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Starting from a matrix Lie superalgebra, two-component super AKNS system is constructed. By making use of monononlineariza-
tion technique of Lax pairs, we find that the obtained two-component super AKNS system is a finite-dimensional integrable super
Hamiltonian system. And its Lax representation and 𝑟-matrix are also given in this paper.

1. Introduction

The inverse scattering method provides us with a powerful
tool to generate multicomponent soliton equations. In [1–
4], they have constructed many multicomponent soliton
equations, which are much more important for physicists
and mathematicians than one-component ones, owing to the
fact that they possess rich structure and have more extensive
prospect.

Monononlinearization of Lax pair is a method to obtain
finite-dimensional integrable Hamiltonian system, which
was firstly proposed by Cao in [5]. The main idea of
monononlinearization includes the following three aspects.
Firstly, they find a symmetry constraint between potential
and eigenfunctions. Secondly, substituting the symmetry
constraint into the spectral problem, they obtain constrained
finite-dimensional system. Lastly, they show that obtained
constrained system is Hamiltonian system and completely
integrable in the Liouville sense. Many finite-dimensional
integrable Hamiltonian systems are constructed in [6–10].
This method was generalized by Ma and Strampp in [11]. The
main difference of binary-nonlinearization and mononon-
linearization lies in the following two aspects. One is that
binary-nonlinearization needs to introduce adjoint spectral
problem, and, thus, both spectral problem and adjoint spec-
tral problem constitute even-dimensional system. The other

is that symmetry constraint proposed in the procedure of
binary-nonlinearization is not only associated with eigen-
functions but also associated with adjoint eigenfunctions.
According to the Liouville integrable theorem which states
that a 2𝑛-dimensional Hamiltonian system over some region
Ω ∈ 𝑅

2𝑛 with 𝑛 independent integrals of motion in
involutionmay be integrated by quadratures, we cannot apply
monononlinearization to odd-dimensional spectral problem.
However, we can apply both monononlinearization and
binary-nonlinearization to the even-dimensional spectral
problem. Many finite-dimensional integrable Hamiltonian
systems are constructed in [12–14]. Owing to one-component
super integrable system which is associated with a 3 × 3

spectral matrix, we just consider binary-nonlinearization
in our previous papers [15–17]. From the above analysis,
we propose the following questions. Does even-dimensional
spectral problem of super integrable system exist? If it exists,
can we apply monononlinearization to the super integrable
system? All of these questions will be answered in this paper.

The paper is organized as follows. In Section 2, we derive
two-component super AKNS system and write this new
system as the super Hamiltonian form. In Section 3, we
find a symmetry constraint which is only associated with
eigenfunctions, and, after substituting the symmetry con-
straint into the 𝑁 copies spectral problem, we obtained 6𝑁-
dimensional constrained system. Furthermore, we rewrite
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the 6𝑁-dimensional system as the super Hamiltonian form.
Lax representation and 𝑟-matrix of the constrained systemare
given in Section 4. In the last section, some conclusions and
discussions are given.

2. Two-Component Super AKNS System

Let us start with the following linear space 𝐺 = {𝑒
1
, 𝑒
2
, 𝑒
3
,

𝑒
4
, 𝑒
5
}:

𝑒
1
= (

𝐸 0 0

0 −𝐸 0

0 0 0

) , 𝑒
2
= (

0 𝐸 0

0 0 0

0 0 0

) ,

𝑒
3
= (

0 0 0

𝐸 0 0

0 0 0

) , 𝑒
4
= (

0 0 𝐸

0 0 0

0 −𝐸 0

) ,

𝑒
5
= (

0 0 0

0 0 𝐸

𝐸 0 0

) ,

(1)

where 𝐸 = diag(1, 1) is a 2 × 2 unit matrix, 0 is a 2 × 2 zero
matrix,𝐺

0
= {𝑒
1
, 𝑒
2
, 𝑒
3
} is even, and𝐺

1
= {𝑒
4
, 𝑒
5
} is odd. After

a direct calculation, we obtain that
[𝑒
1
, 𝑒
2
} = 2𝑒

2
, [𝑒

1
, 𝑒
3
} = −2𝑒

3
, [𝑒

2
, 𝑒
3
} = 𝑒
1
,

[𝑒
1
, 𝑒
4
} = 𝑒
4
, [𝑒

1
, 𝑒
5
} = −𝑒

5
, [𝑒

2
, 𝑒
5
} = 𝑒
4
,

[𝑒
3
, 𝑒
4
} = 𝑒
5
, [𝑒

4
, 𝑒
4
} = −2𝑒

2
, [𝑒

4
, 𝑒
5
} = 𝑒
1
,

[𝑒
5
, 𝑒
5
} = 2𝑒

3
,

(2)

and the others are zeros, where

[𝑎, 𝑏} = 𝑎𝑏 − (−1)
𝑝(𝑎)𝑝(𝑏)

𝑏𝑎 (3)

is the super Lie bracket and 𝑝(𝑓) denotes the parity of the
arbitrary element 𝑓.

It is easy to prove that the linear space 𝐺 is matrix
Lie superalgebra. The corresponding loop superalgebra 𝐺 is
presented as

𝑒
𝑖
(𝑛) = 𝑒

𝑖
𝜆
𝑛
,

[𝑒
1
(𝑚) , 𝑒

2
(𝑛)} = 2𝑒

2
(𝑚 + 𝑛) ,

[𝑒
1
(𝑚) , 𝑒

3
(𝑛)} = −2𝑒

3
(𝑚 + 𝑛) ,

[𝑒
2
(𝑚) , 𝑒

3
(𝑛)} = 𝑒

1
(𝑚 + 𝑛) ,

[𝑒
1
(𝑚) , 𝑒

4
(𝑛)} = 𝑒

4
(𝑚 + 𝑛) ,

[𝑒
1
(𝑚) , 𝑒

5
(𝑛)} = −𝑒

5
(𝑚 + 𝑛) ,

[𝑒
2
(𝑚) , 𝑒

4
(𝑛)} = [𝑒

3
(𝑚) , 𝑒

5
(𝑛)} = 0,

[𝑒
2
(𝑚) , 𝑒

5
(𝑛)} = 𝑒

4
(𝑚 + 𝑛) ,

[𝑒
3
(𝑚) , 𝑒

4
(𝑛)} = 𝑒

5
(𝑚 + 𝑛) ,

[𝑒
4
(𝑚) , 𝑒

4
(𝑛)} = −2𝑒

2
(𝑚 + 𝑛) ,

[𝑒
4
(𝑚) , 𝑒

5
(𝑛)} = 𝑒

1
(𝑚 + 𝑛) ,

[𝑒
5
(𝑚) , 𝑒

5
(𝑛)} = 2𝑒

3
(𝑚 + 𝑛) ,

deg 𝑒
𝑖
(𝑛) = 𝑛, (𝑖 = 1, 2, 3, 4, 5) .

