
Research Article
Summation Formulas Involving Binomial Coefficients,
Harmonic Numbers, and Generalized Harmonic Numbers

Junesang Choi

Department of Mathematics, Dongguk University, Gyeongju 780-714, Republic of Korea

Correspondence should be addressed to Junesang Choi; junesang@mail.dongguk.ac.kr

Received 19 May 2014; Accepted 30 June 2014; Published 21 July 2014

Academic Editor: S. D. Purohit

Copyright © 2014 Junesang Choi.This is an open access article distributed under theCreativeCommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A variety of identities involving harmonic numbers and generalized harmonic numbers have been investigated since the distant
past and involved in a wide range of diverse fields such as analysis of algorithms in computer science, various branches of number
theory, elementary particle physics, and theoretical physics. Here we show how one can obtain further interesting and (almost)
serendipitous identities about certain finite or infinite series involving binomial coefficients, harmonic numbers, and generalized
harmonic numbers by simply applying the usual differential operator to well-known Gauss’s summation formula for

2
F
1
(1).

1. Introduction and Preliminaries

The generalized harmonic numbers𝐻(𝑠)
𝑛

of order 𝑠 which are
defined by (cf. [1]; see also [2, 3], [4, page 156], and [5, Section
3.5])

𝐻
(𝑠)

𝑛
:=

𝑛

∑

𝑗=1

1

𝑗𝑠
(𝑛 ∈ N; 𝑠 ∈ C) , (1)

𝐻
𝑛
:= 𝐻
(1)

𝑛
=

𝑛

∑

𝑗=1

1

𝑗
(𝑛 ∈ N) (2)

are the harmonic numbers. Here N and C denote the
set of positive integers and the set of complex numbers,
respectively, and we assume that

𝐻
0
:= 0, 𝐻

(𝑠)

0
:= 0 (𝑠 ∈ C \ {0}) ,

𝐻
(0)

0
:= 1.

(3)

The generalized harmonic functions 𝐻(𝑠)
𝑛
(𝑧) are defined by

(see [2, 6]; see also [7, 8])

𝐻
(𝑠)

𝑛
(𝑧) :=

𝑛

∑

𝑗=1

1

(𝑗 + 𝑧)
𝑠

(𝑛 ∈ N; 𝑠 ∈ C \ Z
−
;

Z
−
:= {−1, −2, −3, . . .}) ,

(4)

so that, obviously,

𝐻
(𝑠)

𝑛
(0) = 𝐻

(𝑠)

𝑛
. (5)

Equation (1) can be written in the following form:

𝐻
(𝑠)

𝑛
= 𝜁 (𝑠) − 𝜁 (𝑠, 𝑛 + 1) (R (𝑠) > 1; 𝑛 ∈ N) , (6)

by recalling the well-known (easily derivable) relationship
between the Riemann zeta function 𝜁(𝑠) and the Hurwitz (or
generalized) zeta function 𝜁(𝑠, 𝑎) (see [4, equation 2.3(9)]):

𝜁 (𝑠) = 𝜁 (𝑠, 𝑛 + 1) +

𝑛

∑

𝑘=1

𝑘
−𝑠

(𝑛 ∈ N
0
:= N ∪ {0}) . (7)

The polygamma functions 𝜓(𝑛)(𝑠) (𝑛 ∈ N) are defined by

𝜓
(𝑛)

(𝑠) :=
𝑑
𝑛+1

𝑑𝑧𝑛+1
log Γ (𝑠) = 𝑑

𝑛

𝑑𝑠𝑛
𝜓 (𝑠)

(𝑛 ∈ N
0
; 𝑠 ∈ C \ Z

−

0
:= Z
−
∪ {0}) ,

(8)

where Γ(𝑠) is the familiar gamma function and the psi-
function 𝜓 is defined by

𝜓 (𝑠) :=
𝑑

𝑑𝑠
log Γ (𝑠) , 𝜓

(0)
(𝑠) = 𝜓 (𝑠) (𝑠 ∈ C \ Z

−

0
) . (9)
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A well-known (and potentially useful) relationship be-
tween the polygamma functions 𝜓(𝑛)(𝑠) and the generalized
zeta function 𝜁(𝑠, 𝑎) is given by

𝜓
(𝑛)

(𝑠) = (−1)
𝑛+1

𝑛!

∞

∑

𝑘=0

1

(𝑘 + 𝑠)
𝑛+1

= (−1)
𝑛+1

𝑛!𝜁 (𝑛 + 1, 𝑠)

(𝑛 ∈ N; 𝑠 ∈ C \ Z
−

0
) .

(10)

It is also easy to have the following expression (cf. [4, equation
1.2(54)]):

𝜓
(𝑚)

(𝑠 + 𝑛) − 𝜓
(𝑚)

(𝑠) = (−1)
𝑚
𝑚!𝐻
(𝑚+1)

𝑛
(𝑠 − 1)

(𝑚, 𝑛 ∈ N
0
) ,

(11)

which immediately gives 𝐻(𝑠)
𝑛

another expression for 𝐻(𝑠)
𝑛

as
follows (cf. [9, equation (20)]):

𝐻
(𝑚)

𝑛
=

(−1)
𝑚−1

(𝑚 − 1)!
[𝜓
(𝑚−1)

(𝑛 + 1) − 𝜓
(𝑚−1)

(1)]

(𝑚 ∈ N; 𝑛 ∈ N
0
) .

(12)

The following identitywas discovered byEuler in 1775 and
has a long history (see, e.g., [10, page 252 et seq.]):

∞

∑

𝑛=1

𝐻
𝑛

(𝑛 + 1)
2
=

1

2

∞

∑

𝑛=1

𝐻
𝑛

𝑛2
= 𝜁 (3) . (13)

Identity (13) is a special case of the following more general
sum due to Euler:

2

∞

∑

𝑘=1

𝐻
𝑘

𝑘𝑛
= (𝑛 + 2) 𝜁 (𝑛 + 1)

−

𝑛−2

∑

𝑘=1

𝜁 (𝑛 − 𝑘) 𝜁 (𝑘 + 1)

(𝑛 ∈ N \ {1})

(14)

or, equivalently,

2

∞

∑

𝑘=1

𝐻
𝑘

(𝑘 + 1)
𝑛
= 𝑛𝜁 (𝑛 + 1)

−

𝑛−2

∑

𝑘=1

𝜁 (𝑛 − 𝑘) 𝜁 (𝑘 + 1)

(𝑛 ∈ N \ {1}) ,

(15)

where (and in what follows) an empty sum is understood to
be nil.

