⋅ ⋅ ∘ 𝑓
𝜎
𝑘

(𝑋) .

(18)

If, for all 𝜎 ∈ 𝐼
∞, Π(𝜎) is a singleton, then the IFS is called

point-fibred. In this case a mapping

𝜋 : 𝐼
∞
󳨀→ 𝐴 = 𝜋 (𝐼

∞
) ⊂ 𝑋, {𝜋 (𝜎)} = Π (𝜎) , (19)

is called the coding map of F, 𝐼∞ the code space of F, and
𝜎 ∈ 𝐼
∞ the address of the point 𝜋(𝜎) ∈ 𝐴.

For point-fibred IFS on a compact Hausdorff space there
exists a unique set 𝐴 ∈ 𝐾(𝑋) such that

𝐴 = ⋃

𝑖∈𝐼

𝑓
𝑖 (𝐴) , (20)

and 𝐴 = 𝜋(𝐼
∞
) (see [7]). This set is called the attractor of the

given IFS.
IFS attractor often happens to be a fractal set or even self-

similar one, which is usually of huge interest.
Henceforth, we constrain ourselves to point-fibred IFS on

some compact Hausdorff space only (however, this is rather
typical, cf. Remark 2.5 in [7]).

A point 𝑥 ∈ 𝐴 may have more than one address (even
uncountablymany).The following definition will be useful to
make the choice of address unique. A subsetΩ ⊂ 𝐼

∞ is called
the address space of the IFS F if 𝜋|

Ω
: Ω → 𝐴 is bijective.

Then the inverse mapping

𝜏 : 𝐴 󳨀→ Ω, 𝑥 󳨃󳨀→ (𝜋|Ω)
−1
(𝑥) , (21)

is called the section of 𝜋.
If there are two point-fibred IFSF = {𝑋; 𝑓

1
, . . . , 𝑓

𝑁
} and

G = {𝑌; 𝑔
1
, . . . , 𝑔

𝑁
} (with common 𝐼∞) on compact Haus-

dorff spaces 𝑋 and 𝑌, 𝐴F and 𝐴G being their attractors, 𝜋G
the coding mapping of G, and 𝜏F the section of 𝜋F, then
we can define the fractal transformation (under this transfo-
rmation the fractal dimension of a set could be changed)
between attractors ofF andG:

𝑇FG : 𝐴F 󳨀→ 𝐴F, 𝑥 󳨃󳨀→ 𝜋G ∘ 𝜏F (𝑥) . (22)

The paper [7] gives a continuity criteria for 𝑇FG and also
describes some applications of fractal transformations for
conversion and filtering images and steganography (hidden
data transmission, e.g., packing several images into one).

The choice of the address space ΩF of F defines a
fractal transformation. In [7] two methods for construction
of ΩF are proposed, and they lead to sections 𝜏F with good
properties.

One of the methods is to use top addresses: sequences
from 𝐼

∞ may be put in lexicographic order, which lets us
choose a unique (“top”) element from 𝜋

−1
(𝑥) for all 𝑥 ∈ 𝐴

(see [5, 8]).Thismethod is computationally simple and can be
easily implemented on computer. However, only a few certain
sections can be obtained in this way.
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Let us consider the second method in more detail. LetF
be a point-fibred IFSwith injectivemaps𝑓

𝑖
, 𝑖 ∈ 𝐼. A collection

of subsetsM = {𝑀
𝑖
⊂ 𝐴, 𝑖 ∈ 𝐼} is called themask ofF if

(1) 𝑀
𝑖
⊂ 𝑓
𝑖
(𝐴), 𝑖 ∈ 𝐼;

(2) 𝑀
𝑖
∩𝑀
𝑗
= 0, 𝑖, 𝑗 ∈ 𝐼, 𝑖 ̸= 𝑗;

(3) ∪
𝑖∈𝐼𝑀𝑖 = 𝐴.

For all 𝑥 ∈ 𝐴, there exists a unique 𝑖 ∈ 𝐴 such that 𝑥 ∈

𝑀
𝑖
⊂ 𝑓
𝑖
(𝐴). The mapping

𝑇 : 𝐴 󳨀→ 𝐴, 𝑥 󳨃󳨀→

{{{

{{{

{

𝑓
−1

1
(𝑥) , 𝑥 ∈ 𝑀

1

.

.

.

𝑓
−1

𝑁
(𝑥) , 𝑥 ∈ 𝑀

𝑁
,

(23)

is called themasked dynamical system forF.
This system is used to construct a section 𝜏 : 𝐴 → 𝜏(𝐴) ⊂

𝐼
∞ by following the orbit 𝑇𝑛(𝑥) = 𝑇 ∘ ⋅ ⋅ ⋅ ∘ 𝑇⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛 times
(𝑥) of point 𝑥;

namely,

𝜏 (𝑥) = 𝜎 (𝑥) = 𝜎1 (𝑥) 𝜎2 (𝑥) . . . ,

where 𝑥 ∈ (𝑇𝑘−1)
−1

(𝑀
𝜎
𝑘

(𝑥)
) , 𝑘 = 1, 2, . . . .

(24)

In this case 𝜋(𝜎(𝑥)) = 𝑥 (see [7]).
Thus the mask M of dynamical system connected with

IFS is a special case of endowment 𝛼, when 𝛼
𝑖
= 𝜒
𝑀
𝑖

, 𝑖 ∈ 𝐼.
We can also consider stochastic mask defined by endowment
weight functions: if supp𝛼

𝑖
⊂ 𝑓
𝑖
(𝐴), 𝑖 ∈ 𝐼, then

̃̃
𝑇 (𝑥) =

{{{

{{{

{

𝑓
−1

1
(𝑥) with probability 𝛼

1 (𝑥) ,

.

.

.

𝑓
−1

𝑁
(𝑥) with probability 𝛼

𝑁 (𝑥) .

(25)

Let us describe the connection between this mask con-
struction and 2-transformation 𝑆. Consider the following IFS
(see Figure 6):

(𝑋 = [0, 1] ; 𝑓1 (𝑥) = (1 − 𝑎) 𝑥, 𝑓2 (𝑥) = (1 − 𝑎) 𝑥 + 𝑎) .

(26)

This is point-fibred IFS with injective functions 𝑓
1
, 𝑓
2
,

and its attractor is the interval 𝐴 = 𝑋 = [0, 1]. Consider
𝑓
−1

1
, 𝑓
−1

2
for construction of masked dynamical system 𝑇. As

might be seen on Figure 6, this dynamical system is the object
of this paper. Let M = {𝑀1,𝑀2} be a mask of this IFS.
Then obviously, [0, 𝑎) ⊂ 𝑀1 and (1 − 𝑎, 1] ⊂ 𝑀2. Define
𝑀1 ∩ [𝑎, 1 − 𝑎] and𝑀2 ∩ [𝑎, 1 − 𝑎] arbitrarily (𝑀1 ∩𝑀2 = 0,
𝑀1,𝑀2 ∈ B). The example of a mask and the process of
finding masked address of a point 𝑥 ∈ 𝐴 are illustrated on
Figure 7.