(4)

In what follows, we will construct multicomponent super
integrable equations via thematrix Lie superalgebra𝐺. Firstly,
let us consider the following superisospectral problem:

𝜙
𝑥
= 𝑈 (𝑢, 𝜆) 𝜙, (5)

where

𝑈 (𝑢, 𝜆) = −𝑒
1
(1) + 𝑞𝑒

2
(0) + 𝑟𝑒

3
(0) + 𝛼𝑒

4
(0) + 𝛽𝑒

5
(0) ,

(6)

which can be written as the following matrix form:

𝜙
𝑥
= (

−𝜆𝐸 𝑞 𝛼

𝑟 𝜆𝐸 𝛽

𝛽 −𝛼 0

)𝜙, (7)

where 𝑞 = diag(𝑞
1
, 𝑞
2
), 𝑟 = diag(𝑟

1
, 𝑟
2
), 𝛼 = diag(𝛼

1
, 𝛼
2
),

𝛽 = diag(𝛽
1
, 𝛽
2
), 𝑢 = (𝑞, 𝑟, 𝛼, 𝛽)

𝑇 is a potential, 𝜆 is a spectral
parameter which satisfies 𝜆

𝑡
𝑛

= 0, and 𝜙 = (𝜙
1
, . . . , 𝜙

6
)
𝑇 is an

eigenfunction.
Taking

𝑉 = (

𝑎 𝑏 𝜌

𝑐 −𝑎 𝛿

𝛿 −𝜌 0

) , (8)

where 𝑎 = diag(𝑎
1
, 𝑎
2
), 𝑏 = diag(𝑏

1
, 𝑏
2
), 𝑐 = diag(𝑐

1
, 𝑐
2
), 𝜌 =

diag(𝜌
1
, 𝜌
2
), and 𝛿 = diag(𝛿

1
, 𝛿
2
), the adjoint representation

equation

𝑉
𝑥
= [𝑈,𝑉] (9)

leads to
𝑎
𝑘,𝑥

= 𝑞
𝑘
𝑐
𝑘
− 𝑟
𝑘
𝑏
𝑘
+ 𝛼
𝑘
𝛿
𝑘
+ 𝛽
𝑘
𝜌
𝑘
, 𝑘 = 1, 2,

𝑏
𝑘,𝑥

= −2𝜆𝑏
𝑘
− 2𝑞
𝑘
𝑎
𝑘
− 2𝛼
𝑘
𝜌
𝑘
, 𝑘 = 1, 2,

𝑐
𝑘,𝑥

= 2𝜆𝑐
𝑘
+ 2𝑟
𝑘
𝑎
𝑘
+ 2𝛽
𝑘
𝛿
𝑘
, 𝑘 = 1, 2,

𝜌
𝑘,𝑥

= −𝜆𝜌
𝑘
+ 𝑞
𝑘
𝛿
𝑘
− 𝛼
𝑘
𝑎
𝑘
− 𝛽
𝑘
𝑏
𝑘
, 𝑘 = 1, 2,

𝛿
𝑘,𝑥

= 𝜆𝛿
𝑘
+ 𝑟
𝑘
𝜌
𝑘
− 𝛼
𝑘
𝑐
𝑘
+ 𝛽
𝑘
𝑎
𝑘
, 𝑘 = 1, 2.

(10)

On setting 𝑎
𝑘
= ∑
𝑚≥0

𝑎
(𝑚)

𝑘
𝜆
−𝑚, 𝑏
𝑘
= ∑
𝑚≥0

𝑏
(𝑚)

𝑘
𝜆
−𝑚, 𝑐
𝑘
=

∑
𝑚≥0

𝑐
(𝑚)

𝑘
𝜆
−𝑚, 𝜌
𝑘
= ∑
𝑚≥0

𝜌
(𝑚)

𝑘
𝜆
−𝑚, and 𝛿

𝑘
= ∑
𝑚≥0

𝛿
(𝑚)

𝑘
𝜆
−𝑚

(𝑘 = 1, 2), (10) engenders equivalently

𝑏
(0)

𝑘
= 𝑐
(0)

𝑘
= 𝜌
(0)

𝑘
= 𝛿
(0)

𝑘
= 0, 𝑘 = 1, 2,

𝑎
(𝑚)

𝑘,𝑥
= 𝑞
𝑘
𝑐
(𝑚)

𝑘
− 𝑟
𝑘
𝑏
(𝑚)

𝑘
+ 𝛼
𝑘
𝛿
(𝑚)

𝑘
+ 𝛽
𝑘
𝜌
(𝑚)

𝑘
, 𝑘 = 1, 2, 𝑚 ≥ 0,

𝑏
(𝑚)

𝑘,𝑥
= −2𝑏

(𝑚+1)

𝑘
− 2𝑞
𝑘
𝑎
(𝑚)

𝑘
− 2𝛼
𝑘
𝜌
(𝑚)

𝑘
, 𝑘 = 1, 2, 𝑚 ≥ 0,

𝑐
(𝑚)

𝑘,𝑥
= 2𝑐
(𝑚+1)

𝑘
+ 2𝑟
𝑘
𝑎
(𝑚)

𝑘
+ 2𝛽
𝑘
𝛿
(𝑚)

𝑘
, 𝑘 = 1, 2, 𝑚 ≥ 0,
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𝜌
(𝑚)

𝑘,𝑥
= −𝜌
(𝑚+1)

𝑘
+ 𝑞
𝑘
𝛿
(𝑚)

𝑘
− 𝛼
𝑘
𝑎
(𝑚)

𝑘
− 𝛽
𝑘
𝑏
(𝑚)

𝑘
,

𝑘 = 1, 2, 𝑚 ≥ 0,

𝛿
(𝑚)

𝑘,𝑥
= 𝛿
(𝑚+1)

𝑘
+ 𝑟
𝑘
𝜌
(𝑚)

𝑘
− 𝛼
𝑘
𝑐
(𝑚)

𝑘
+ 𝛽
𝑘
𝑎
(𝑚)

𝑘
, 𝑘 = 1, 2, 𝑚 ≥ 0,

(11)

which results in a recursion relation to determine 𝑎(𝑚)
𝑘

, 𝑏
(𝑚)

𝑘
,

𝑐
(𝑚)

𝑘
, 𝜌
(𝑚)

𝑘
, 𝛿
(𝑚)

𝑘
(𝑘 = 1, 2):

(

(

(

(

(

(

(

(

𝑐
(𝑚+1)

1

𝑐
(𝑚+1)

2

𝑏
(𝑚+1)

1

𝑏
(𝑚+1)

2

2𝛿
(𝑚+1)

1

2𝛿
(𝑚+1)

2

−2𝜌
(𝑚+1)

1

−2𝜌
(𝑚+1)

2

)

)

)

)

)

)

)

)

= 𝐿

(

(

(

(

(

(

(

(

𝑐
(𝑚)

1

𝑐
(𝑚)

2

𝑏
(𝑚)

1

𝑏
(𝑚)

2

2𝛿
(𝑚)

1

2𝛿
(𝑚)