Many different techniques have been used, in the vast
mathematical literature, in order to evaluate harmonic sums
of the types (13) and (15). For example, D. Borwein and J.
M. Borwein [11] established the following interesting sums

by applying Parseval’s identity to a Fourier series and contour
integrals to a generating function:

∞

∑

𝑛=1

(
𝐻
𝑛

𝑛 + 1
)

2

=
11

4
𝜁 (4) , (16)

∞

∑

𝑛=1

(
𝐻
𝑛

𝑛
)

2

=
17

4
𝜁 (4) , (17)

∞

∑

𝑛=1

𝐻
𝑛

𝑛3
=

5

4
𝜁 (4) , (18)

where, in light of Euler sum (18), nonlinear harmonic sums
(16) and (17) are substantially the same, since it is easily
verified that

∞

∑

𝑘=1

(
𝐻
𝑘

𝑘
)

2

=

∞

∑

𝑘=1

(
𝐻
𝑘

𝑘 + 1
)

2

+
3

2
𝜁 (4) . (19)

Euler started this line of investigation in the course of his
correspondence with Goldbach beginning in 1742 and he was
the first to consider the linear harmonic sums:

S
𝑝,𝑞

:=

∞

∑

𝑛=1

𝐻
(𝑝)

𝑛

𝑛𝑞
. (20)

Euler, whose investigations were completed by Nielsen
in 1906 (see Nielsen [12]), showed that the linear harmonic
sums in (20) can be evaluated in terms of zeta values in the
following special cases: 𝑝 = 1, 𝑝 = 𝑞, 𝑝 + 𝑞 odd, and 𝑝 + 𝑞

even, but with the pair (𝑝, 𝑞) being restricted to a finite set
of the so-called exceptional configurations {(2, 4), (4, 2)} (see
Flajolet and Salvy [13]).Of these special cases, in the oneswith
𝑝 ̸= 𝑞, if S

𝑝,𝑞
is known, then S

𝑞,𝑝
can be found by means of

the symmetry relation:

S
𝑝,𝑞

+S
𝑞,𝑝

= 𝜁 (𝑝) 𝜁 (𝑞) + 𝜁 (𝑝 + 𝑞) , (21)

and vice versa (see also [1, page 140, Proposition 6]. Some
typical examples are

∞

∑

𝑛=1

𝐻
(2)

𝑛

𝑛2
=

7

4
𝜁 (4) , (22)

∞

∑

𝑛=1

𝐻
(2)

𝑛

𝑛5
= 5𝜁 (2) 𝜁 (5) + 2𝜁 (3) 𝜁 (4) − 10𝜁 (7) . (23)

Rather extensive numerical search for linear relations
between linear Euler sums and polynomials in zeta values
(see Bailey et al. [14]; see also Flajolet and Salvy [13]) strongly
suggests that Euler found all the possible evaluations of linear
harmonic sums.

The nonlinear harmonic sums involve products of at least
two harmonic numbers. Let 𝑃 = (𝑝

1
, . . . , 𝑝

𝑘
) be a partition of

an integer 𝑝 into 𝑘 summands, so that 𝑝 = 𝑝
1
+ ⋅ ⋅ ⋅ + 𝑝

𝑘
and

𝑝
1
≦ 𝑝
2
≦ ⋅ ⋅ ⋅ ≦ 𝑝

𝑘
. The Euler sum of index 𝑃, 𝑞 is defined by

S
𝑃,𝑞

:=

∞

∑

𝑛=1

𝐻
(𝑝
1
)

𝑛
𝐻
(𝑝
2
)

𝑛
⋅ ⋅ ⋅ 𝐻
(𝑝
𝑘
)

𝑛

𝑛𝑞
, (24)
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where the quantity 𝑞 + 𝑝
1
+ ⋅ ⋅ ⋅ + 𝑝

𝑘
is called the weight

and the quantity 𝑘 is the degree. A few basic nonlinear
sums were recently evaluated by de Doelder [15] by invoking
their relations with the Eulerian beta integrals or with
polylogarithm functions. A detailed numerical search was
conducted by Bailey et al. [14] who showed the existence of
many surprising evaluations like

∞

∑

𝑛=1

(𝐻
𝑛
)
3

𝑛4
=

231

16
𝜁 (7) −

51

4
𝜁 (3) 𝜁 (4) + 2𝜁 (2) 𝜁 (5) . (25)

Flajolet and Salvy [13] clearly and extensively analyzed
most of the hitherto known evaluations for Euler sums and
multiple zeta functions (see also Hoffman [16] and Zagier
[17]). For a remarkably clear and insightful exposition of sev-
eral important results and conjectures concerning multiple
polylogarithms and the multiple zeta functions (including
especially a broad survey of recent works on multiple zeta
series and Euler sums of arbitrary degree), the interested
reader should refer also to a survey-cum-expository paper by
Bowman and Bradley [18], which contains a fairly compre-
hensive bibliography of as many as 83 further references on
the subject.

Shen [19] investigated the connections between the Stir-
ling numbers 𝑠(𝑛, 𝑘) of the first kind and the Riemann zeta
function 𝜁(𝑛) bymeans of the Gauss summation formula (28)
for the hypergeometric series. In the course of his analysis,
Shen [19] proved some known identities like (13), (18), and
(22). In fact, by employing the univariate series expansion of
classical hypergeometric formulas, Shen [19] and Choi and
Srivastava [20, 21] investigated the evaluation of infinite series
related to generalized harmonic numbers. On the other hand,
more summation formulas have been systematically derived
by Chu [22] and Chu and de Donno [23] who developed fully
this approach to the multivariate case. We chose to recall two
identities:

∞

∑

𝑛=1

𝐻
3

𝑛−1
− 3𝐻
𝑛−1

𝐻
(2)

𝑛−1
+ 2𝐻
(3)

𝑛−1

𝑛2
= 6𝜁 (5) ,

∞

∑

𝑛=1

(
𝐻
(2)

𝑛

𝑛3
+
3𝐻
𝑛

𝑛4
) =

9

2
𝜁 (5) .

(26)

Many formulas of finite series involving binomial coef-
ficients, the Stirling numbers of the first and second kinds,
harmonic numbers, and generalized harmonic numbers have
also been investigated in diverse ways (see, e.g., [2, 23–32]).

Here we show how one can obtain further interesting
and (almost) serendipitous identities about certain finite
or infinite series involving binomial coefficients, harmonic
numbers, and generalized harmonic numbers by simply
applying the usual differential operator towell-knownGauss’s

summation formula for
2
𝐹
1
(1). For example, see the identi-

ties in Corollary 5:

∞

∑

𝑛=1

(𝐻
𝑛
)
3
− 𝐻
𝑛
𝐻
(2)

𝑛

(𝑛 + 1) (𝑛 + 2)
= 4 (1 + 𝜁 (2) + 𝜁 (3)) ;

∞

∑

𝑛=1

(𝐻
𝑛
)
4
− 3(𝐻

𝑛
)
2
𝐻
(2)

𝑛
+ 2𝐻
𝑛
𝐻
(3)

𝑛

(𝑛 + 1) (𝑛 + 2)

= 12 (1 + 𝜁 (2) + 𝜁 (3) + 𝜁 (4)) .

(27)

Relevant connections between some of the identities pre-
sented here with those in earlier works are also pointed out.