As we have already mentioned, mask endowment M of
F in this case coincides with endowment 𝛼 = {𝛼

1
(𝑥) =

𝜒
𝑀
1

(𝑥), 𝛼
2
(𝑥) = 𝜒

𝑀
2

(𝑥)} of 𝑆.
Then the following question arises.

Question 2. Is there an invariant measure for this masked
dynamical system?

We give an example of such a measure in Section 2.

2. The Case of 𝑛 = 2

Here we consider the case of 𝑛 = 2 in detail. The main ideas
of this section can be used further for other values of 𝑛. The
conditions (7)-(8) now can be written as

𝑝 (𝑥 − 𝑎) + 𝑝 (𝑥) + 𝑝 (𝑥 + 𝑎)

=
1

1 − 𝑎
(𝑝(

𝑥 − 𝑎

1 − 𝑎
) + 𝑝(

𝑥

1 − 𝑎
)) , 𝑥 ∈ [𝑎, 1 − 𝑎) ;

(27)

𝑝 (𝑥 − 𝑎) + 𝑝 (𝑥) =
1

1 − 𝑎
𝑝(

𝑥 − 𝑎

1 − 𝑎
) , 𝑥 ∈ [1 − 𝑎, 2𝑎) ,

(28)

or in equivalent way,

𝑝 (𝑥) + 𝑝 (𝑥 + 𝑎) + 𝑝 (𝑥 + 2𝑎)

=
1

1 − 𝑎
(𝑝(

𝑥

1 − 𝑎
) + 𝑝(

𝑥 + 𝑎

1 − 𝑎
)) , 𝑥 ∈ [0, 1 − 2𝑎) ;

(29)

𝑝 (𝑥) + 𝑝 (𝑥 + 𝑎) =
1

1 − 𝑎
𝑝(

𝑥

1 − 𝑎
) , 𝑥 ∈ [1 − 2𝑎, 𝑎) .

(30)

To make it simple, we consider special shift, according to
the scheme on Figure 4. In our case 𝑛 = 2, 𝑎 = (3 − √5)/2;
see Figure 8.

Here we introduce a scheme to construct a density 𝑝(𝑥)
satisfying equations (29)-(30); see Figure 9. Consider the
following marks on the 𝑥-axis: 𝑎, 1 − 𝑎, 2𝑎, 2 − 3𝑎, 𝑥𝑘 =
𝑎(1 − 𝑎)

𝑘, 𝑘 ≥ 1, (𝑥
1
= 1 − 2𝑎).

(i) Fix functions 𝑝∗
0
, 𝑝
∗

1
∈ 𝐿
1, 𝑝∗
0
, 𝑝
∗

1
≥ 0, arbitrarily, and

define

𝑝 (𝑥) =

{{{{{{{

{{{{{{{

{

𝑝
1 (𝑥) =

1

1 − 𝑎
𝑝
∗

0
(

𝑥

1 − 𝑎
) − 𝑝
∗

1
(𝑥 + 𝑎) ,

𝑥 ∈ (1 − 2𝑎, 𝑎] ,

𝑝
∗

0
(𝑥) , 𝑥 ∈ (𝑎, 1 − 𝑎] ,

𝑝
∗

1
(𝑥) , 𝑥 ∈ (1 − 𝑎, 2𝑎] .

(31)

(ii) Fix function 𝑝∗
3
∈ 𝐿
1, 𝑝∗
3
≥ 0, arbitrarily, and define

𝑝 (𝑥)

=

{{{{{{

{{{{{{

{

𝑝
∗

3
(𝑥) , 𝑥 ∈ (2 − 3𝑎, 1] ,

𝑝
2 (𝑥)

=
1

1 − 𝑎
(𝑝
1
(

𝑥

1 − 𝑎
) + 𝑝
∗

3
(
𝑥 + 𝑎

1 − 𝑎
))

−𝑝
∗

0
(𝑥 + 𝑎) − 𝑝

∗

3
(𝑥 + 2𝑎) , 𝑥 ∈ (𝑥

2
, 1 − 2𝑎] .

(32)
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a

0

1

1

f2

f1

1 − a

(a)

1

0 a 1

1 − a

f−1
1

f−1
2

(b)

Figure 6: IFS equation (26) (a) and multivalued (without mask) dynamical system (coincides with 𝑆) connected with it (b).

0.5 x

M1 M2

Figure 7: Example of masked dynamical system for IFS equation
(26),𝑀

1
= [0, 0.5),𝑀

2
= [0.5, 1], and 𝜏(𝑥) = 222211 . . ..

(iii) Fix function 𝑝∗
2
∈ 𝐿
1, 𝑝∗
2
≥ 0, arbitrarily, and define

𝑝 (𝑥)

=

{{{{{{{

{{{{{{{

{

𝑝
∗

2
(𝑥) , 𝑥 ∈ (2𝑎, 2 − 3𝑎] ,

𝑝
3 (𝑥)

=
1

1 − 𝑎
(𝑝2 (

𝑥

1 − 𝑎
) + 𝑝
∗

2
(
𝑥 + 𝑎

1 − 𝑎
))

−𝑝
∗

0
(𝑥 + 𝑎) − 𝑝

∗

3
(𝑥 + 2𝑎) , 𝑥 ∈ (𝑥

3
, 𝑥
2
] .

(33)

0 1a 1 − a

Figure 8: Interval placement, 𝑎 = (3 − √5)/2, 𝑛 = 2.

2aa 10 · · ·

· · ·

x2x3

p3 p2 p1

1 − 2a 1 − a 2 − 3a

p∗
1 p∗

2 p∗
3p∗

0

Figure 9: Scheme to construct a density 𝑝(𝑥), with auxiliary inter-
vals marked, 𝑎 = (3 − √5)/2, 𝑛 = 2.

(iv) Define for each 𝑘 ≥ 4

𝑝 (𝑥)

= 𝑝
𝑘 (𝑥) =

1

1 − 𝑎
(𝑝
𝑘−1

(
𝑥

1 − 𝑎
) + 𝑝
∗

1
(
𝑥 + 1

1 − 𝑎
))

− 𝑝
∗

0
(𝑥 + 𝑎) − 𝑝

∗

2
(𝑥 + 2𝑎) , where 𝑥 ∈ (𝑥𝑘, 𝑥𝑘−1] .