2

−2𝜌
(𝑚)

1

−2𝜌
(𝑚)

2

)

)

)

)

)

)

)

)

,

(12)

where

𝐿 = (

𝐿
11

𝐿
12

𝐿
13

𝐿
14

𝐿
21

𝐿
22

𝐿
23

𝐿
24

𝐿
31

𝐿
32

𝐿
33

𝐿
34

𝐿
41

𝐿
42

𝐿
43

𝐿
44

), (13)

with

𝐿
11
= diag (1

2

𝜕 − 𝑟
1
𝜕
−1
𝑞
1
,

1

2

𝜕 − 𝑟
2
𝜕
−1
𝑞
2
) ,

𝐿
12
= diag (𝑟

1
𝜕
−1
𝑟
1
, 𝑟
2
𝜕
−1
𝑟
2
) ,

𝐿
13
= diag (−1

2

𝑟
1
𝜕
−1
𝛼
1
−

1

2

𝛽
1
, −

1

2

𝑟
2
𝜕
−1
𝛼
2
−

1

2

𝛽
2
) ,

𝐿
14
= diag (1

2

𝑟
1
𝜕
−1
𝛽
1
,

1

2

𝑟
2
𝜕
−1
𝛽
2
) ,

𝐿
21
= diag (−𝑞

1
𝜕
−1
𝑞
1
, −𝑞
2
𝜕
−1
𝑞
2
) ,

𝐿
22
= diag (−1

2

𝜕 + 𝑞
1
𝜕
−1
𝑟
1
, −

1

2

𝜕 + 𝑞
2
𝜕
−1
𝑟
2
) ,

𝐿
23
= diag (−1

2

𝑞
1
𝜕
−1
𝛼
1
, −

1

2

𝑞
2
𝜕
−1
𝛼
2
) ,

𝐿
24
= diag (1

2

𝛼
1
+

1

2

𝑞
1
𝜕
−1
𝛽
1
,

1

2

𝛼
2
+

1

2

𝑞
2
𝜕
−1
𝛽
2
) ,

𝐿
31
= diag (2𝛼

1
− 2𝛽
1
𝜕
−1
𝑞
1
, 2𝛼
2
− 2𝛽
2
𝜕
−1
𝑞
2
) ,

𝐿
32
= diag (2𝛽

1
𝜕
−1
𝑟
1
, 2𝛽
2
𝜕
−1
𝑟
2
) ,

𝐿
33
= diag (𝜕 − 𝛽

1
𝜕
−1
𝛼
1
, 𝜕 − 𝛽

2
𝜕
−1
𝛼
2
) ,

𝐿
34
= diag (𝑟

1
+ 𝛽
1
𝜕
−1
𝛽
1
, 𝑟
2
+ 𝛽
2
𝜕
−1
𝛽
2
) ,

𝐿
41
= diag (2𝛼

1
𝜕
−1
𝑞
1
, 2𝛼
2
𝜕
−1
𝑞
2
) ,

𝐿
42
= diag (2𝛽

1
− 2𝛼
1
𝜕
−1
𝑟
1
, 2𝛽
2
− 2𝛼
2
𝜕
−1
𝑟
2
) ,

𝐿
43
= diag (−𝑞

1
+ 𝛼
1
𝜕
−1
𝛼
1
, −𝑞
2
+ 𝛼
2
𝜕
−1
𝛼
2
) ,

𝐿
44
= diag (−𝜕 − 𝛼

1
𝜕
−1
𝛽
1
, −𝜕 − 𝛼

2
𝜕
−1
𝛽
2
) .

(14)

It is easy to obtain that 𝑎(0)
𝑘,𝑥

= 0 (𝑘 = 1, 2). Therefore, we
choose 𝑎(0)

𝑘
= −1 (𝑘 = 1, 2) and select constants of integral to

be zero, which lead to the first few terms being worked out as
follows:

𝑎
(1)

𝑘
= 0, 𝑏

(1)

𝑘
= 𝑞
𝑘
, 𝑐

(1)

𝑘
= 𝑟
𝑘
,

𝜌
(1)

𝑘
= 𝛼
𝑘
, 𝛿

(1)

𝑘
= 𝛽
𝑘
,

𝑎
(2)

𝑘
=

1

2

𝑞
𝑘
𝑟
𝑘
+ 𝛼
𝑘
𝛽
𝑘
, 𝑏

(2)

𝑘
= −

1

2

𝑞
𝑘,𝑥
, 𝑐

(2)

𝑘
=

1

2

𝑟
𝑘,𝑥
,

𝜌
(2)

𝑘
= −𝛼
𝑘,𝑥
, 𝛿

(2)

𝑘
= 𝛽
𝑘,𝑥
,

(15)

where 𝑘 = 1, 2.
Secondly, let us associate (5) with the following auxiliary

spectral problem:

𝜙
𝑡
𝑛

= 𝑉
(𝑛)
𝜙, (16)

where

𝑉
(𝑛)

=

𝑛

∑

𝑚=0

(

(

(

𝑎
(𝑚)

1
0 𝑏

(𝑚)

1
0 𝜌

(𝑚)

1
0

0 𝑎
(𝑚)

2
0 𝑏

(𝑚)

2
0 𝜌
(𝑚)

2

𝑐
(𝑚)

1
0 −𝑎

(𝑚)

1
0 𝛿

(𝑚)

1
0

0 𝑐
(𝑚)

2
0 −𝑎

(𝑚)

2
0 𝛿
(𝑚)

2

𝛿
(𝑚)

1
0 −𝜌

(𝑚)

1
0 0 0

0 𝛿
(𝑚)

2
0 −𝜌

(𝑚)

2
0 0

)

)

)

𝜆
𝑛−𝑚

.

(17)

The compatibility condition of (5) and (16) leads to the
famous zero curvature equations

𝑈
𝑡
𝑛

− 𝑉
(𝑛)

𝑥
+ [𝑈,𝑉

(𝑛)
] = 0, 𝑛 ≥ 1, (18)

which lead to isospectral super integrable equations

(

(

(

(

(

(

(

(

(

(

(

𝑞
1

𝑞
2

𝑟
1

𝑟
2

𝛼
1

𝛼
2

𝛽
1

𝛽
2

)

)

)

)

)

)

)

)

)

)

)𝑡
𝑛

=

(

(

(

(

(

(

(

(

(

(

(

(

(

−2𝑏
(𝑛+1)

1

−2𝑏
(𝑛+1)

2

2𝑐
(𝑛+1)

1

2𝑐
(𝑛+1)

2

−𝜌
(𝑛+1)

1

−𝜌
(𝑛+1)

2

𝛿
(𝑛+1)

1

𝛿
(𝑛+1)

2

)

)

)

)

)

)

)

)

)

)

)

)

)

. (19)
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Under the special reduction of 𝑞
2
= 𝑟
2
= 𝛼
2
= 𝛿
2
= 0, (19) is

equivalent to the super AKNS equations [15, 18, 19], and thus
(19) is called a two-component super AKNS equation.