2. Infinite Series Involving Binomial
Coefficients, Harmonic Numbers, and
Generalized Harmonic Numbers

We begin by recalling well-known Gauss’s summation for-
mula for

2
𝐹
1
(1):

2
𝐹
1
(𝑎, 𝑏; 𝑐; 1) :=

∞

∑

𝑛=0

(𝑎)
𝑛
(𝑏)
𝑛

𝑛!(𝑐)
𝑛

=
Γ (𝑐) Γ (𝑐 − 𝑎 − 𝑏)

Γ (𝑐 − 𝑎) Γ (𝑐 − 𝑏)

(R (𝑐 − 𝑎 − 𝑏) > 0; 𝑐 ∉ Z
−

0
) ,

(28)

where (𝛼)
𝑛
denotes the Pochhammer symbol defined (for 𝛼 ∈

C) by

(𝛼)
𝑛
:= {

1, (𝑛 = 0) ,

𝛼 (𝛼 + 1) ⋅ ⋅ ⋅ (𝛼 + 𝑛 − 1) , (𝑛 ∈ N) .
(29)

For convenient reference, without proof, we collect a
set of easily derivable formulas necessary to provide further
interesting identities about certain finite or infinite series
involving binomial coefficients, harmonic numbers, and
generalized harmonic numbers asserted as in the following
lemma.

Lemma 1. Each of the following identities holds true:

𝑑

𝑑𝛼
(𝛼)
𝑛
= (𝛼)
𝑛
𝐻
(1)

𝑛
(𝛼 − 1) (𝑛 ∈ N

0
; 𝛼 ∈ C \ Z

−

0
) ;

𝑑

𝑑𝛼

1

(𝛼)
𝑛

= −
𝐻
(1)

𝑛
(𝛼 − 1)

(𝛼)
𝑛

(𝑛 ∈ N
0
; 𝛼 ∈ C \ Z

−

0
) ;

𝑑
2

𝑑𝛼2
(𝛼)
𝑛
= (𝛼)
𝑛
[{𝐻
(1)

𝑛
(𝛼 − 1)}

2

− 𝐻
(2)

𝑛
(𝛼 − 1)]

(𝑛 ∈ N
0
; 𝛼 ∈ C \ Z

−

0
) ;
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𝑑
2

𝑑𝛼2

1

(𝛼)
𝑛

=
1

(𝛼)
𝑛

[{𝐻
(1)

𝑛
(𝛼 − 1)}

2

+ 𝐻
(2)

𝑛
(𝛼 − 1)]

(𝑛 ∈ N
0
; 𝛼 ∈ C \ Z

−

0
) ;

𝑑
ℓ

𝑑𝑧ℓ
𝐻
(𝑠)

𝑛
(𝑧) = (−1)

ℓ
(𝑠)
ℓ
𝐻
(𝑠+ℓ)

𝑛
(𝑧)

(𝑛 ∈ N; ℓ ∈ N
0
; 𝑠 ∈ C \ Z

−
) ;

𝑑

𝑑𝑎
{
Γ (𝑐) Γ (𝑐 − 𝑎 − 𝑏)

Γ (𝑐 − 𝑎) Γ (𝑐 − 𝑏)
}

=
Γ (𝑐) Γ (𝑐 − 𝑎 − 𝑏)

Γ (𝑐 − 𝑎) Γ (𝑐 − 𝑏)
(𝜓 (𝑐 − 𝑎) − 𝜓 (𝑐 − 𝑎 − 𝑏)) ;

𝑑

𝑑𝑐
{
Γ (𝑐) Γ (𝑐 − 𝑎 − 𝑏)

Γ (𝑐 − 𝑎) Γ (𝑐 − 𝑏)
}

=
Γ (𝑐) Γ (𝑐 − 𝑎 − 𝑏)

Γ (𝑐 − 𝑎) Γ (𝑐 − 𝑏)
⋅ (𝜓 (𝑐) + 𝜓 (𝑐 − 𝑎 − 𝑏)

−𝜓 (𝑐 − 𝑎) − 𝜓 (𝑐 − 𝑏)) .

(30)

Now we are ready to present certain general identities
of infinite series involving binomial coefficients, harmonic
numbers, and generalized harmonic numbers as in the
following theorem.

Theorem 2. Each of the following summation formulas holds
true:

∞

∑

𝑛=1

(𝑎)
𝑛
(𝑏)
𝑛

𝑛!(𝑐)
𝑛

𝐻
(1)

𝑛
(𝑎 − 1)

=
Γ (𝑐) Γ (𝑐 − 𝑎 − 𝑏)

Γ (𝑐 − 𝑎) Γ (𝑐 − 𝑏)
(𝜓 (𝑐 − 𝑎) − 𝜓 (𝑐 − 𝑎 − 𝑏)) ;

(31)

∞

∑

𝑛=1

(𝑎)
𝑛
(𝑏)
𝑛

𝑛!(𝑐)
𝑛

[{𝐻
(1)

𝑛
(𝑎 − 1)}

2

− 𝐻
(2)

𝑛
(𝑎 − 1)]

=
Γ (𝑐) Γ (𝑐 − 𝑎 − 𝑏)

Γ (𝑐 − 𝑎) Γ (𝑐 − 𝑏)
⋅ [(𝜓(𝑐 − 𝑎) − 𝜓(𝑐 − 𝑎 − 𝑏))

2

− (𝜓

(𝑐 − 𝑎) − 𝜓


(𝑐 − 𝑎 − 𝑏))] ;

(32)
∞

∑

𝑛=1

(𝑎)
𝑛
(𝑏)
𝑛

𝑛!(𝑐)
𝑛

[{𝐻
(1)

𝑛
(𝑎 − 1)}

3

− 3𝐻
(1)

𝑛
(𝑎 − 1)𝐻

(2)

𝑛
(𝑎 − 1)

+ 2𝐻
(3)

𝑛
(𝑎 − 1) ]

=
Γ (𝑐) Γ (𝑐 − 𝑎 − 𝑏)

Γ (𝑐 − 𝑎) Γ (𝑐 − 𝑏)
[(𝜓 (𝑐 − 𝑎) − 𝜓 (𝑐 − 𝑎 − 𝑏))

3

− 3 (𝜓 (𝑐 − 𝑎) − 𝜓 (𝑐 − 𝑎 − 𝑏))

× (𝜓

(𝑐 − 𝑎) − 𝜓


(𝑐 − 𝑎 − 𝑏))

+ (𝜓
(2)

(𝑐 − 𝑎) − 𝜓
(2)

(𝑐 − 𝑎 − 𝑏)) ] ;

(33)
∞

∑

𝑛=1

(𝑎)
𝑛
(𝑏)
𝑛

𝑛!(𝑐)
𝑛

[{𝐻
(1)

𝑛
(𝑎 − 1)}

4

− 6{𝐻
(1)

𝑛
(𝑎 − 1)}

2

𝐻
(2)

𝑛
(𝑎 − 1)

+ 8𝐻
(1)

𝑛
(𝑎 − 1)𝐻

(3)

𝑛
(𝑎 − 1)

+3{𝐻
(2)

𝑛
(𝑎 − 1)}

2

− 6𝐻
(4)

𝑛
(𝑎 − 1) ]