(34)

(v) Fix the value 𝑝(0) ≥ 0 arbitrarily.

By construction, 𝑝(𝑥) satisfies the conditions (29)-(30)
(perhaps except at the most countable number of points on
intervals boundaries).Notice that the function𝑝(𝑥) is defined
arbitrarily on (𝑎, 1] and is restored on [0, 𝑎] after that. We
need the partition𝑝∗

0
, 𝑝
∗

1
, 𝑝
∗

2
, 𝑝
∗

3
of the function𝑝(𝑥) to study

its properties in more detail.

Proposition 9. If 𝑝∗
0
, 𝑝
∗

1
, 𝑝
∗

2
, 𝑝
∗

3
are constants, then 𝑝

2
is a

constant, and 𝑝
3
= 𝑝
4
= ⋅ ⋅ ⋅ are constants.
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Proof. We denote 𝐴 = 1/(1 − 𝑎); then

𝑝
1 = 𝐴𝑝

∗

0
− 𝑝
∗

1
,

𝑝
2
= 𝐴 (𝑝

1
+ 𝑝
∗

3
) − 𝑝
∗

0
− 𝑝
∗

3
,

𝑝
3
= 𝐴 (𝑝

2
+ 𝑝
∗

2
) − 𝑝
∗

0
− 𝑝
∗

3
,

𝑝
𝑘
= 𝐴 (𝑝

𝑘−1
+ 𝑝
∗

1
) − 𝑝
∗

0
− 𝑝
∗

2
, 𝑘 ≥ 4.

(35)

Consider the following difference:

𝑝
4
− 𝑝
3
= 𝐴 (𝑝

3
− 𝑝
2
+ 𝑝
∗

1
− 𝑝
∗

2
) − 𝑝
∗

2
+ 𝑝
∗

3

= 𝐴 (𝐴 (𝑝
2
− 𝑝
1
+ 𝑝
∗

2
− 𝑝
∗

3
) + 𝑝
∗

1
− 𝑝
∗

2
) − 𝑝
∗

2
+ 𝑝
∗

3

= 𝐴 (𝐴 (𝐴 (𝑝
1
+ 𝑝
∗

3
) − 𝑝
∗

0
− 𝑝
∗

3
− 𝑝
1
+ 𝑝
∗

2
− 𝑝
∗

3
)

+𝑝
∗

1
− 𝑝
∗

2
) − 𝑝
∗

2
+ 𝑝
∗

3

= 𝐴(𝐴(𝐴 (𝑝
1
+ 𝑝
∗

3
) − 𝑝
∗

0
− 𝑝
∗

3
− 𝑝
1
+ 𝑝
∗

2
− 𝑝
∗

3
)

+𝐴𝑝
∗

0
− 𝑝
1
− 𝑝
∗

2
) − 𝑝
∗

2
+ 𝑝
∗

3

= 𝐴 (𝐴 (𝐴 (𝑝
1
+ 𝑝
∗

3
) + (𝑝

∗

2
− 𝑝
∗

3
) − (𝑝

1
+ 𝑝
∗

3
))

− (𝑝
1
+ 𝑝
∗

3
) − (𝑝

∗

2
− 𝑝
∗

3
)) − (𝑝

∗

2
− 𝑝
∗

3
)

= (𝐴
2
− 𝐴 − 1) (𝐴 (𝑝

1
+ 𝑝
∗

3
) + (𝑝

∗

2
− 𝑝
∗

3
)) .

(36)

To simplify the calculations henceforth, we need the
following equalities:

(1 − 𝑎)
2
= 𝑎,

𝑎
2
= 3𝑎 − 1,

1 − 2𝑎

1 − 𝑎
= 𝑎,

𝐴
2
− 𝐴 − 1 =

1

(1 − 𝑎)
2
(1 − (1 − 𝑎) − (1 − 𝑎)

2
) = 0.

(37)

Thus the last expression in equalities (36) equals zero.
Then 𝑝

𝑘+1
−𝑝
𝑘
= 𝐴(𝑝

𝑘
−𝑝
𝑘−1
) = ⋅ ⋅ ⋅ = 𝐴

𝑘−3
(𝑝
4
−𝑝
3
) = 0,

𝑘 ≥ 4.

However, the values of function 𝑝(𝑥) we obtain can be
negative. In the case of piecewise constant density we give the
following criterion for 𝑝(𝑥) to be nonnegative.

Proposition 10. Let 𝑝∗
0
, 𝑝
∗

1
, 𝑝
∗

2
, 𝑝
∗

3
∈ R be constants, and

function 𝑝(𝑥) is obtained according to the scheme above. Then
𝑝(𝑥) ≥ 0 for all 𝑥 ∈ [0, 1] if and only if

𝑝
∗

0
, 𝑝
∗

1
, 𝑝
∗

2
, 𝑝
∗

3
≥ 0,

1

1 − 𝑎
𝑝
∗

0
− 𝑝
∗

1
≥ 0,

1

1 − 𝑎
(𝑝
∗

3
+ 𝑝
∗

0
− 𝑝
∗

1
) − 𝑝
∗

3
≥ 0,

1

1 − 𝑎
(𝑝
∗

2
+ 𝑝
∗

0
− 𝑝
∗

1
) − 𝑝
∗

1
≥ 0.

(38)

These inequalities define unbounded convex set in R4 ∋ {𝑝
∗

0
,

𝑝
∗

1
, 𝑝
∗

2
, 𝑝
∗

3
}.

Proof. In view of (37), it is sufficient to notice that

𝑝
2
= 𝐴 (𝑝

1
+ 𝑝
∗

3
) − 𝑝
∗

0
− 𝑝
∗

3

= 𝐴 (𝐴𝑝
∗

0
− 𝑝
∗

1
+ 𝑝
∗

3
) − 𝑝
∗

0
− 𝑝
∗

3

= (𝐴
2
− 1) 𝑝

∗

0
+ 𝐴 (𝑝

∗

3
− 𝑝
∗

1
) − 𝑝
∗

3

= 𝐴 (𝑝
∗

3
+ 𝑝
∗

0
− 𝑝
∗

1
) − 𝑝
∗

3
,

𝑝3 = 𝐴 (𝑝2 + 𝑝
∗

2
) − 𝑝
∗

0
− 𝑝
∗

3

= 𝐴 (𝐴 (𝑝
∗

3
+ 𝑝
∗

0
− 𝑝
∗

1
) − 𝑝
∗

3
+ 𝑝
∗

2
) − 𝑝
∗

0
− 𝑝
∗

3

= (𝐴
2
− 1) (𝑝

∗

3
+ 𝑝
∗

0
) + 𝐴 (𝑝

∗

2
− 𝑝
∗

3
) − 𝐴
2
𝑝
∗

1

= 𝐴 (𝑝
∗

2
+ 𝑝
∗

0
) − (𝐴 + 1) 𝑝

∗

1

= 𝐴 (𝑝
∗

2
+ 𝑝
∗

0
− 𝑝
∗

1
) − 𝑝
∗

1
.