Lastly, super Hamiltonian structures of the two-
component super AKNS equations (19) may be established
by applying a powerful tool, that is, the so-called supertrace
identity [20, 21]

𝛿

𝛿𝑢

∫ str(𝑉𝜕𝑈

𝜕𝜆

)𝑑𝑥 = 𝜆
−𝛾 𝜕

𝜕𝜆

𝜆
𝛾str(𝜕𝑈

𝜕𝑢

𝑉) . (20)

As is usual, we need the following equalities which are easy to
calculate:

str(𝑉𝜕𝑈

𝜕𝜆

) = −2 (𝑎
1
+ 𝑎
2
) , str( 𝜕𝑈

𝜕𝑞
𝑘

𝑉) = 𝑐
𝑘
,

str(𝜕𝑈

𝜕𝑟
𝑘

𝑉) = 𝑏
𝑘
, str( 𝜕𝑈

𝜕𝛼
𝑘

𝑉) = 2𝛿
𝑘
,

str( 𝜕𝑈

𝜕𝛽
𝑘

𝑉) = −2𝜌
𝑘
,

(21)

where 𝑘 = 1, 2. Substituting the above equality (21) into the
supertrace identity (20) and comparing the coefficients of
𝜆
−𝑚−2 on two sides, we arrive at

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

𝛿

𝛿𝑞
1

𝛿

𝛿𝑞
2

𝛿

𝛿𝑟
1

𝛿

𝛿𝑟
2

𝛿

𝛿𝛼
1

𝛿

𝛿𝛼
2

𝛿

𝛿𝛽
1

𝛿

𝛿𝛽
2

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

∫−2 (𝑎
(𝑚+2)

1
+ 𝑎
(𝑚+2)

2
) 𝑑𝑥

= (𝛾 − 𝑚 − 1)

(

(

(

(

(

(

(

(

𝑐
(𝑚+1)

1

𝑐
(𝑚+1)

2

𝑏
(𝑚+1)

1

𝑏
(𝑚+1)

2

2𝛿
(𝑚+1)

1

2𝛿
(𝑚+1)

2

−2𝜌
(𝑚+1)

1

−2𝜌
(𝑚+1)

2

)

)

)

)

)

)

)

)

,

(22)

which leads to the constant 𝛾 = 0 with𝑚 = 0. Thus, we have

(

(

(

(

(

(

(

(

𝑐
(𝑚+1)

1

𝑐
(𝑚+1)

2

𝑏
(𝑚+1)

1

𝑏
(𝑚+1)

2

2𝛿
(𝑚+1)

1

2𝛿
(𝑚+1)

2

−2𝜌
(𝑚+1)

1

−2𝜌
(𝑚+1)

2

)

)

)

)

)

)

)

)

=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

𝛿

𝛿𝑞
1

𝛿

𝛿𝑞
2

𝛿

𝛿𝑟
1

𝛿

𝛿𝑟
2

𝛿

𝛿𝛼
1

𝛿

𝛿𝛼
2

𝛿

𝛿𝛽
1

𝛿

𝛿𝛽
2

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

𝐻
𝑚
,

𝐻
𝑚
= ∫

2

𝑚 + 2

(𝑎
(𝑚+2)

1
+ 𝑎
(𝑚+2)

2
) 𝑑𝑥.

(23)

Now, it follows from (23) that the two-component super
AKNS system (19) has the following super bi-Hamiltonian
structure:

𝑢
𝑡
𝑛

=

(

(

(

(

(

𝑞
1

𝑞
2

𝑟
1

𝑟
2

𝛼
1

𝛼
2

𝛽
1

𝛽
2

)

)

)

)

)
𝑡
𝑛

= 𝐽

(

(

(

(

(

(

(

(

𝑐
(𝑛+1)

1

𝑐
(𝑛+1)

2

𝑏
(𝑛+1)

1

𝑏
(𝑛+1)

2

2𝛿
(𝑛+1)

1

2𝛿
(𝑛+1)

2

−2𝜌
(𝑛+1)

1

−2𝜌
(𝑛+1)

2

)

)

)

)

)

)

)

)

= 𝐽

𝛿𝐻
𝑛

𝛿𝑢

= 𝑀

𝛿𝐻
𝑛−1

𝛿𝑢

,

(24)

where the super Hamiltonian pair (𝐽,𝑀 = 𝐽𝐿) reads as

𝐽 = (

0 −2𝐸 0 0

2𝐸 0 0 0

0 0 0

1

2

𝐸

0 0

1

2

𝐸 0

),

𝑀 = 𝐽𝐿 =
(

(

−2𝐿
21

−2𝐿
22

−2𝐿
23

−2𝐿
24

2𝐿
11

2𝐿
12

2𝐿
13

2𝐿
14

1

2

𝐿
41

1

2

𝐿
42

1

2

𝐿
43

1

2

𝐿
44

1

2

𝐿
31

1

2

𝐿
32

1

2

𝐿
33

1

2

𝐿
34

)

)

,

(25)

where 𝐿
𝑚𝑛

(1 ≤ 𝑚, 𝑛 ≤ 4) are given by (13).
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The first nonlinear equations in two-component AKNS
system (24) are given by

𝑞
1,𝑡
2

= −

1

2

𝑞
1,𝑥𝑥

+ 𝑞
2

1
𝑟
1
+ 2𝑞
1
𝛼
1
𝛽
1
− 2𝛼
1
𝛼
1,𝑥
,

𝑞
2,𝑡
2

= −

1

2

𝑞
2,𝑥𝑥

+ 𝑞
2

2
𝑟
2
+ 2𝑞
2
𝛼
2
𝛽
2
− 2𝛼
2
𝛼
2,𝑥
,

𝑟
1,𝑡
2

=

1

2

𝑟
1,𝑥𝑥

− 𝑞
1
𝑟
2

1
− 2𝑟
1
𝛼
1
𝛽
1
− 2𝛽
1
𝛽
1,𝑥
,

𝑟
2,𝑡
2

=

1

2

𝑟
2,𝑥𝑥

− 𝑞
2
𝑟
2

2
− 2𝑟
2
𝛼
2
𝛽
2
− 2𝛽
2
𝛽
2,𝑥
,

𝛼
1,𝑡
2

= −𝛼
1,𝑥𝑥

− 𝑞
1
𝛽
1,𝑥

+

1

2

𝑞
1
𝑟
1
𝛼
1
−

1

2

𝑞
1,𝑥
𝛽
1
,

𝛼
2,𝑡
2

= −𝛼
2,𝑥𝑥

− 𝑞
2
𝛽
2,𝑥

+

1

2

𝑞
2
𝑟
2
𝛼
2
−

1

2

𝑞
2,𝑥
𝛽
2
,

𝛽
1,𝑡
2

= 𝛽
1,𝑥𝑥

+ 𝑟
1
𝛼
1,𝑥

+

1

2

𝑟
1,𝑥
𝛼
1
−

1

2

𝑞
1
𝑟
1
𝛽
1
,

𝛽
2,𝑡
2

= 𝛽
2,𝑥𝑥

+ 𝑟
2
𝛼
2,𝑥

+

1

2

𝑟
2,𝑥
𝛼
2
−

1

2

𝑞
2
𝑟
2
𝛽
2
,

(26)

and the corresponding temporal part of the Lax system is

𝜙
𝑡
2

= 𝑉
(2)
𝜙, (27)

where

𝑉
(2)