=
Γ (𝑐) Γ (𝑐 − 𝑎 − 𝑏)

Γ (𝑐 − 𝑎) Γ (𝑐 − 𝑏)
[(𝜓 (𝑐 − 𝑎) − 𝜓 (𝑐 − 𝑎 − 𝑏))

4

− 6(𝜓 (𝑐 − 𝑎) − 𝜓 (𝑐 − 𝑎 − 𝑏))
2

× (𝜓

(𝑐 − 𝑎) − 𝜓


(𝑐 − 𝑎 − 𝑏))

+ 4 (𝜓 (𝑐 − 𝑎) − 𝜓 (𝑐 − 𝑎 − 𝑏))

× (𝜓
(2)

(𝑐 − 𝑎) − 𝜓
(2)

(𝑐 − 𝑎 − 𝑏))

+ 3(𝜓

(𝑐 − 𝑎) − 𝜓


(𝑐 − 𝑎 − 𝑏))

2

− (𝜓
(3)

(𝑐 − 𝑎) − 𝜓
(3)

(𝑐 − 𝑎 − 𝑏)) ] ;

(34)
∞

∑

𝑛=1

(𝑎)
𝑛
(𝑏)
𝑛

𝑛!(𝑐)
𝑛

𝐻
(1)

𝑛
(𝑎 − 1)𝐻

(1)

𝑛
(𝑏 − 1)

=
Γ (𝑐) Γ (𝑐 − 𝑎 − 𝑏)

Γ (𝑐 − 𝑎) Γ (𝑐 − 𝑏)
⋅ [ (𝜓 (𝑐 − 𝑎) − 𝜓 (𝑐 − 𝑎 − 𝑏))

× (𝜓 (𝑐 − 𝑏) − 𝜓 (𝑐 − 𝑎 − 𝑏))

+𝜓

(𝑐 − 𝑎 − 𝑏)] ;

(35)

∞

∑

𝑛=1

(𝑎)
𝑛
(𝑏)
𝑛

𝑛!(𝑐)
𝑛

[𝐻
(1)

𝑛
(𝑎 − 1) {𝐻

(1)

𝑛
(𝑏 − 1)}

2

−𝐻
(1)

𝑛
(𝑎 − 1)𝐻

(2)

𝑛
(𝑏 − 1) ]

=
Γ (𝑐) Γ (𝑐 − 𝑎 − 𝑏)

Γ (𝑐 − 𝑎) Γ (𝑐 − 𝑏)
[ (𝜓 (𝑐 − 𝑎) − 𝜓 (𝑐 − 𝑎 − 𝑏))

× (𝜓 (𝑐 − 𝑏) − 𝜓 (𝑐 − 𝑎 − 𝑏))
2

+ 2 (𝜓 (𝑐 − 𝑎) − 𝜓 (𝑐 − 𝑎 − 𝑏))

× 𝜓

(𝑐 − 𝑎 − 𝑏) − 𝜓

(2)
(𝑐 − 𝑎 − 𝑏)

− (𝜓 (𝑐 − 𝑎) − 𝜓 (𝑐 − 𝑎 − 𝑏))

× (𝜓

(𝑐 − 𝑏) − 𝜓


(𝑐 − 𝑎 − 𝑏))] ;

(36)
∞

∑

𝑛=1

(𝑎)
𝑛
(𝑏)
𝑛

𝑛!(𝑐)
𝑛

[𝐻
(1)

𝑛
(𝑎 − 1) {𝐻

(1)

𝑛
(𝑏 − 1)}

3

− 3𝐻
(1)

𝑛
(𝑎 − 1)𝐻

(1)

𝑛
(𝑏 − 1)𝐻

(2)

𝑛
(𝑏 − 1)

+2𝐻
(1)

𝑛
(𝑎 − 1)𝐻

(3)

𝑛
(𝑏 − 1) ]
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=
Γ (𝑐) Γ (𝑐 − 𝑎 − 𝑏)

Γ (𝑐 − 𝑎) Γ (𝑐 − 𝑏)
[ (𝜓 (𝑐 − 𝑎) − 𝜓 (𝑐 − 𝑎 − 𝑏))

× (𝜓 (𝑐 − 𝑏) − 𝜓 (𝑐 − 𝑎 − 𝑏))
3

+ 3(𝜓 (𝑐 − 𝑏) − 𝜓 (𝑐 − 𝑎 − 𝑏))
2

× 𝜓

(𝑐 − 𝑎 − 𝑏) + 𝜓

(3)
(𝑐 − 𝑎 − 𝑏)

− 3 (𝜓 (𝑐 − 𝑎) − 𝜓 (𝑐 − 𝑎 − 𝑏))

× (𝜓 (𝑐 − 𝑏) − 𝜓 (𝑐 − 𝑎 − 𝑏))

⋅ (𝜓

(𝑐 − 𝑏) − 𝜓


(𝑐 − 𝑎 − 𝑏))

− 3 (𝜓 (𝑐 − 𝑏) − 𝜓 (𝑐 − 𝑎 − 𝑏))

× 𝜓
(2)

(𝑐 − 𝑎 − 𝑏) − 3𝜓

(𝑐 − 𝑎 − 𝑏)

× (𝜓

(𝑐 − 𝑏) − 𝜓


(𝑐 − 𝑎 − 𝑏))

+ (𝜓 (𝑐 − 𝑎) − 𝜓 (𝑐 − 𝑎 − 𝑏))

× (𝜓
(2)

(𝑐 − 𝑏) − 𝜓
(2)

(𝑐 − 𝑎 − 𝑏))] ;

(37)

∞

∑

𝑛=1

(𝑎)
𝑛
(𝑏)
𝑛

𝑛!(𝑐)
𝑛

[𝐻
(1)

𝑛
(𝑎 − 1) {𝐻

(1)

𝑛
(𝑏 − 1)}

4

− 6𝐻
(1)

𝑛
(𝑎 − 1) {𝐻

(1)

𝑛
(𝑏 − 1)}

2

𝐻
(2)

𝑛
(𝑏 − 1)

+ 8𝐻
(1)

𝑛
(𝑎 − 1)𝐻

(1)

𝑛
(𝑏 − 1)𝐻

(3)

𝑛
(𝑏 − 1)

+ 3𝐻
(1)

𝑛
(𝑎 − 1) {𝐻

(2)

𝑛
(𝑏 − 1)}

2

− 6𝐻
(1)

𝑛
(𝑎 − 1)𝐻

(4)

𝑛
(𝑏 − 1) ]

=
Γ (𝑐) Γ (𝑐 − 𝑎 − 𝑏)

Γ (𝑐 − 𝑎) Γ (𝑐 − 𝑏)
[ (𝜓 (𝑐 − 𝑎) − 𝜓 (𝑐 − 𝑎 − 𝑏))

× (𝜓 (𝑐 − 𝑏) − 𝜓 (𝑐 − 𝑎 − 𝑏))
4

+ 4(𝜓 (𝑐 − 𝑏) − 𝜓 (𝑐 − 𝑎 − 𝑏))
3

× 𝜓

(𝑐 − 𝑎 − 𝑏) − 𝜓

(4)
(𝑐 − 𝑎 − 𝑏)

