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We propose a simple constructive method which assures uniform accuracy of the approximate analytical solutions for the Blasius
problem on the semi-infinite interval [0,∞).Themethod is based on a weight function having an S-shape to reflect a series solution
near the origin 𝑥 = 0 and a reference solution far from the origin. Numerical results show the efficiency of the proposed method.

1. Introduction

For the Blasius problem

𝑁𝑓 (𝑥) := 𝑓
󸀠󸀠󸀠

(𝑥) + 𝛼𝑓 (𝑥) 𝑓
󸀠󸀠

(𝑥) = 0, 0 ≤ 𝑥 < ∞, (1)

subject to the boundary conditions

𝑓 (0) = 𝑓
󸀠

(0) = 0, 𝑓
󸀠

(∞) = 𝛽, (2)

we recall the well-known properties [1–3] of the so-called
Blasius function 𝑓(𝑥) as follows:

(i) 𝑓󸀠󸀠(0) = 𝜅 = √𝛼𝛽3𝜅
0
with 𝜅

0
= 0.4695999883 ⋅ ⋅ ⋅

(ii) lim
𝑥→∞

{𝑓(𝑥) − 𝛽𝑥} = √(𝛽/𝛼)𝐵
0
with 𝐵

0
=

−1.2167806216 ⋅ ⋅ ⋅ .

Though the Blasius problem looks simple, search for an
approximate analytical solution is known to be quite difficult.
Until now, in the literature [4–22], lots of analytical methods
have been proposed. Recently, in approximation of the
solutions of nonlinear differential equations in unbounded
domain, several efficient spectral methods [23–27] have
been proposed. These methods reduce solving the nonlinear
equation to solving a system of nonlinear algebraic equations.

In this paper, we introduce a weight function 𝑤
𝐿
(𝑘; 𝑥)

in (8) whose values cluster to 0 for 𝑥 < 𝐿/2 and to 1
for 𝑥 > 𝐿/2 when 𝑘 is large enough. Then, employing a
series approximate solutions 𝑆

𝑛
𝑓(𝑥) for the Blasius function

𝑓(𝑥) near the origin 𝑥 = 0 and a reference solution 𝑅𝑓(𝑥)
away from the origin, we propose a weighted averaging
method (11) based on the function 𝑤

𝐿
(𝑘; 𝑥). The presented

analytical solution 𝑓
𝑛,𝐿
(𝑘; 𝑥), a smooth function on interval

[0, 𝐿], highly reflects the near origin solution 𝑆
𝑛
𝑓(𝑥) for

𝑥 < 𝐿/2 and the faraway solution 𝑅𝑓(𝑥) for 𝑥 > 𝐿/2.
Furthermore, the solution 𝑓

𝑛,𝐿
(𝑘; 𝑥) can be continuously

extended to the semi-infinite interval [0,∞). For practical
performance, a procedure to choose appropriate parameters
(𝑛, 𝐿, 𝑘) in 𝑓

𝑛,𝐿
(𝑘; 𝑥) is included. In addition, to improve the

accuracy of 𝑓
𝑛,𝐿
(𝑘; 𝑥), we propose a corrected approximation

formula including an auxiliary term which properly reflects
the behavior of the deviation 𝑓

𝑛,𝐿
(𝑘; 𝑥) − 𝑓(𝑥). Results of

numerical experiments, compared with the aforementioned
existing method [27], illustrate availability of the proposed
method.