=

(

(

(

(

(

(

−𝜆
2
+ V
1

0 𝑞
1
𝜆 −

1

2

𝑞
1,𝑥

0 𝛼
1
𝜆 − 𝛼
1,𝑥

0

0 −𝜆
2
+ V
2

0 𝑞
2
𝜆 −

1

2

𝑞
2,𝑥

0 𝛼
2
𝜆 − 𝛼
2,𝑥

𝑟
1
𝜆 +

1

2

𝑟
1,𝑥

0 𝜆
2
− V
1

0 𝛽
1
𝜆 + 𝛽
1,𝑥

0

0 𝑟
2
𝜆 +

1

2

𝑟
2,𝑥

0 𝜆
2
− V
2

0 𝛽
2
𝜆 + 𝛽
2,𝑥

𝛽
1
𝜆 + 𝛽
1,𝑥

0 −𝛼
1
𝜆 + 𝛼
1,𝑥

0 0 0

0 𝛽
2
𝜆 + 𝛽
2,𝑥

0 −𝛼
2
𝜆 + 𝛼
2,𝑥

0 0

)

)

)

)

)

)

, (28)

with V
𝑘
= (1/2)𝑞

𝑘
𝑟
𝑘
+ 𝛼
𝑘
𝛽
𝑘
(𝑘 = 1, 2).

3. Finite-Dimensional Super
Hamiltonian System

In this section, we will apply monononlinearization to the
two-component super AKNS system (24). It is easy to find
that, for the super spectral problem (1), variational derivative
of 𝜆 with respect to the potential 𝑢 reads (up to a constant
factor)

𝛿𝜆

𝛿𝑢

=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

𝛿𝜆

𝛿𝑞
1

𝛿𝜆

𝛿𝑞
2

𝛿𝜆

𝛿𝑟
1

𝛿𝜆

𝛿𝑟
2

𝛿𝜆

𝛿𝛼
1

𝛿𝜆

𝛿𝛼
2

𝛿𝜆

𝛿𝛽
1

𝛿𝜆

𝛿𝛽
2

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

=

(

(

(

(

(

(

𝜙
2

3

𝜙
2

4

−𝜙
2

1

−𝜙
2

2

2𝜙
3
𝜙
5

2𝜙
4
𝜙
6

−2𝜙
1
𝜙
5

−2𝜙
2
𝜙
6

)

)

)

)

)

)

. (29)

When zero boundary conditions (lim
|𝑥|→+∞

𝜙
𝑗
= 0, 1 ≤ 𝑗 ≤

6) are imposed, we can verify a simple characteristic property
of the above variational derivative:

𝐿

𝛿𝜆

𝛿𝑢

= 𝜆

𝛿𝜆

𝛿𝑢

, (30)

where 𝐿 is given by (13).

To carry out nonlinearization of 𝑁 copies of systems (7)
and (27) with 𝑁 distinct parameters 𝜆

𝑗
(1 ≤ 𝑗 ≤ 𝑁), we

consider the following Bargmann symmetry constraint:

𝑞
1
= − ⟨Φ

1
, Φ
1
⟩ , 𝑞

2
= − ⟨Φ

2
, Φ
2
⟩ ,

𝑟
1
= ⟨Φ
3
, Φ
3
⟩ , 𝑟

2
= ⟨Φ
4
, Φ
4
⟩ ,

𝛼
1
= ⟨Φ
1
, Φ
5
⟩ , 𝛼

2
= ⟨Φ
2
, Φ
6
⟩ ,

𝛽
1
= ⟨Φ
3
, Φ
5
⟩ , 𝛽

2
= ⟨Φ
4
, Φ
6
⟩ ,

(31)

where Φ
𝑗
= (𝜙
𝑗1
, . . . , 𝜙

𝑗𝑁
)
𝑇
(1 ≤ 𝑗 ≤ 6) and ⟨⋅, ⋅⟩ refers to

the standard inner product of the Euclidian space R𝑁. Now,
substituting the constraint (31) into 𝑁 copies of system (7),
we obtain the following constrained vector system:

Φ
1,𝑥

= −ΛΦ
1
− ⟨Φ
1
, Φ
1
⟩Φ
3
+ ⟨Φ
1
, Φ
5
⟩Φ
5
=

𝜕𝐻
1

𝜕Φ
3

,

Φ
2,𝑥

= −ΛΦ
2
− ⟨Φ
2
, Φ
2
⟩Φ
4
+ ⟨Φ
2
, Φ
6
⟩Φ
6
=

𝜕𝐻
1

𝜕Φ
4

,

Φ
3,𝑥

= ⟨Φ
3
, Φ
3
⟩Φ
1
+ ΛΦ
3
+ ⟨Φ
3
, Φ
5
⟩Φ
5
= −

𝜕𝐻
1

𝜕Φ
1

,

Φ
4,𝑥

= ⟨Φ
4
, Φ
4
⟩Φ
2
+ ΛΦ
4
+ ⟨Φ
4
, Φ
6
⟩Φ
6
= −

𝜕𝐻
1

𝜕Φ
2

,
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Φ
5,𝑥

= ⟨Φ
3
, Φ
5
⟩Φ
1
− ⟨Φ
1
, Φ
5
⟩Φ
3
=

𝜕𝐻
1

𝜕Φ
5

,

Φ
6,𝑥

= ⟨Φ
4
, Φ
6
⟩Φ
2
− ⟨Φ
2
, Φ
6
⟩Φ
4
=

𝜕𝐻
1

𝜕Φ
6

,

(32)

where

𝐻
1
= − ⟨ΛΦ

1
, Φ
3
⟩ − ⟨ΛΦ

2
, Φ
4
⟩ −

1

2

⟨Φ
1
, Φ
1
⟩ ⟨Φ
3
, Φ
3
⟩

−

1

2

⟨Φ
2
, Φ
2
⟩ ⟨Φ
4
, Φ
4
⟩ + ⟨Φ

1
, Φ
5
⟩ ⟨Φ
3
, Φ
5
⟩

+ ⟨Φ
2
, Φ
6
⟩ ⟨Φ
4
, Φ
6
⟩ ,

(33)

with Λ = diag(𝜆
1
, . . . , 𝜆

𝑁
) and the Poisson bracket is defined

by

{𝑓, 𝑔} =

𝑁

∑

𝑗=1

(

𝜕𝑓

𝜕𝜙
1𝑗

𝜕𝑔

𝜕𝜙
3𝑗

+

𝜕𝑓

𝜕𝜙
2𝑗

𝜕𝑔

𝜕𝜙
4𝑗

−

𝜕𝑓

𝜕𝜙
3𝑗

𝜕𝑔

𝜕𝜙
1𝑗

−

𝜕𝑓

𝜕𝜙
4𝑗

𝜕𝑔

𝜕𝜙
2𝑗

+

𝜕𝑓

𝜕𝜙
5𝑗

𝜕𝑔

𝜕𝜙
5𝑗

+

𝜕𝑓

𝜕𝜙
6𝑗

𝜕𝑔

𝜕𝜙
6𝑗

) .