− 6 (𝜓 (𝑐 − 𝑎) − 𝜓 (𝑐 − 𝑎 − 𝑏))

× (𝜓 (𝑐 − 𝑏) − 𝜓 (𝑐 − 𝑎 − 𝑏))
2

⋅ (𝜓

(𝑐 − 𝑏) − 𝜓


(𝑐 − 𝑎 − 𝑏))

− 6(𝜓 (𝑐 − 𝑏) − 𝜓 (𝑐 − 𝑎 − 𝑏))
2

× 𝜓
(2)

(𝑐 − 𝑎 − 𝑏)

− 12 (𝜓 (𝑐 − 𝑏) − 𝜓 (𝑐 − 𝑎 − 𝑏))

× (𝜓

(𝑐 − 𝑏) − 𝜓


(𝑐 − 𝑎 − 𝑏))

+ 4 (𝜓 (𝑐 − 𝑎) − 𝜓 (𝑐 − 𝑎 − 𝑏))

× (𝜓 (𝑐 − 𝑏) − 𝜓 (𝑐 − 𝑎 − 𝑏))

⋅ (𝜓
(2)

(𝑐 − 𝑏) − 𝜓
(2)

(𝑐 − 𝑎 − 𝑏))

+ 4 (𝜓 (𝑐 − 𝑏) − 𝜓 (𝑐 − 𝑎 − 𝑏))

× 𝜓
(3)

(𝑐 − 𝑎 − 𝑏)

+ 3 (𝜓 (𝑐 − 𝑎) − 𝜓 (𝑐 − 𝑎 − 𝑏))

× (𝜓

(𝑐 − 𝑏) − 𝜓


(𝑐 − 𝑎 − 𝑏))

2

+ 6 (𝜓

(𝑐 − 𝑏) − 𝜓


(𝑐 − 𝑎 − 𝑏))

× 𝜓
(2)

(𝑐 − 𝑎 − 𝑏) + 4 𝜓

(𝑐 − 𝑎 − 𝑏)

× (𝜓
(2)

(𝑐 − 𝑏) − 𝜓
(2)

(𝑐 − 𝑎 − 𝑏))

− (𝜓 (𝑐 − 𝑎) − 𝜓 (𝑐 − 𝑎 − 𝑏))

× (𝜓
(3)

(𝑐 − 𝑏) − 𝜓
(3)

(𝑐 − 𝑎 − 𝑏))] .

(38)

Proof. Differentiating each side of (28) with respect to the
variable 𝑎 and using some suitable identities in Section 1 and
Lemma 1, we obtain (31). Differentiating each side of (31) with
respect to the variable 𝑎, we get (32). Similarly we prove (33)
and (34). Differentiating each side of (31) with respect to the
variable 𝑏 and using some suitable identities in Section 1 and
Lemma 1, we obtain (35). Similarly we prove (36), (37), and
(38).

Setting 𝑐 = 2 and 𝑎 = 𝑏 = 1 in (31) to (34) and us-
ing some suitable identities in Section 1, we obtain some
interesting identities involving harmonic numbers and gen-
eralized harmonic numbers given in the following corollary.

Corollary 3. Each of the following identities holds true:
∞

∑

𝑛=1

𝐻
𝑛

(𝑛 + 1) (𝑛 + 2)
= 1;

∞

∑

𝑛=1

1

(𝑛 + 1) (𝑛 + 2)
[(𝐻
𝑛
)
2
− 𝐻
(2)

𝑛
] = 2 = 1 ⋅ 2;

∞

∑

𝑛=1

1

(𝑛 + 1) (𝑛 + 2)
[(𝐻
𝑛
)
3
− 3𝐻
𝑛
𝐻
(2)

𝑛
+ 2𝐻
(3)

𝑛
]

= 6 = 2 ⋅ 3;

∞

∑

𝑛=1

1

(𝑛 + 1) (𝑛 + 2)
[(𝐻
𝑛
)
4

− 6(𝐻
𝑛
)
2
𝐻
(2)

𝑛

+ 8𝐻
𝑛
𝐻
(3)

𝑛
+ 3(𝐻

(2)

𝑛
)
2

− 6𝐻
(4)

𝑛
]

= 24 = 6 ⋅ 4.

(39)
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Differentiating only the left-hand side of (34) with respect
to the variable 𝑎 twice and setting 𝑐 = 3 and 𝑎 = 𝑏 = 1 in each
expression, in view of the identities (39), we may guess two
identities asserted by the following conjecture.

Conjecture 4. Each of the following identities may hold true:
∞

∑

𝑛=1

1

(𝑛 + 1) (𝑛 + 2)
[(𝐻
𝑛
)
5
− 10(𝐻

𝑛
)
3
𝐻
(2)

𝑛
+ 20(𝐻

𝑛
)
2
𝐻
(3)

𝑛

+ 15𝐻
𝑛
(𝐻
(2)

𝑛
)
2

− 30𝐻
𝑛
𝐻
(4)

𝑛

−20𝐻
(2)

𝑛
𝐻
(3)

𝑛
+ 24𝐻

(5)

𝑛
]

= 120 = 24 ⋅ 5;

∞

∑

𝑛=1

1

(𝑛 + 1) (𝑛 + 2)
[(𝐻
𝑛
)
6

− 15(𝐻
𝑛
)
4

𝐻
(2)

𝑛
+ 40(𝐻

𝑛
)
3

𝐻
(3)

𝑛

+ 45(𝐻
𝑛
)
2

(𝐻
(2)

𝑛
)
2

− 90(𝐻
𝑛
)
2
𝐻
(4)

𝑛

− 120𝐻
𝑛
𝐻
(2)

𝑛
𝐻
(3)

𝑛
+ 144𝐻

𝑛
𝐻
(5)

𝑛

− 15(𝐻
(2)

𝑛
)
3

+ 90𝐻
(2)

𝑛
𝐻
(4)

𝑛
+ 40(𝐻

(3)

𝑛
)
2

−120𝐻
(5)

𝑛
] = 720 = 120 ⋅ 6.

(40)

Setting 𝑐 = 3 and 𝑎 = 𝑏 = 1 in (35) to (44) and using some
suitable identities in Section 1 and Lemma 1, we obtain a set
of very interesting identities in the following corollary.