2. Series Solutions and a Reference Solution

For simplicity we consider the case of 𝛼 = 1/2 and 𝛽 = 1. The
power series of the Blasius stream function 𝑓(𝑥) for this case
is known as

𝑆𝑓 (𝑥) =

∞

∑
𝑗=0

(−
1

2
)
𝑗 𝑎
𝑗
𝜅
𝑗+1

(3𝑗 + 2)!
𝑥
3𝑗+2

, (3)
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where 𝜅 = 𝜅
0
/√2 and the coefficients 𝑎

𝑗
are computed from

the recurrence [1]

𝑎
𝑗
=

{{

{{

{

1, 𝑗 = 0, 1
𝑗−1

∑
𝑟=0

(
3𝑗 − 1

3𝑟
) 𝑎
𝑟
𝑎
𝑗−𝑟−1

, 𝑗 ≥ 2.
(4)

In fact, the series becomes

𝑆𝑓 (𝑥) =
𝜅

2
𝑥
2
−
𝜅
2

240
𝑥
5
+

11

161280
𝜅
3
𝑥
8

−
73

63866880
𝜅
4
𝑥
11
+ ⋅ ⋅ ⋅ .

(5)

This series, however, converges for |𝑥| < 𝜌 = 5.6900380545.
In this paper, we will use a partial sum

𝑆
𝑛
𝑓 (𝑥) =

𝑛

∑
𝑗=0

(−
1

2
)
𝑗 𝑎
𝑗
𝜅
𝑗+1

(3𝑗 + 2)!
𝑥
3𝑗+2

, (6)

with an integer 𝑛 ≥ 0, for an approximate solution to the
Blasius function 𝑓(𝑥) near the origin.

On the other hand, for a reference solution approximating
𝑓(𝑥) far from the origin, we consider the following linear
function:

𝑅𝑓 (𝑥) = 𝛽𝑥 + √
𝛽

𝛼
𝐵
0
= 𝑥 + √2𝐵

0
, (7)

based on the property (ii) in the previous section.
Figure 1(a) illustrates graphs of the series approximate

solutions 𝑆
𝑛
𝑓(𝑥) with 𝑛 = 0, 1, 2, 3, 4 on the interval [0, 8].

Therein, the dotted line indicates the numerical solution
for the Blasius function 𝑓(𝑥). It is observed that 𝑆

𝑛
𝑓(𝑥)

overshoots 𝑓(𝑥) when 𝑛 is even and undershoots when 𝑛 is
odd. In addition, Figure 1(b) shows the graph of the refer-
ence solution 𝑅𝑓(𝑥) which undershoots 𝑓(𝑥). To illustrate
motivation of the main idea proposed in the next section,
graphs of the differences 𝑆

𝑛
𝑓(𝑥) − 𝑓(𝑥) with 𝑛 = 0, 2, 4 and

𝑅𝑓(𝑥)−𝑓(𝑥) are included in Figure 2, where 𝑓(𝑥) is replaced
by the numerical solution.

3. Uniform Approximate Analytical Solutions

For some 𝑘 > 1 and 𝐿 > 0 we introduce a weight function
𝑤
𝐿
(𝑘; 𝑥) defined as

𝑤
𝐿
(𝑘; 𝑥) =

𝑥
𝑘

𝑥𝑘 + (𝐿 − 𝑥)
𝑘
, 0 ≤ 𝑥 ≤ 𝐿. (8)

It should be noted that 0 ≤ 𝑤
𝐿
(𝑘; 𝑥) ≤ 1 and it is strictly

increasing on the interval [0, 𝐿] with 𝑤
𝐿
(𝑘; 𝐿/2) = 1/2 for

any 𝑘. In addition, for a large 𝑘 it follows that

𝑤
𝐿
(𝑘; 𝑥) =

{{{

{{{

{

𝑂((
𝑥

𝐿
)
𝑘

) , for 0 ≤ 𝑥 < 𝐿
2

1 + 𝑂((
𝐿

𝑥
− 1)
𝑘

) , for 𝐿
2
< 𝑥 ≤ 𝐿.

(9)

This implies that the value of 𝑤
𝐿
(𝑘; 𝑥) goes close to 0 for 𝑥 <

𝐿/2 and to 1 for 𝑥 > 𝐿/2 as 𝑘 increases. Figure 3 shows the
graphs of 𝑤

𝐿
(𝑘; 𝑥) with 𝐿 = 10 and 𝑘 = 2, 4, 8, for example.