(39)

Now consider obtaining a function 𝑝(𝑥) with the prop-
erty of continuity. This is discussed in Propositions 11–14.

Proposition 11. Given function 𝑝(𝑥) obtained by the scheme
above, then 𝑝(𝑥) is continuous on (0, 1] if and only if

(i) parameters 𝑦
2
, 𝑦
3
, 𝑦
4
≥ 0 satisfy the equation

𝑦2 + 𝑦4 =
1

1 − 𝑎
𝑦3; (40)

(ii) 𝑦
5
≥ 0 is arbitrary;

(iii) graphs of continuous functions 𝑝∗
0
(𝑥), 𝑝
∗

1
(𝑥), 𝑝
∗

2
(𝑥),

𝑝
∗

3
(𝑥) connect points (𝑎, 𝑦

2
), (1 − 𝑎, 𝑦

3
), (2𝑎, 𝑦

4
), (2 −

3𝑎, 𝑦
5
), and (1, 0); see Figure 11.

Proof. Let 𝑝(𝑥) be continuous; then we substitute 𝑥 = 𝑥 =

1 − 2𝑎 into (29)-(30) and obtain

𝑝 (1 − 2𝑎) + 𝑝 (1 − 𝑎) + 𝑝 (1)

=
1

1 − 𝑎
(𝑝(

1 − 2𝑎

1 − 𝑎
) + 𝑝 (1)) ,

𝑝 (1 − 2𝑎) + 𝑝 (1 − 𝑎) =
1

1 − 𝑎
𝑝 (

1 − 2𝑎

1 − 𝑎
) ,

(41)

wherefrom 𝑝(1) = 0. By substituting 𝑥 = 𝑎 into (30) and
taking into account 𝑎/(1 − 𝑎) = 1 − 𝑎, we have

𝑝 (𝑎) + 𝑝 (2𝑎) =
1

1 − 𝑎
𝑝 (1 − 𝑎) , (42)

which is equal to (40).
To prove the backward implication, let𝑔(𝑥) be a piecewise

function, made of functions 𝑝∗
0
, 𝑝
∗

1
, 𝑝
∗

2
, 𝑝
∗

3
“glued together.”
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Figure 10: Example of density 𝑝(𝑥) from Proposition 9 (𝑝
1
= 1, 𝑝∗

1
= 2, 𝑝∗

3
= 3, 𝑝∗

2
= 2.5) (a) and corresponding function 𝛼

1
(𝑥) (on [𝑎, 1−𝑎])

(b).

0 a 1

pk+1

xk xk+1 x2

p2 p1

1 − 2a 2a

y5

y4

y3y2

p∗
3p∗

2p∗
1

p∗
0

1 − a 2 − 3a

Figure 11: Illustration for Proposition 11.

By construction, 𝑝
1
(𝑥) = (1/(1 − 𝑎))𝑔(𝑥/(1 − 𝑎)) − 𝑔(𝑥 +

𝑎) on (1 − 2𝑎, 𝑎]. Then 𝑝
1
(𝑥) is continuous, because 𝑔(𝑥) is

continuous, and

𝑝
1 (𝑎) =

1

1 − 𝑎
𝑔 (

𝑎

1 − 𝑎
) − 𝑔 (2𝑎)

=
1

1 − 𝑎
𝑦3 − 𝑦4 = 𝑦2 = 𝑔 (𝑎) .

(43)

Now add function 𝑝
1
(𝑥) leftside into the set of functions

which define 𝑔(𝑥).
By construction, 𝑝

2
(𝑥) = (1/(1−𝑎))(𝑔(𝑥/(1−𝑎))+𝑔((𝑥+

𝑎)/(1 − 𝑎))) − 𝑔(𝑥 + 𝑎) − 𝑔(𝑥 + 2𝑎) on (𝑥
2
, 1 − 2𝑎], wherefrom

𝑝
2
(𝑥) is continuous, and (considering 𝑔(1) = 0)

𝑝
2 (1 − 2𝑎)

=
1

1 − 𝑎
(𝑔 (

1 − 2𝑎

1 − 𝑎
) + 𝑔 (1)) − 𝑔 (1 − 𝑎) − 𝑔 (1)

=
1

1 − 𝑎
𝑔 ((

1 − 2𝑎

1 − 𝑎
)+) − 𝑔 ((1 − 𝑎) +)

= 𝑔 ((1 − 2𝑎) +) .

(44)

For 𝑘 ≥ 2, by construction,𝑝
𝑘+1
(𝑥) = (1/(1−𝑎))(𝑔(𝑥/(1−

𝑎)) + 𝑔((𝑥 + 𝑎)/(1 − 𝑎))) − 𝑔(𝑥 + 𝑎) − 𝑔(𝑥 + 2𝑎) on (𝑥
𝑘+1
, 𝑥
𝑘
],

where 𝑔(𝑥) is made of functions 𝑝
𝑘
, . . . , 𝑝

2
, 𝑝
1
, 𝑝
0
, 𝑝
∗

1
, 𝑝
∗

2
, 𝑝
∗

3
.

Thus 𝑝𝑘+1(𝑥) is continuous, and

𝑝
𝑘+1

(𝑥
𝑘
)

=
1

1 − 𝑎
(𝑔(

𝑥
𝑘

1 − 𝑎
) + 𝑔(

𝑥
𝑘
+ 𝑎

1 − 𝑎
))

− 𝑔 (𝑥𝑘 + 𝑎) − 𝑔 (𝑥𝑘 + 2𝑎)

=
1

1 − 𝑎
(𝑔((

𝑥
𝑘

1 − 𝑎
)+) + 𝑔((

𝑥
𝑘
+ 𝑎

1 − 𝑎
)+))

− 𝑔 ((𝑥
𝑘
+ 𝑎) +) − 𝑔 ((𝑥

𝑘
+ 2𝑎) +) = 𝑔 (𝑥

𝑘
+) .

(45)

Proposition 12. Let 𝑝(𝑥) satisfy (29)-(30). If 𝑝 : [0, 1] → R

is continuous, then 𝑝(0) = 𝑝(1) = 0.

Proof. It suffices to show 𝑝(0) = 0. We substitute 𝑥 = 0 into
(29) and obtain

𝑝 (0) + 𝑝 (𝑎) + 𝑝 (2𝑎) =
1

1 − 𝑎
(𝑝 (0) + 𝑝 (

𝑎

1 − 𝑎
)) , (46)

wherefrom we have 𝑝(0) = 0 (considering (42)).