Corollary 5. Each of the following identities holds true:

∞

∑

𝑛=1

(𝐻
𝑛
)
2

(𝑛 + 1) (𝑛 + 2)
= 2 (1 + 𝜁 (2)) ; (41)

∞

∑

𝑛=1

(𝐻
𝑛
)
3
− 𝐻
𝑛
𝐻
(2)

𝑛

(𝑛 + 1) (𝑛 + 2)
= 4 (1 + 𝜁 (2) + 𝜁 (3)) ; (42)

∞

∑

𝑛=1

(𝐻
𝑛
)
4
− 3(𝐻

𝑛
)
2
𝐻
(2)

𝑛
+ 2𝐻
𝑛
𝐻
(3)

𝑛

(𝑛 + 1) (𝑛 + 2)

= 12 (1 + 𝜁 (2) + 𝜁 (3) + 𝜁 (4)) ;

(43)

∞

∑

𝑛=1

(((𝐻
𝑛
)
5
− 6(𝐻

𝑛
)
3
𝐻
(2)

𝑛
+ 8(𝐻

𝑛
)
2

𝐻
(3)

𝑛

+3𝐻
𝑛
(𝐻
(2)

𝑛
)
2

− 6𝐻
𝑛
𝐻
(4)

𝑛
)

×((𝑛 + 1) (𝑛 + 2))
−1
)

= 48 (1 + 𝜁 (2) + 𝜁 (3) + 𝜁 (4) + 𝜁 (5)) .

(44)

Differentiating only the left-hand side of (38) with respect
to the variable 𝑏 twice and setting 𝑐 = 3 and 𝑎 = 𝑏 = 1 in each
expression, in view of the identities (41) to (44), wemay guess
two identities asserted by the following conjecture.

Conjecture 6. Each of the following identities may hold true:

∞

∑

𝑛=1

1

(𝑛 + 1) (𝑛 + 2)
[(𝐻
𝑛
)
6
− 10(𝐻

𝑛
)
4
𝐻
(2)

𝑛
+ 20(𝐻

𝑛
)
3
𝐻
(3)

𝑛

+ 15(𝐻
𝑛
)
2
(𝐻
(2)

𝑛
)
2

− 30(𝐻
𝑛
)
2
𝐻
(4)

𝑛

−20𝐻
𝑛
𝐻
(2)

𝑛
𝐻
(3)

𝑛
+ 24𝐻

𝑛
𝐻
(5)

𝑛
]

= 240 (1 + 𝜁 (2) + 𝜁 (3) + 𝜁 (4) + 𝜁 (5) + 𝜁 (6)) ;

(45)
∞

∑

𝑛=1

1

(𝑛 + 1) (𝑛 + 2)
[(𝐻
𝑛
)
7
− 15(𝐻

𝑛
)
5
𝐻
(2)

𝑛
+ 40(𝐻

𝑛
)
4
𝐻
(3)

𝑛

+ 45(𝐻
𝑛
)
3
(𝐻
𝑛
)
2
− 90(𝐻

𝑛
)
3
𝐻
(4)

𝑛

− 120(𝐻
𝑛
)
2

𝐻
(2)

𝑛
𝐻
(3)

𝑛
+ 144(𝐻

𝑛
)
2

𝐻
(5)

𝑛

− 15𝐻
𝑛
(𝐻
(2)

𝑛
)
3

+ 90𝐻
𝑛
𝐻
(2)

𝑛
𝐻
(4)

𝑛

+40𝐻
𝑛
(𝐻
(3)

𝑛
)
2

− 120𝐻
𝑛
𝐻
(6)

𝑛
]

= 1440 (1 + 𝜁 (2) + 𝜁 (3) + 𝜁 (4) + 𝜁 (5) +𝜁 (6) + 𝜁 (7)) .

(46)

Remark 7. It is interesting to observe that the number of
terms in the numerator of each of the left-hand sides of
(41) to (46) is equal to the number of partitions of 𝑘 −

1 (𝑘 = 2, 3, 4, 5, 6, 7), respectively. For example, for (46), all
the partitions of 7 − 1 = 6 are as follows:

7 = 1 + 1 + 1 + 1 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1 + 2 = 1 + 1 + 1 + 2 + 2

= 1 + 2 + 2 + 2 = 1 + 1 + 1 + 1 + 3

= 1 + 1 + 2 + 3 = 1 + 3 + 3

= 1 + 1 + 1 + 4 = 1 + 1 + 5 = 1 + 2 + 4,

(47)

where 𝑘 denotes𝐻(𝑘)
𝑛

(𝑘 = 1, 2, 3, 4, 5) and + is translated into
a multiplication of its corresponding 𝐻

(𝑘)

𝑛
. The coefficient of

each of the right-hand sides of (41) to (46) has the following
rule:

2, 4 = 2 ⋅ 2, 12 = 4 ⋅ 3, 48 = 12 ⋅ 4,

240 = 48 ⋅ 5, 1440 = 240 ⋅ 6, . . . .

(48)

The remaining thing is to find a rule that dominates the
coefficients of each term of the numerator of the left-hand
sides of (41) to (46).

Differentiating each side of (28) with respect to the
variable 𝑐 successively and using some suitable identities
in Section 1 and Lemma 1, we obtain a set of infinite
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series involving binomial coefficients, harmonic numbers,
and generalized harmonic numbers different from those in
Theorem 2 as in the following theorem.

Theorem 8. Each of the following summation formulas holds
true:

∞

∑

𝑛=1

(𝑎)
𝑛
(𝑏)
𝑛

𝑛!(𝑐)
𝑛

𝐻
(1)

𝑛
(𝑐 − 1)

=
Γ (𝑐) Γ (𝑐 − 𝑎 − 𝑏)

Γ (𝑐 − 𝑎) Γ (𝑐 − 𝑏)

× (𝜓 (𝑐 − 𝑎) + 𝜓 (𝑐 − 𝑏) − 𝜓 (𝑐) − 𝜓 (𝑐 − 𝑎 − 𝑏)) ;

∞

∑

𝑛=1

(𝑎)
𝑛
(𝑏)
𝑛

𝑛!(𝑐)
𝑛

[{𝐻
(1)

𝑛
(𝑐 − 1)}

2

+ 𝐻
(2)

𝑛
(𝑐 − 1)]

=
Γ (𝑐) Γ (𝑐 − 𝑎 − 𝑏)

Γ (𝑐 − 𝑎) Γ (𝑐 − 𝑏)

× [(𝜓 (𝑐 − 𝑎) + 𝜓 (𝑐 − 𝑏) − 𝜓 (𝑐) − 𝜓 (𝑐 − 𝑎 − 𝑏))
2

− (𝜓

(𝑐 − 𝑎) + 𝜓


(𝑐 − 𝑏) − 𝜓


(𝑐) − 𝜓


(𝑐 − 𝑎 − 𝑏))] ;

∞

∑

𝑛=1

(𝑎)
𝑛
(𝑏)
𝑛

𝑛!(𝑐)
𝑛

[{𝐻
(1)

𝑛
(𝑐 − 1)}

3

+ 3𝐻
(1)

𝑛
(𝑐 − 1)

×𝐻
(2)

𝑛
(𝑐 − 1) + 2𝐻

(3)

𝑛
(𝑐 − 1) ]

=
Γ (𝑐) Γ (𝑐 − 𝑎 − 𝑏)

Γ (𝑐 − 𝑎) Γ (𝑐 − 𝑏)

× [(𝜓 (𝑐 − 𝑎) + 𝜓 (𝑐 − 𝑏) − 𝜓 (𝑐) − 𝜓 (𝑐 − 𝑎 − 𝑏))
3

− 3 (𝜓 (𝑐 − 𝑎) + 𝜓 (𝑐 − 𝑏) − 𝜓 (𝑐) − 𝜓 (𝑐 − 𝑎 − 𝑏))