(34)

Analogously, making use of (31) and (32), the 𝑡
2
-part (27)

of the two-component AKNS equations (24) is constrained as
the following 6𝑁-dimensional system:

𝜙
1𝑗,𝑡
2

= (−𝜆
2

𝑗
+

1

2

𝑞
1
𝑟
1
+ �̃�
1
̃
𝛽
1
)𝜙
1𝑗
+ (𝑞
1
𝜆
𝑗
−

1

2

𝑞
1,𝑥
)𝜙
3𝑗

+ (�̃�
1
𝜆
𝑗
− �̃�
1,𝑥
) 𝜙
5𝑗
, 1 ≤ 𝑗 ≤ 𝑁,

𝜙
2𝑗,𝑡
2

= (−𝜆
2

𝑗
+

1

2

𝑞
2
𝑟
2
+ �̃�
2
̃
𝛽
2
)𝜙
2𝑗
+ (𝑞
2
𝜆
𝑗
−

1

2

𝑞
2,𝑥
)𝜙
4𝑗

+ (�̃�
2
𝜆
𝑗
− �̃�
2,𝑥
) 𝜙
6𝑗
, 1 ≤ 𝑗 ≤ 𝑁,

𝜙
3𝑗,𝑡
2

= (𝑟
1
𝜆
𝑗
+

1

2

𝑟
1,𝑥
)𝜙
1𝑗
+ (𝜆
2

𝑗
−

1

2

𝑞
1
𝑟
1
− �̃�
1
̃
𝛽
1
)𝜙
3𝑗

+ (
̃
𝛽
1
𝜆
𝑗
+
̃
𝛽
1,𝑥
) 𝜙
5𝑗
, 1 ≤ 𝑗 ≤ 𝑁,

𝜙
4𝑗,𝑡
2

= (𝑟
2
𝜆
𝑗
+

1

2

𝑟
2,𝑥
)𝜙
2𝑗
+ (𝜆
2

𝑗
−

1

2

𝑞
2
𝑟
2
− �̃�
2
̃
𝛽
2
)𝜙
4𝑗

+ (
̃
𝛽
2
𝜆
𝑗
+
̃
𝛽
2,𝑥
) 𝜙
6𝑗
, 1 ≤ 𝑗 ≤ 𝑁,

𝜙
5𝑗,𝑡
2

= (
̃
𝛽
1
𝜆
𝑗
+
̃
𝛽
1,𝑥
) 𝜙
1𝑗
+ (−�̃�

1
𝜆
𝑗
+ �̃�
1,𝑥
) 𝜙
3𝑗
,

1 ≤ 𝑗 ≤ 𝑁,

𝜙
6𝑗,𝑡
2

= (
̃
𝛽
2
𝜆
𝑗
+
̃
𝛽
2,𝑥
) 𝜙
2𝑗
+ (−�̃�

2
𝜆
𝑗
+ �̃�
2,𝑥
) 𝜙
4𝑗
,

1 ≤ 𝑗 ≤ 𝑁,

(35)

where 𝑞
𝑘
, 𝑟
𝑘
, �̃�
𝑘
, ̃𝛽
𝑘
denote the constrained 𝑞

𝑘
, 𝑟
𝑘
, 𝛼
𝑘
, 𝛽
𝑘
and

𝑞
𝑘,𝑥
, 𝑟
𝑘,𝑥
, �̃�
𝑘,𝑥
, ̃𝛽
𝑘,𝑥

are given as follows:

𝑞
1,𝑥

= 2 ⟨ΛΦ
1
, Φ
1
⟩ + 2 ⟨Φ

1
, Φ
1
⟩ ⟨Φ
1
, Φ
3
⟩ ,

𝑞
2,𝑥

= 2 ⟨ΛΦ
2
, Φ
2
⟩ + 2 ⟨Φ

2
, Φ
2
⟩ ⟨Φ
2
, Φ
4
⟩ ,

𝑟
1,𝑥

= 2 ⟨ΛΦ
3
, Φ
3
⟩ + 2 ⟨Φ

3
, Φ
3
⟩ ⟨Φ
1
, Φ
3
⟩ ,

𝑟
2,𝑥

= 2 ⟨ΛΦ
4
, Φ
4
⟩ + 2 ⟨Φ

4
, Φ
4
⟩ ⟨Φ
2
, Φ
4
⟩ ,

�̃�
1,𝑥

= − ⟨ΛΦ
1
, Φ
5
⟩ − ⟨Φ

1
, Φ
3
⟩ ⟨Φ
1
, Φ
5
⟩ ,

�̃�
2,𝑥

= − ⟨ΛΦ
2
, Φ
6
⟩ − ⟨Φ

2
, Φ
4
⟩ ⟨Φ
2
, Φ
6
⟩ ,

̃
𝛽
1,𝑥

= ⟨ΛΦ
3
, Φ
5
⟩ + ⟨Φ

1
, Φ
3
⟩ ⟨Φ
3
, Φ
5
⟩ ,

̃
𝛽
2,𝑥

= ⟨ΛΦ
4
, Φ
6
⟩ + ⟨Φ

2
, Φ
4
⟩ ⟨Φ
4
, Φ
6
⟩ .

(36)

After a direct calculation, constrained system (35) can be
written as the vector form

Φ
1,𝑡
2

=

𝜕𝐻
2

𝜕Φ
3

, Φ
2,𝑡
2

=

𝜕𝐻
2

𝜕Φ
4

, Φ
3,𝑡
2

= −

𝜕𝐻
2

𝜕Φ
1

,

Φ
4,𝑡
2

= −

𝜕𝐻
2

𝜕Φ
2

, Φ
5,𝑡
2

=

𝜕𝐻
2

𝜕Φ
5

, Φ
6,𝑡
2

=

𝜕𝐻
2

𝜕Φ
6

,

(37)