However, the next question arises.

Question 3. Under which conditions does our construction
yield 𝑝(0+) = 0?

Notice that if by construction of density 𝑝(𝑥) the equality
𝑝(0+) = 0 is not fulfilled, then 𝑝(𝑥) is continuous on (0, 1]
but does not have finite limit at 0. Its graph is unbounded and
(or) oscillates greatly in neighborhood of 0.

Such situation is quite typical while constructing 𝑝(𝑥);
see Figure 12. However, the following Proposition 13 gives an
example of a density with good properties.

Proposition 13. Let function𝑝(𝑥) be obtained according to the
scheme above. If functions𝑝∗

0
, 𝑝
∗

1
, 𝑝
∗

2
, 𝑝
∗

3
forma spline of degree
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Figure 12: Oscillating and unbounded functions.

1with 𝑝∗
3
(1) = 0, then function 𝑝(𝑥) is also a spline of degree 1;

furthermore

(i) 𝑝 : [0, 1] → R is continuous function;

(ii) 𝑝1, 𝑝2 are linear functions;

(iii) graphs of the functions 𝑝
3
, 𝑝
4
, . . . make up one graph

of linear function, which connects points (0, 0) and (𝑥2,
𝑝2(𝑥2)); see Figure 13.

Proof. Again let 𝐴 = 1/(1 − 𝑎), and denote the slope of spline
on corresponding intervals by 𝑝󸀠

𝑘
∈ R (for 𝑝𝑘(𝑥)). Then from

the construction scheme of 𝑝(𝑥) itself, we obtain formulae
equal to those from the proof of Proposition 9:

𝑝
󸀠

1
= 𝐴
2
𝑝
∗󸀠

0
− 𝑝
∗󸀠

1
,

𝑝
󸀠

2
= 𝐴
2
(𝑝
󸀠

1
+ 𝑝
∗󸀠

3
) − 𝑝
∗󸀠

0
− 𝑝
∗󸀠

3
,

𝑝
󸀠

3
= 𝐴
2
(𝑝
󸀠

2
+ 𝑝
∗󸀠

2
) − 𝑝
∗󸀠

0
− 𝑝
∗󸀠

3
,

𝑝
󸀠

𝑘
= 𝐴
2
(𝑝
󸀠

𝑘−1
+ 𝑝
∗󸀠

1
) − 𝑝
∗󸀠

0
− 𝑝
∗󸀠

2
, 𝑘 ≥ 4.

(47)

Substituting 𝐴 by 𝐴2 in (36), we get

𝑝
󸀠

4
− 𝑝
󸀠

3

= (𝐴
4
− 𝐴
2
− 1) (𝐴

2
(𝑝
󸀠

1
+ 𝑝
∗󸀠

3
) + (𝑝

∗󸀠

2
− 𝑝
∗󸀠

3
)) .

(48)

We need to show that the last multiplier equals zero. Let 𝑦1 =
𝑝(1 − 2𝑎), 𝑦2 = 𝑝(𝑎), 𝑦3 = 𝑝(1 − 𝑎), 𝑦4 = 𝑝(2𝑎), and 𝑦5 =
𝑝(2 − 3𝑎). We use equalities (37) again:

𝑝
∗󸀠

2
− 𝑝
∗󸀠

3
+ 𝐴
2
(𝑝
󸀠

1
+ 𝑝
∗󸀠

3
)

=
𝑦5 − 𝑦4

2 − 5𝑎
−

𝑦5

1 − 3𝑎
+ 𝐴
2
(
𝑦
2 − 𝑦1

3𝑎 − 1
+

𝑦5

1 − 3𝑎
)

= 1

(2 − 5𝑎) (1 − 3𝑎)

× ((1 − 3𝑎) (𝑦5 − 𝑦4) − (2 − 5𝑎) 𝑦5

0 a 2a 1x2

y2
y1

y3
y4

y5

p󳰀
2 p󳰀

1

p󳰀
0 p∗󳰀

2 p∗󳰀
3

p∗󳰀
1

1 − 2a 1 − a 2 − 3a

Figure 13: Illustration for Proposition 13.

+𝐴
2
(2 − 5𝑎) (𝑦1 − 𝑦2 + 𝑦5))

=
1

(2 − 5𝑎) (1 − 3𝑎)

× (𝑦
5
(2𝑎 − 1 + 𝐴

2
(2 − 5𝑎))

−𝑦
4 (1 − 3𝑎) + 𝐴

2
(2 − 5𝑎) (𝑦1 − 𝑦2))

=
1

(2 − 5𝑎) (1 − 3𝑎)

× (−𝐴 (𝑦
2
− 𝑦
1
) (1 − 3𝑎) + 𝐴

2
(2 − 5𝑎) (𝑦1 − 𝑦2))

=
1

(2 − 5𝑎) (1 − 3𝑎)

× (𝑦
1
− 𝑦
2
) ((1 − 3𝑎)𝐴 + 𝐴

2
(2 − 5𝑎))

=
1

(2 − 5𝑎) (1 − 3𝑎)

× (𝑦
1
− 𝑦
2
) ((1 − 3𝑎)𝐴 + (𝐴 + 1) (2 − 5𝑎)) .

(49)

Taking into account (37), we have

(1 − 3𝑎)𝐴 + (𝐴 + 1) (2 − 5𝑎)

= 𝐴 (1 − 3𝑎 + 2 − 5𝑎) + 2 − 5𝑎

= 𝐴 (3 − 8𝑎 + (1 − 𝑎) (2 − 5𝑎))

= 𝐴 (3 − 8𝑎 + 2 − 7𝑎 + 5𝑎
2
)

= 5𝐴 (𝑎
2
− 3𝑎 + 1) = 0.

(50)
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Figure 14: Example of spline density 𝑝(𝑥) from Proposition 13 (a). Here 𝑦
2
= 1.1, 𝑦

3
= 1.2, 𝑦

5
= 1, and 𝑦

4
= (1/(1−𝑎))𝑦

3
−𝑦
2
. Corresponding

function 𝛼
1
(on [𝑎, 1 − 𝑎]) (b).

Then 𝑝󸀠
𝑘+1

−𝑝
󸀠

𝑘
= 𝐴(𝑝

󸀠

𝑘
−𝑝
󸀠

𝑘−1
) = ⋅ ⋅ ⋅ = 𝐴

𝑘−3
(𝑝
󸀠

4
−𝑝
󸀠

3
) = 0,

𝑘 ≥ 4.
Since the second statement of Proposition 11 holds true

(by the construction scheme of the spline), function 𝑝 is
continuous on (0, 1]. Since it is linear on (0, 𝑥

2
], then limit

𝑝(0+) exists, and, by Proposition 12, 𝑝(0) = 𝑝(0+) = 0.