⋅ (𝜓

(𝑐 − 𝑎) + 𝜓


(𝑐 − 𝑏) − 𝜓


(𝑐) − 𝜓


(𝑐 − 𝑎 − 𝑏))

+ (𝜓
(2)

(𝑐 − 𝑎) + 𝜓
(2)

(𝑐 − 𝑏)

− 𝜓
(2)

(𝑐) − 𝜓
(2)

(𝑐 − 𝑎 − 𝑏))] ;

∞

∑

𝑛=1

(𝑎)
𝑛
(𝑏)
𝑛

𝑛!(𝑐)
𝑛

[{𝐻
(1)

𝑛
(𝑐 − 1)}

4

+ 6{𝐻
(1)

𝑛
(𝑐 − 1)}

2

× 𝐻
(2)

𝑛
(𝑐 − 1) + 8𝐻

(1)

𝑛
(𝑐 − 1)𝐻

(3)

𝑛
(𝑐 − 1)

+ 3{𝐻
(2)

𝑛
(𝑐 − 1)}

2

+ 6𝐻
(4)

𝑛
(𝑐 − 1)]

=
Γ (𝑐) Γ (𝑐 − 𝑎 − 𝑏)

Γ (𝑐 − 𝑎) Γ (𝑐 − 𝑏)

× [(𝜓 (𝑐 − 𝑎) + 𝜓 (𝑐 − 𝑏) − 𝜓 (𝑐) − 𝜓 (𝑐 − 𝑎 − 𝑏))
4

− 6(𝜓 (𝑐 − 𝑎) + 𝜓 (𝑐 − 𝑏) − 𝜓 (𝑐) − 𝜓 (𝑐 − 𝑎 − 𝑏))
2

⋅ (𝜓

(𝑐 − 𝑎) + 𝜓


(𝑐 − 𝑏) − 𝜓


(𝑐) − 𝜓


(𝑐 − 𝑎 − 𝑏))

+ 4 (𝜓 (𝑐 − 𝑎) + 𝜓 (𝑐 − 𝑏) − 𝜓 (𝑐) − 𝜓 (𝑐 − 𝑎 − 𝑏))

⋅ (𝜓
(2)

(𝑐 − 𝑎) + 𝜓
(2)

(𝑐 − 𝑏) − 𝜓
(2)

(𝑐)

−𝜓
(2)

(𝑐 − 𝑎 − 𝑏))

+ 3 (𝜓

(𝑐 − 𝑎) + 𝜓


(𝑐 − 𝑏) − 𝜓


(𝑐)

−𝜓

(𝑐 − 𝑎 − 𝑏))

2

− (𝜓
(3)

(𝑐 − 𝑎) + 𝜓
(3)

(𝑐 − 𝑏) − 𝜓
(3)

(𝑐)

−𝜓
(3)

(𝑐 − 𝑎 − 𝑏)) ] .

(49)

Setting 𝑐 = 1 and 𝑎 = 𝑏 = −1/2 in (49) and using
some suitable identities in Section 1 and special values of 𝜓-
function (see, e.g., [4, Section 1.2] and [5, Section 1.3]), we
obtain a set of interesting infinite series involving binomial
coefficients and harmonic numbers given in the following
corollary.

Corollary 9. Each of the following identities holds true:

∞

∑

𝑛=1

(
2𝑛

𝑛
)
2

(2𝑛 − 1)
2
24𝑛

𝐻
𝑛
=

4

𝜋
(3 − 4 log 2) ;

∞

∑

𝑛=1

(
2𝑛

𝑛
)
2

(2𝑛 − 1)
2
24𝑛

[(𝐻
𝑛
)
2
+ 𝐻
(2)

𝑛
]

=
4

𝜋
[(3 − 4 log 2)2 + 7 − 4𝜁 (2)] ;

∞

∑

𝑛=1

(
2𝑛

𝑛
)
2

(2𝑛 − 1)
2
24𝑛

[(𝐻
𝑛
)
3
+ 3𝐻
𝑛
𝐻
(2)

𝑛
+ 2𝐻
(3)

𝑛
]

=
4

𝜋
[(3 − 4 log 2)3 − 3 (3 − 4 log 2) (4𝜁 (2) − 7)

−24𝜁 (3) + 30] ;

∞

∑

𝑛=1

(
2𝑛

𝑛
)
2

(2𝑛 − 1)
2
24𝑛

[(𝐻
𝑛
)
4
+ 6(𝐻

𝑛
)
2
𝐻
(2)

𝑛

+ 8𝐻
𝑛
𝐻
(3)

𝑛
+ 3(𝐻

(2)

𝑛
)
2

+ 6𝐻
(4)

𝑛
]

=
4

𝜋
[(3 − 4 log 2)4 − 6(3 − 4 log 2)2 (4𝜁 (2) − 7)

+ 24 (3 − 4 log 2) (5 − 4𝜁 (3)) + 3(4𝜁 (2) − 7)
2

+186 − 168𝜁 (4) ] .

(50)
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3. Finite Series Involving Binomial
Coefficients, Harmonic Numbers, and
Generalized Harmonic Numbers

Setting 𝑏 = −𝑁 ∈ N in some chosen formulas in Theorems 2
and 8 and using some suitable identities in Section 1 and the
following known and easily derivable formula:

(−𝑁)
𝑛
=

{

{

{

(−1)
𝑛
𝑁!

(𝑁 − 𝑛)!
, (0 ≤ 𝑛 ≤ 𝑁; 𝑁 ∈ N) ,

0, (𝑛 > 𝑁) ,

=

{{

{{

{

(−1)
𝑛
𝑛! (

𝑁

𝑛
) , (0 ≤ 𝑛 ≤ 𝑁; 𝑁 ∈ N) ,

0, (𝑛 > 𝑁) ,

(51)

we obtain a set of finite series involving binomial coefficients,
harmonic numbers, and generalized harmonic numbers
given in the following theorem.