where

𝐻
2
= − ⟨Λ

2
Φ
1
, Φ
3
⟩ − ⟨Λ

2
Φ
2
, Φ
4
⟩ −

1

2

⟨Φ
1
, Φ
1
⟩ ⟨ΛΦ

3
, Φ
3
⟩

−

1

2

⟨Φ
2
, Φ
2
⟩ ⟨ΛΦ

4
, Φ
4
⟩ −

1

2

⟨ΛΦ
1
, Φ
1
⟩ ⟨Φ
3
, Φ
3
⟩

−

1

2

⟨ΛΦ
2
, Φ
2
⟩ ⟨Φ
4
, Φ
4
⟩

−

1

2

⟨Φ
1
, Φ
1
⟩ ⟨Φ
1
, Φ
3
⟩ ⟨Φ
3
, Φ
3
⟩

−

1

2

⟨Φ
2
, Φ
2
⟩ ⟨Φ
2
, Φ
4
⟩ ⟨Φ
4
, Φ
4
⟩

+ ⟨Φ
1
, Φ
5
⟩ ⟨ΛΦ

3
, Φ
5
⟩

+ ⟨Φ
2
, Φ
6
⟩ ⟨ΛΦ

4
, Φ
6
⟩ + ⟨ΛΦ

1
, Φ
5
⟩ ⟨Φ
3
, Φ
5
⟩

+ ⟨ΛΦ
2
, Φ
6
⟩ ⟨Φ
4
, Φ
6
⟩ + ⟨Φ

1
, Φ
3
⟩ ⟨Φ
1
, Φ
5
⟩ ⟨Φ
3
, Φ
5
⟩

+ ⟨Φ
2
, Φ
4
⟩ ⟨Φ
2
, Φ
6
⟩ ⟨Φ
4
, Φ
6
⟩ .

(38)

To this end, we show that the constrained 𝑁 copies of
systems (7) and (27) are super Hamiltonian systems (32) and
(37).

4. 𝑟-Matrix and Lax Representation

In what follows, we will show that super Hamiltonian systems
(32) and (37) are both completely integrable in the Liouville
sense. First of all, through a straightforward and tedious
calculation, we arrive at the following proposition.
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Proposition 1. Super Hamiltonian systems (32) and (37) have
the following Lax representations, respectively:

𝐿
𝑥
(𝜆) = [�̃�, 𝐿 (𝜆)] , (39)

𝐿
𝑡
2

(𝜆) = [�̃�
(2)
, 𝐿 (𝜆)] , (40)

where �̃� and �̃�(2) are, respectively,𝑈 and𝑉(2) under symmetry
constraint (31), and

𝐿 (𝜆) = (

𝐴
1
(𝜆) 0 𝐵

1
(𝜆) 0 

1
(𝜆) 0

0 𝐴
2
(𝜆) 0 𝐵

2
(𝜆) 0 

2
(𝜆)

𝐶
1
(𝜆) 0 −𝐴

1
(𝜆) 0 𝜛

1
(𝜆) 0

0 𝐶
2
(𝜆) 0 −𝐴

2
(𝜆) 0 𝜛

2
(𝜆)

𝜛
1
(𝜆) 0 −

1
(𝜆) 0 0 0

0 𝜛
2
(𝜆) 0 −

2
(𝜆) 0 0

) ,

(41)

with

𝐴
1
(𝜆) = −1 +

𝑁

∑

𝑗=1

1

𝜆 − 𝜆
𝑗

𝜙
1𝑗
𝜙
3𝑗
,

𝐴
2
(𝜆) = −1 +

𝑁

∑

𝑗=1

1

𝜆 − 𝜆
𝑗

𝜙
2𝑗
𝜙
4𝑗
,

𝐵
1
(𝜆) = −

𝑁

∑

𝑗=1

1

𝜆 − 𝜆
𝑗

𝜙
2

1𝑗
,

𝐵
2
(𝜆) = −

𝑁

∑

𝑗=1

1

𝜆 − 𝜆
𝑗

𝜙
2

2𝑗
,

𝐶
1
(𝜆) =

𝑁

∑

𝑗=1

1

𝜆 − 𝜆
𝑗

𝜙
2

3𝑗
,

𝐶
2
(𝜆) =

𝑁

∑

𝑗=1

1

𝜆 − 𝜆
𝑗

𝜙
2

4𝑗
,


1
(𝜆) =

𝑁

∑

𝑗=1

1

𝜆 − 𝜆
𝑗

𝜙
1𝑗
𝜙
5𝑗
,


2
(𝜆) =

𝑁

∑

𝑗=1

1

𝜆 − 𝜆
𝑗

𝜙
2𝑗
𝜙
6𝑗
,

𝜛
1
(𝜆) =

𝑁

∑

𝑗=1

1

𝜆 − 𝜆
𝑗

𝜙
3𝑗
𝜙
5𝑗
,

𝜛
2
(𝜆) =

𝑁

∑

𝑗=1

1

𝜆 − 𝜆
𝑗

𝜙
4𝑗
𝜙
6𝑗
.

(42)

Under the Poisson bracket (34), we have

{𝐴
𝑘
(𝜆) , 𝐵

𝑘
(𝜆)} =

2

𝜇 − 𝜆

(−𝐵
𝑘
(𝜆) + 𝐵

𝑘
(𝜇))

= − {𝐵
𝑘
(𝜆) , 𝐴

𝑘
(𝜆)} , 𝑘 = 1, 2,

{𝐴
𝑘
(𝜆) , 𝐶

𝑘
(𝜆)} =

2

𝜇 − 𝜆

(𝐶
𝑘
(𝜆) − 𝐶

𝑘
(𝜇))

= − {𝐶
𝑘
(𝜆) , 𝐴

𝑘
(𝜆)} , 𝑘 = 1, 2,

{𝐴
𝑘
(𝜆) , 

𝑘
(𝜆)} =

1

𝜇 − 𝜆

(−
𝑘
(𝜆) + 

𝑘
(𝜇))

= − {
𝑘
(𝜆) , 𝐴

𝑘
(𝜆)} , 𝑘 = 1, 2,

{𝐴
𝑘
(𝜆) , 𝜛

𝑘
(𝜆)} =

1

𝜇 − 𝜆

(𝜛
𝑘
(𝜆) − 𝜛

𝑘
(𝜇))

= − {𝜛
𝑘
(𝜆) , 𝐴

𝑘
(𝜆)} , 𝑘 = 1, 2,

{𝐵
𝑘
(𝜆) , 𝐶

𝑘
(𝜆)} =

4

𝜇 − 𝜆

(−𝐴
𝑘
(𝜆) + 𝐴

𝑘
(𝜇))

= − {𝐶
𝑘
(𝜆) , 𝐵

𝑘
(𝜆)} , 𝑘 = 1, 2,

{𝐵
𝑘
(𝜆) , 𝜛

𝑘
(𝜆)} =

2

𝜇 − 𝜆

(−
𝑘
(𝜆) + 

𝑘
(𝜇))

= − {𝜛
𝑘
(𝜆) , 𝐵

𝑘
(𝜆)} , 𝑘 = 1, 2,

{𝐶
𝑘
(𝜆) , 

𝑘
(𝜆)} =

2

𝜇 − 𝜆

(−𝜛
𝑘
(𝜆) + 𝜛

𝑘
(𝜇))

= − {
𝑘
(𝜆) , 𝐶

𝑘
(𝜆)} , 𝑘 = 1, 2,

{
𝑘
(𝜆) , 

𝑘
(𝜆)} =

1

𝜇 − 𝜆

(−𝐵
𝑘
(𝜆) + 𝐵

𝑘
(𝜇)) , 𝑘 = 1, 2,

{𝜛
𝑘
(𝜆) , 𝜛

𝑘
(𝜆)} =

1

𝜇 − 𝜆

(𝐶
𝑘
(𝜆) − 𝐶

𝑘
(𝜇)) , 𝑘 = 1, 2,

{
𝑘
(𝜆) , 𝜛

𝑘
(𝜆)} =

1

𝜇 − 𝜆

(𝐴
𝑘
(𝜆) − 𝐴

𝑘
(𝜇))

= {𝜛
𝑘
(𝜆) , 

𝑘
(𝜆)} , 𝑘 = 1, 2,

(43)

and the others are zero.
These relations imply the following proposition immedi-

ately.