Figure 14 shows an example of nontrivial density dis-
cussed in Proposition 13. Obviously such function is inte-
grable. To accomplish the topic, we add nonnegativity crite-
rion.

Proposition 14. Let 𝑝(𝑥) satisfy the conditions of
Proposition 13. Denote 𝑦3 = 𝑝(1 − 𝑎), 𝑦4 = 𝑝(2𝑎),
𝑦5 = 𝑝(2 − 3𝑎). Then 𝑝(𝑥) ≥ 0 for all 𝑥 ∈ [0, 1] if and
only if

𝑦3 ≥ 𝑦4 ≥ 0,

𝑦5 ≥
11𝑎 − 4

2 − 5𝑎
𝑦4 −

29𝑎 − 11

8𝑎 − 3
𝑦3

(
11𝑎 − 4

2 − 5𝑎
≈ 2.24,

29𝑎 − 11

8𝑎 − 3
≈ 1.38)

𝑦5 ≥ 0.

(51)

These inequalities define unbounded convex set in R3 ∋ {𝑦
3
,

𝑦
4
, 𝑦
5
}.

Proof. Let 𝑦
0
= 𝑝(𝑥

2
), 𝑦
2
= 𝑝(𝑎). In view of Proposition 13,

this statement is equivalent to nonnegativeness of spline
values 𝑝(𝑥) at the vertices 𝑦

𝑘
≥ 0, 𝑘 = 0, . . . , 5.

Let 𝑦
1 = 𝑝(1 − 2𝑎), and substitute 𝑥 = 1 − 2𝑎 into (30).

Then using (1 − 2𝑎)/(1 − 𝑎) = 𝑎, we have

𝑦1 + 𝑦3 =
1

1 − 𝑎
𝑦2. (52)

We use expression (37) to simplify the quantities hence-
forth:

𝑦
1
=

1

1 − 𝑎
𝑦
2
− 𝑦
3
=

1

1 − 𝑎
(

1

1 − 𝑎
𝑦
3
− 𝑦
4
) − 𝑦
3

= ((
1

1 − 𝑎
)

2

− 1)𝑦
3
−

1

1 − 𝑎
𝑦
4

=
1

1 − 𝑎
(𝑦
3
− 𝑦
4
) ≥ 0,

(53)

wherefrom 𝑦
1
≥ 0 if and only if 𝑦

3
≥ 𝑦
4
.

Further, 𝑦
2
= (1/(1−𝑎))𝑦

3
−𝑦
4
≥ 𝑦
3
−𝑦
4
≥ 0 (1/(1−𝑎) ≈

1.6); thus condition 𝑦
2
≥ 0 holds true if 𝑦

3
≥ 𝑦
4
.

To get the last restriction of the proposition, we consider
an equality

𝑦0 + 𝑝 (𝑥2 + 𝑎) + 𝑝 (𝑥2 + 2𝑎) =
1

1 − 𝑎
(𝑦1 + 𝑦5) . (54)

Since 𝑥
2
+ 𝑎 ∈ [𝑎, 1 − 𝑎], then

𝑝 (𝑥
2 + 𝑎) = 𝑦2 + (𝑦3 − 𝑦2)

𝑥
2
+ 𝑎 − 𝑎

1 − 𝑎 − 𝑎

= 𝑦
2
+ (1 − 𝑎) (𝑦3 − 𝑦2) .

(55)

Since 𝑥
2
+ 2𝑎 = (1 − 2𝑎)(1 − 𝑎) + 2𝑎 = 2𝑎

2
− 𝑎 + 1 = 5𝑎 − 1 ≈

0.91 > 2 − 3𝑎 ≈ 0.85, then 𝑥
2
+ 2𝑎 ∈ [2 − 3𝑎, 1], and

𝑝 (𝑥2 + 2𝑎) = 𝑦5 − 𝑦5

5𝑎 − 1 − 2 + 3𝑎

1 − 2 + 3𝑎
=
2 − 5𝑎

3𝑎 − 1
𝑦5. (56)
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Thus

𝑦
0
=

1

1 − 𝑎
(𝑦
1
+ 𝑦
5
) − 𝑦
2
− (1 − 𝑎) (𝑦3 − 𝑦2) −

2 − 5𝑎

3𝑎 − 1
𝑦
5

=
1

1 − 𝑎
(

1

1 − 𝑎
𝑦
2
− 𝑦
3
)

− 𝑦
3 (1 − 𝑎) − 𝑎𝑦2 + (

1

1 − 𝑎
−
2 − 5𝑎

3𝑎 − 1
)𝑦5

= ((
1

1 − 𝑎
)

2

− 𝑎)𝑦
2
− 𝑦
3
(

1

1 − 𝑎
+ 1 − 𝑎)

+
2 − 5𝑎

(3𝑎 − 1) (1 − 𝑎)
𝑦
5
= (

1

1 − 𝑎
+ 1 − 𝑎) (𝑦

2
− 𝑦
3
)

+
2 − 5𝑎

(3𝑎 − 1) (1 − 𝑎)
𝑦
5
.

(57)

Finally, 𝑦
0 ≥ 0 if and only if −((2 − 5𝑎)/(3𝑎 − 1)(1 − 𝑎))𝑦5 ≤

(1/(1−𝑎)+1−𝑎)(𝑦2−𝑦3), which leads to 𝑦5 ≥ ((11𝑎−4)/(2−
5𝑎))(𝑦3 − 𝑦2) (2 − 5𝑎, 3𝑎 − 1, 1 − 𝑎 > 0) and equals

𝑦
5
≥
11𝑎 − 4

2 − 5𝑎
(𝑦
3
− 𝑦
2
) =

11𝑎 − 4

2 − 5𝑎
(𝑦
3
−

1

1 − 𝑎
𝑦
3
+ 𝑦
4
)

=
11𝑎 − 4

2 − 5𝑎
𝑦4 −

29𝑎 − 11

8𝑎 − 3
𝑦3.

(58)

Notice that functions in Figure 12 differ a little from those
in Figures 10 and 14: 𝑝∗

3
(𝑥) is slightly changed in both cases.

Such change leads to great oscillation and (or) unbounded-
ness of 𝑝(𝑥). We formulate here the following questions.

Question 4. Explain such “bad” behavior of function 𝑝(𝑥).
Are there locally nonlinear densities (for them we need to
check conditions (29)-(30), nonnegativeness and integrability
of 𝑝(𝑥))?

Question 5. How can we provide 𝛼
1
(𝑥) ∈ [0, 1] in cases above

(𝛼
1
(𝑥) is derived from (9))?