Theorem 10. Each of the following finite summation formulas
holds true:

𝑁

∑

𝑛=1

(−1)
𝑛+1 (𝑎)𝑛

(𝑐)
𝑛

(
𝑁

𝑛
)𝐻
(1)

𝑛
(𝑎 − 1)

=
Γ (𝑐 − 𝑎 + 𝑁) Γ (𝑐)

Γ (𝑐 − 𝑎) Γ (𝑐 + 𝑁)
𝐻
(1)

𝑁
(𝑐 − 𝑎 − 1) (𝑁 ∈ N

0
) ,

(52)

where the empty sum is (as usual) understood to be nil
throughout this paper,

𝑁

∑

𝑛=1

(−1)
𝑛 (𝑎)𝑛

(𝑐)
𝑛

(
𝑁

𝑛
) [{𝐻

(1)

𝑛
(𝑎 − 1)}

2

− 𝐻
(2)

𝑛
(𝑎 − 1)]

=
Γ (𝑐 − 𝑎 + 𝑁) Γ (𝑐)

Γ (𝑐 − 𝑎) Γ (𝑐 + 𝑁)
[{𝐻
(1)

𝑁
(𝑐 − 𝑎 − 1)}

2

−𝐻
(2)

𝑁
(𝑐 − 𝑎 − 1) ] (𝑁 ∈ N

0
) ;

𝑁

∑

𝑛=1

(−1)
𝑛+1 (𝑎)𝑛

(𝑐)
𝑛

(
𝑁

𝑛
) [{𝐻

(1)

𝑛
(𝑎 − 1)}

3

− 3𝐻
(1)

𝑛
(𝑎 − 1)

× 𝐻
(2)

𝑛
(𝑎 − 1) + 2𝐻

(3)

𝑛
(𝑎 − 1) ]

=
Γ (𝑐 − 𝑎 + 𝑁) Γ (𝑐)

Γ (𝑐 − 𝑎) Γ (𝑐 + 𝑁)
[{𝐻
(1)

𝑁
(𝑐 − 𝑎 − 1)}

3

− 3𝐻
(1)

𝑁
(𝑐 − 𝑎 − 1)

× 𝐻
(2)

𝑁
(𝑐 − 𝑎 − 1)

+2𝐻
(3)

𝑁
(𝑐 − 𝑎 − 1) ]

(𝑁 ∈ N
0
) ;

𝑁

∑

𝑛=1

(−1)
𝑛 (𝑎)𝑛

(𝑐)
𝑛

(
𝑁

𝑛
) [{𝐻

(1)

𝑛
(𝑎 − 1)}

4

− 6{𝐻
(1)

𝑛
(𝑎 − 1)}

2

× 𝐻
(2)

𝑛
(𝑎 − 1) + 8𝐻

(1)

𝑛
(𝑎 − 1)

× 𝐻
(3)

𝑛
(𝑎 − 1) + 3{𝐻

(2)

𝑛
(𝑎 − 1)}

2

−6𝐻
(4)

𝑛
(𝑎 − 1)]

=
Γ (𝑐 − 𝑎 + 𝑁) Γ (𝑐)

Γ (𝑐 − 𝑎) Γ (𝑐 + 𝑁)
[{𝐻
(1)

𝑁
(𝑐 − 𝑎 − 1)}

4

− 6{𝐻
(1)

𝑁
(𝑐 − 𝑎 − 1)}

2

× 𝐻
(2)

𝑁
(𝑐 − 𝑎 − 1)

+ 8𝐻
(1)

𝑁
(𝑐 − 𝑎 − 1)𝐻

(3)

𝑁
(𝑐 − 𝑎 − 1)

+ 3{𝐻
(2)

𝑁
(𝑐 − 𝑎 − 1)}

2

−6𝐻
(4)

𝑁
(𝑐 − 𝑎 − 1) ] (𝑁 ∈ N

0
) ;

𝑁

∑

𝑛=1

(−1)
𝑛 (𝑎)𝑛

(𝑐)
𝑛

(
𝑁

𝑛
)𝐻
(1)

𝑛
(𝑐 − 1)

=
Γ (𝑐 − 𝑎 + 𝑁) Γ (𝑐)

Γ (𝑐 − 𝑎) Γ (𝑐 + 𝑁)
[𝐻
(1)

𝑁
(𝑐 − 1) − 𝐻

(1)

𝑁
(𝑐 − 𝑎 − 1)]

(𝑁 ∈ N
0
) ;

𝑁

∑

𝑛=1

(−1)
𝑛
(
𝑁

𝑛
)
(𝑎)
𝑛

(𝑐)
𝑛

[{𝐻
(1)

𝑛
(𝑐 − 1)}

2

+ 𝐻
(2)

𝑛
(𝑐 − 1)]

=
Γ (𝑐 − 𝑎 + 𝑁) Γ (𝑐)

Γ (𝑐 − 𝑎) Γ (𝑐 + 𝑁)
[{𝐻
(1)

𝑁
(𝑐 − 1) − 𝐻

(1)

𝑁
(𝑐 − 𝑎 − 1)}

2

+𝐻
(2)

𝑁
(𝑐 − 1) − 𝐻

(2)

𝑁
(𝑐 − 𝑎 − 1) ]

(𝑁 ∈ N
0
) .

(53)

Setting 𝑎 = 1 and 𝑐 = 2 in (52) to (53) and using
some suitable identities in Section 1, we obtain a set of inter-
esting identities involving binomial coefficients, harmonic
numbers, and generalized harmonic numbers given in the
following corollary.

Corollary 11. Each of the following identities holds true:

𝑁

∑

𝑛=1

(−1)
𝑛+1

𝑛 + 1
(
𝑁

𝑛
)𝐻
𝑛
=

𝐻
𝑁

𝑁 + 1
(𝑁 ∈ N

0
) ;

𝑁

∑

𝑛=1

(−1)
𝑛

𝑛 + 1
(
𝑁

𝑛
) [(𝐻

𝑛
)
2
− 𝐻
(2)

𝑛
] =

(𝐻
𝑁
)
2
− 𝐻
(2)

𝑁

𝑁 + 1
(𝑁 ∈ N

0
) ;

𝑁

∑

𝑛=1

(−1)
𝑛+1

𝑛 + 1
(
𝑁

𝑛
) [(𝐻

𝑛
)
3

− 3𝐻
𝑛
𝐻
(2)

𝑛
+ 2𝐻
(3)

𝑛
]
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=
1

𝑁 + 1
[(𝐻
𝑁
)
3
− 3𝐻
𝑁
𝐻
(2)

𝑁
+ 2𝐻
(3)

𝑁
] (𝑁 ∈ N

0
) ;

𝑁

∑

𝑛=1

(−1)
𝑛

𝑛 + 1
(
𝑁

𝑛
) [(𝐻

𝑛
)
4

− 6(𝐻
𝑛
)
2

𝐻
(2)

𝑛
+ 8𝐻
𝑛
𝐻
(3)

𝑛

+3(𝐻
(2)

𝑛
)
2

− 6𝐻
(4)

𝑛
]

=
1

𝑁 + 1
[(𝐻
𝑁
)
4
− 6(𝐻

𝑁
)
2
𝐻
(2)

𝑁
+ 8𝐻
𝑁
𝐻
(3)

𝑁

+3(𝐻
(2)

𝑁
)
2

− 6𝐻
(4)

𝑁
] (𝑁 ∈ N

0
) ;

𝑁

∑

𝑛=1

(−1)
𝑛+1

𝑛 + 1
(
𝑁

𝑛
)𝐻
(1)

𝑛
(1) =

𝑁

(𝑁 + 1)
2

(𝑁 ∈ N
0
) ;

𝑁

∑

𝑛=1

(−1)
𝑛+1

𝑛 + 1
(
𝑁

𝑛
) [{𝐻

(1)

𝑛
(1)}
2

+ 𝐻
(2)

𝑛
(1)]

=
2𝑁

(𝑁 + 1)
3

(𝑁 ∈ N
0
) .

(54)
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