Proposition 2. The Lax matrix 𝐿(𝜆) satisfied the following r-
matrix relation:

{𝐿
1
(𝜆) , 𝐿

2
(𝜇)} =

1

𝜇 − 𝜆

[𝑃, 𝐿
1
(𝜆) + 𝐿

2
(𝜇)] , (44)

where
𝑃 = 𝜎

1
⊗ 𝜎
1
+ 𝜎
2
⊗ 𝜎
2

+ 2 (𝜎
3
⊗ 𝜎
5
+ 𝜎
5
⊗ 𝜎
3
+ 𝜎
4
⊗ 𝜎
6
+ 𝜎
6
⊗ 𝜎
4
)

+ 𝜎
7
⊗ 𝜎
9
+ 𝜎
9
⊗ 𝜎
7
+ 𝜎
8
⊗ 𝜎
10
+ 𝜎
10
⊗ 𝜎
8
,

(45)
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with

𝜎
1
= 𝐸
11
− 𝐸
33
, 𝜎

2
= 𝐸
22
− 𝐸
44
, 𝜎

3
= 𝐸
13
,

𝜎
4
= 𝐸
24
, 𝜎

5
= 𝐸
31
, 𝜎

6
= 𝐸
42
,

𝜎
7
= 𝐸
15
− 𝐸
53
, 𝜎

8
= 𝐸
26
− 𝐸
64
, 𝜎

9
= 𝐸
35
+ 𝐸
51
,

𝜎
10
= 𝐸
46
+ 𝐸
62
,

(46)

𝐸
𝑖𝑗
is the 6 × 6matrix having 1 in the (𝑖, 𝑗)th position and zeros

elsewhere, and 𝐿
1
(𝜆) = 𝐿(𝜆) ⊗ 𝐼 and 𝐿

2
(𝜇) = 𝐼 ⊗ 𝐿(𝜇).

Therefore, according to the general theory of the 𝑟-matrix
[22], we know that (1/2)Str𝐿2(𝜆) is a generating function
of conserved integrals of motions. Explicitly, we can expand
(1/2)Str𝐿2(𝜆) as follows:

1

2

Str𝐿2 (𝜆) = ∑

𝑛≥0

𝐹
𝑛
𝜆
−𝑛
, (47)

where

𝐹
1
= − 2 ⟨Φ

1
, Φ
3
⟩ − 2 ⟨Φ

2
, Φ
4
⟩ ,

𝐹
𝑛
=

𝑛−1

∑

𝑗=1

[⟨Λ
𝑗−1

Φ
1
, Φ
3
⟩ ⟨Λ
𝑛−𝑗−1

Φ
1
, Φ
3
⟩

− ⟨Λ
𝑗−1

Φ
1
, Φ
1
⟩ ⟨Λ
𝑛−𝑗−1

Φ
3
, Φ
3
⟩

+ 2 ⟨Λ
𝑗−1

Φ
1
, Φ
5
⟩ ⟨Λ
𝑛−𝑗−1

Φ
3
, Φ
5
⟩

+ ⟨Λ
𝑗−1

Φ
2
, Φ
4
⟩ ⟨Λ
𝑛−𝑗−1

Φ
2
, Φ
4
⟩

− ⟨Λ
𝑗−1

Φ
2
, Φ
2
⟩ ⟨Λ
𝑛−𝑗−1

Φ
4
, Φ
4
⟩

+2 ⟨Λ
𝑗−1

Φ
2
, Φ
6
⟩ ⟨Λ
𝑛−𝑗−1

Φ
4
, Φ
6
⟩]

− 2 ⟨Λ
𝑛−1

Φ
1
, Φ
3
⟩ − 2 ⟨Λ

𝑛−1
Φ
2
, Φ
4
⟩ , 𝑛 ≥ 2.

(48)

Therefore, from (44), we have

{𝐹
𝑚
, 𝐹
𝑛
} = 0, 1 ≤ 𝑚, 𝑛 ≤ 3𝑁, (49)

which means that {𝐹
𝑛
}
3𝑁

𝑛=1
are in involution. Moreover, refer-

ring to proof of functional independence in [15], it is easy
to find that {𝐹

𝑛
}
3𝑁

𝑛=1
are functionally independent over some

region of R6𝑁.
To sum up the above results, we have the following

theorem.

Theorem 3. The super Hamiltonian systems given by (32) and
(37) are both completely integrable in the sense of Liouville.
That is to say, Hamiltonian systems (32) and (37) constitute
an integrable decomposition of two-component super AKNS
equations (26).

5. Conclusions and Discussions

Starting from a matrix Lie superalgebra, we constructed
a two-component super AKNS system (19). For this new
system, we considered a Bargmann symmetry constraint (31).
Then, substituting the constraint (31) into𝑁 copies of systems
(7) and (27), we obtained the constrained super Hamiltonian
systems (32) and (37), and we showed that systems (32) and
(37) are completely integrable in the Liouville sense. Accord-
ingly, Lax matrix 𝐿(𝜆) and 𝑟-matrix representation were,
respectively, given in Propositions 1 and 2. The difference
between [15] and this paper will be listed in the following.

(1) In [15], we applied binary-nonlinearization to one-
component AKNS system which was associated with
a 3×3 spectral matrix, while, in this paper, we applied
monononlinearization to two-component AKNS sys-
temwhich was associated with a 6×6 spectral matrix.

(2) In [15], symmetry constraint was associated with both
eigenfunctions and adjoint eigenfunctions, while, in
this paper, constraint was just associated with eigen-
functions.

(3) Construction of integrals of motion is also different.
In [15], we made use of constrained stationary equa-
tion (�̃�

2
)
𝑥
= [�̃�, �̃�

2
]. And, in this paper, we made

use of general theory of 𝑟-matrix.

According to the above conclusions, some future work is
listed as follows.

(1) Is this method applied to the other multicomponent
super integrable system?

(2) If potentials 𝑞 and 𝑟 are chosen as (2) in [23], is
nonlinearization of Lax pairs applied to this multi-
component integrable system?

(3) Is nonlinearization (including monononlinearization
and binary-nonlinearization) extended to supersym-
metry integrable system, such as supersymmetric
Kadomtsev-Petviashvili system [24, 25]?
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