In conclusion, consider the case when 𝛼 is an endowment
by characteristic functions of sets of IFS (26) mask. LetM =

{𝑀
1
,𝑀
2
} be the IFS mask: [0, 𝑎) ⊂ 𝑀

1
and (1 − 𝑎, 1] ⊂ 𝑀

2
,

𝑀
󸀠

1
= 𝑀
1
∩ [𝑎, 1 − 𝑎] and𝑀󸀠

2
= 𝑀
2
∩ [𝑎, 1 − 𝑎] are arbitrary

(𝑀
1
∩𝑀
2
= 0,𝑀

1
,𝑀
2
∈ B).

Let 𝛼
𝑖
(𝑥) = 𝜒

𝑀
𝑖

(𝑥), 𝑖 = 1, 2. Condition (9) for 𝑛 = 2 turns
into

𝛼
1 (𝑥) =

1

𝑝 (𝑥)
(𝑝 (𝑥 − 𝑎) + 𝑝 (𝑥) −

1

1 − 𝑎
𝑝 (

𝑥 − 𝑎

1 − 𝑎
)) ,

∀𝑥 ∈ [𝑎, 1 − 𝑎) .

(59)

On the set𝑀
1
, 𝛼
1
(𝑥) ≡ 1, and (59) implies

𝑝 (𝑥 − 𝑎) =
1

1 − 𝑎
𝑝(

𝑥 − 𝑎

1 − 𝑎
) , 𝑥 ∈ [𝑎, 1 − 𝑎) ∩𝑀1. (60)

M󳰀
2

M󳰀
1

Figure 15: Scheme of conditions (62) (above) and (63) (below).

a 10 · · · · · ·

· · ·· · ·

x2 x1x3

p3 p2 p1

1 − a

p∗
1

x∗
2 x∗

3x∗
1

p∗
2 p∗

3p∗
0

Figure 16: Construction scheme for density 𝑝(𝑥), extra intervals
marked, 𝑎 = (3 − √5)/2, case of 𝑛 = 2.

Similarly, on the set𝑀
2
, 𝛼
1
(𝑥) ≡ 0, and (59) yields

𝑝 (𝑥 − 𝑎) + 𝑝 (𝑥) =
1

1 − 𝑎
𝑝(

𝑥 − 𝑎

1 − 𝑎
) ,

𝑥 ∈ [𝑎, 1 − 𝑎) ∩𝑀2.

(61)

One can see that condition (27) splits into two (as sketch-
ed in Figure 15):

on [𝑎, 1 − 𝑎) ∩𝑀1

{{

{{

{

𝑝 (𝑥 − 𝑎) =
1

1 − 𝑎
𝑝 (

𝑥 − 𝑎

1 − 𝑎
),

𝑝 (𝑥) + 𝑝 (𝑥 + 𝑎) =
1

1 − 𝑎
𝑝 (

𝑥

1 − 𝑎
);

(62)

on [𝑎, 1 − 𝑎) ∩𝑀2

{{

{{

{

𝑝 (𝑥 − 𝑎) + 𝑝 (𝑥) =
1

1 − 𝑎
𝑝(

𝑥 − 𝑎

1 − 𝑎
),

𝑝 (𝑥 + 𝑎) =
1

1 − 𝑎
𝑝(

𝑥

1 − 𝑎
).

(63)

Thus we can introduce the following scheme of construc-
tion 𝑝(𝑥), which is slightly changed version of the one above.

Consider the following marks on the 𝑥-axis: 𝑥
𝑘
= 𝑎(1 −

𝑎)
𝑘, 𝑥∗
𝑘
= 1 − 𝑎(1 − 𝑎)

𝑘, 𝑘 ≥ 1 see Figure 16.

(i) Fix functions 𝑝∗
0
, 𝑝
∗

1
∈ 𝐿
1, 𝑝∗
0
, 𝑝
∗

1
≥ 0, arbitrarily, and

define

𝑝 (𝑥)

=

{{{{{{

{{{{{{

{

𝑝
1 (𝑥) =

1

1 − 𝑎
𝑝
∗

0
(

𝑥

1 − 𝑎
) − 𝑝
∗

1
(𝑥 + 𝑎) ,

𝑥 ∈ (1 − 2𝑎, 𝑎] ,

𝑝
∗

0
(𝑥) , 𝑥 ∈ (𝑎, 1 − 𝑎] ,

𝑝
∗

1
(𝑥) , 𝑥 ∈ (1 − 𝑎, 2𝑎] .

(64)
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Figure 17: Graphs of invariant measure densities with mask endowment (𝑛 = 2) (see text):𝑀
1
= [0, 4𝑎 − 1),𝑀

2
= [4𝑎 − 1, 1], 𝑐 = 1.2 (a) and

𝑀
1
= [0, 𝑎) ∪ [4𝑎 − 1, 1 − 𝑎],𝑀

2
= [𝑎, 4𝑎 − 1) ∪ (1 − 𝑎, 1], 𝑐 = 1.2 (b).

· · ·

· · ·

· · ·

· · · · · ·

p1p2 pK

x1 x0x2 xK xK−10 1

1 − na

g

a

=

Figure 18: Construction scheme for density 𝑝(𝑥) in the case of arbitrary 𝑛 ≥ 2.

(ii) By induction on 𝑘 ≥ 2, define

𝑝 (𝑥) = 𝑝𝑘 (𝑥)

=

{{{{{{{

{{{{{{{

{

1

1 − 𝑎
𝑝𝑘−1 (

𝑥

1 − 𝑎
) ,

𝑥 ∈ (𝑥
𝑘
, 𝑥
𝑘−1
] , 𝑥 + 𝑎 ∈ 𝑀

󸀠

1
,

1

1 − 𝑎
𝑝
𝑘−1

(
𝑥

1 − 𝑎
) − 𝑝
∗

0
(𝑥 + 𝑎) ,

𝑥 ∈ (𝑥
𝑘
, 𝑥
𝑘−1
] , 𝑥 + 𝑎 ∈ 𝑀

󸀠

2
.

(65)

(iii) By induction on 𝑘 ≥ 2, define

𝑝 (𝑥) = 𝑝
∗

𝑘
(𝑥)

=

{{{{{{

{{{{{{

{

1

1 − 𝑎
𝑝
∗

𝑘−1
(
𝑥 − 𝑎

1 − 𝑎
) ,

𝑥 ∈ (𝑥
∗

𝑘−1
, 𝑥
∗

𝑘
] , 𝑥 − 𝑎 ∈ 𝑀

󸀠

2
,

1

1 − 𝑎
𝑝
∗

𝑘−1
(
𝑥 − 𝑎

1 − 𝑎
) − 𝑝
∗

0
(𝑥 − 𝑎) ,

𝑥 ∈ (𝑥
∗

𝑘−1
, 𝑥
∗

𝑘
] , 𝑥 − 𝑎 ∈ 𝑀

󸀠

1
.

(66)

(iv) Fix values 𝑝(0), 𝑝(1) ≥ 0 arbitrarily.

Thus function 𝑝(𝑥) is completely defined by its values on
(1 − 2𝑎, 1 − 𝑎], which are defined by functions 𝑝∗

0
and 𝑝∗

1
.

Here next question arises.

Question 6. Under which conditions do 𝑝(𝑥) ∈ 𝐿
1 and

𝑝(𝑥) ≥ 0? Is it possible to construct such function for any
maskM?

The examples of two masks (see Figure 17) are the partial
answer to it. In these examples masksM are connected with
partition structure of interval [0, 1] over iteration process of
density construction. Namely, if𝑀

1
= [0, 4𝑎−1),𝑀

2
= [4𝑎−

1, 1] (4𝑎 − 1 = 𝑥
2
+ 𝑎), 𝑝

1
= 𝑐 ≥ 0, and 𝑝

0
= (1/(1 − 𝑎))𝑐,

then one can show that 𝑝∗
1
= (1/(1 − 𝑎))𝑐, 𝑝(𝑥) ≡ 0 outside

[1 − 2𝑎, 𝑥
∗

2
]. If𝑀

1
= [0, 𝑎) ∪ [4𝑎− 1, 1 − 𝑎],𝑀

2
= [𝑎, 4𝑎− 1) ∪

(1 − 𝑎, 1], and 𝑝
1
= 𝑝
0
= 𝑐, then 𝑝∗

1
= (1 − 𝑎)𝑐, 𝑝∗

2
= 𝑐, and

𝑝(𝑥) ≡ (1/(1 − 𝑎))𝑐 outside [1 − 2𝑎, 𝑥∗
2
].

We have not found an example of density 𝑝(𝑥) for arbi-
trary mask (for instance, that in Figure 7): the function con-
structed had negative values, unbounded and (or) oscillated
greatly.

3. The Case of 𝑛 > 2

In conclusion of the paper, we introduce one of the possible
construction schemes for density 𝑝(𝑥) for all 𝑛 ≥ 2 and any
𝑎:

1

𝑛 + 1
< 𝑎 ≤

1

𝑛
. (67)

Consider the following variables (see Figure 18):

𝑥
𝑘
= (1 − 𝑛𝑎) (1 − 𝑎)

𝑘−1
, 𝑘 ∈ Z. (68)

Lemma 15. There exists a unique number𝐾 ∈ Z,𝐾 ≤ 1, such
that 𝑥

𝐾
< 𝑎, 𝑥

𝐾−1
≥ 𝑎.
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Figure 19: “Mirror” construction scheme of density 𝑝(𝑥) in the case of arbitrary 𝑛 ≥ 2.

Proof. Since 𝑥
𝑘
= (1 − 𝑎)𝑥

𝑘−1
, it is sufficient to consider the

chain of inequalities:

(1 − 𝑎) 𝑎 ≤ (1 − 𝑛𝑎) (1 − 𝑎)
𝑘−1

< 𝑎,

(1 − 𝑎) 𝑎

1 − 𝑛𝑎
≤ (1 − 𝑎)

𝑘−1
<

𝑎

1 − 𝑛𝑎
,

log
1−𝑎

𝑎

1 − 𝑛𝑎
+ 1 ≥ 𝑘 − 1 > log

1−𝑎

𝑎

1 − 𝑛𝑎
.

(69)

According to (67), we have 𝑎/(1−𝑛𝑎) > 1; hence log
1−𝑎
(𝑎/

(1 − 𝑛𝑎)) < 0. Then (69) completes the proof.

Now we introduce the following scheme to construct
𝑝(𝑥), with (7)-(8) satisfied.

(i) Fix 𝑔 ∈ 𝐿1, 𝑔 ≥ 0, arbitrarily, and define

𝑝 (𝑥) = 𝑔 (𝑥) on (𝑎, 1] . (70)

(ii) For 𝑘 = 𝐾, define (see formula (8))

𝑝 (𝑥) = 𝑝𝐾 (𝑥)

=
1

1 − 𝑎
(𝑔(

𝑥

1 − 𝑎
) +

𝑛−2

∑

𝑖=1

𝑔(
𝑥 + 𝑖𝑎

1 − 𝑎
))

−

𝑛−1

∑

𝑖=1

𝑔 (𝑥 + 𝑖𝑎) , 𝑥 ∈ (𝑥
𝐾
, 𝑎] .

(71)

(iii) By induction on 𝑘 = 𝐾 + 1, . . . , 1, define (see (8))

𝑝 (𝑥) = 𝑝𝑘 (𝑥)

=
1

1 − 𝑎
(𝑝
𝑘−1

(
𝑥

1 − 𝑎
) +

𝑛−2

∑

𝑖=1

𝑔(
𝑥 + 𝑖𝑎

1 − 𝑎
))

−

𝑛−1

∑

𝑖=1

𝑔 (𝑥 + 𝑖𝑎) , 𝑥 ∈ (𝑥
𝑘
, 𝑥
𝑘−1
] .

(72)

(iv) By induction on 𝑘 = 0, 1, . . ., define (see (7))

𝑝 (𝑥) = 𝑝𝑘 (𝑥)

=
1

1 − 𝑎
(𝑝
𝑘−1

(
𝑥

1 − 𝑎
) +

𝑛−1

∑

𝑖=1

𝑔(
𝑥 + 𝑖𝑎

1 − 𝑎
))

−

𝑛

∑

𝑖=1

𝑔 (𝑥 + 𝑖𝑎) , 𝑥 ∈ (𝑥
𝑘
, 𝑥
𝑘−1
] .

(73)

(v) Fix value 𝑝(0) ≥ 0 arbitrarily.
Here the following question appears.

Question 7. Under which conditions do𝑝(𝑥) ∈ 𝐿1 and𝑝(𝑥) ≥
0? Under which conditions does 𝛼

1
(𝑥) ∈ [0, 1] (𝛼

1
(𝑥) is

derived from (9))?

Obvious “mirror” change of this scheme is shown in
Figure 19 (replacing 𝑥

𝑘
by 𝑥
∗

𝑘
= 1 − 𝑥

𝑘
); compare with

Corollary 8.

4. Conclusion

Section 1 contains motivation part. It overviews previously
derived criteria of measure invariance and some related
results, as well as connection between endowment and mask.
In Section 2 we consider the case of 𝑎 = (3 − √5)/2, and
example of mask is given. Section 3 introduces construction
scheme for densities with arbitrary 𝑎 ∈ (0, 1/2].
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