Moreover, we can find that the inverse function of
𝑤
𝐿
(𝑘; 𝑥) = 𝑦 takes a form of

𝑤
−1

𝐿
(𝑘; 𝑦) = 𝐿 ⋅

𝑦
1/𝑘

𝑦1/𝑘 + (1 − 𝑦)
1/𝑘

= 𝐿 ⋅ 𝑤
1
(
1

𝑘
; 𝑦) ,

0 ≤ 𝑦 ≤ 1.

(10)

In order to improve the accuracy of the approximate
solutions for the Blasius function, we propose a weighted
average of the series solution 𝑆

𝑛
𝑓(𝑥) and the reference

solution 𝑅𝑓(𝑥) as

𝑓
𝑛,𝐿
(𝑘; 𝑥) = {1 − 𝑤

𝐿
(𝑘; 𝑥)} 𝑆

𝑛
𝑓 (𝑥) + 𝑤

𝐿
(𝑘; 𝑥) 𝑅𝑓 (𝑥) ,

𝑥 ∈ [0, 𝐿] .
(11)

Therein, for given 𝑛 and 𝐿, wemay take the optimal value of 𝑘,
denoted by 𝑘∗, which minimizes the 𝐿

2
-norm of the residual

function𝑁𝑓
𝑛,𝐿
(𝑘; 𝑥) defined as

󵄩󵄩󵄩󵄩𝑁𝑓𝑛,𝐿 (𝑘; 𝑥)
󵄩󵄩󵄩󵄩2
2

= ∫
𝐿

0

{𝑓
󸀠󸀠󸀠

𝑛,𝐿
(𝑘; 𝑥)

+
1

2
𝑓
𝑛,𝐿
(𝑘; 𝑥) 𝑓

󸀠󸀠

𝑛,𝐿
(𝑘; 𝑥)}

2

𝑑𝑥.

(12)

From the property (9) of the weight function 𝑤
𝐿
(𝑘; 𝑥), it

follows that for 𝑘 large enough

𝑓
𝑛,𝐿
(𝑘; 𝑥) ∼

{{

{{

{

𝑆
𝑛
𝑓 (𝑥) , for 0 ≤ 𝑥 < 𝐿

2

𝑅𝑓 (𝑥) , for 𝐿
2
< 𝑥 ≤ 𝐿

(13)

with

𝑓
𝑛,𝐿
(𝑘;

𝐿

2
) =

{𝑆
𝑛
𝑓 (𝐿/2) + 𝑅𝑓 (𝐿/2)}

2
. (14)

This implies that the point 𝑥 = 𝐿/2 is a threshold between the
near origin series solution 𝑆

𝑛
𝑓(𝑥) and the faraway reference

solution 𝑅𝑓(𝑥).
We now summarize the procedure to choose the param-

eters 𝑛, 𝐿, and 𝑘 in the proposed solution 𝑓
𝑛,𝐿
(𝑘; 𝑥) in (11) as

follows.

(S1) Considering the undershoot of the reference solution
𝑅𝑓(𝑥), take an even integer 𝑛 ≥ 0 in the series solution
𝑆
𝑛
𝑓 which overshoots the Blasius function 𝑓(𝑥) (see

Figure 1).
(S2) Choose a length 𝐿 = 2𝑑 of the interval [0, 𝐿] for some

𝑑 satisfying

(𝑆
𝑛
𝑓 (𝑑) − 𝑓 (𝑑)) + (𝑅𝑓 (𝑑) − 𝑓 (𝑑)) ≈ 0 (15)

or 𝑆
𝑛
𝑓(𝑑) + 𝑅𝑓(𝑑) ≈ 2𝑓(𝑑).
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Figure 1: Approximations of the series solutions 𝑆
𝑛
𝑓(𝑥) for each 𝑛 = 0, 1, 2, 3, 4 in (a) and the reference solution 𝑅𝑓(𝑥) in (b).
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Figure 2:Differences 𝑆
𝑛
𝑓(𝑥)−𝑓(𝑥)with 𝑛 = 0, 2, 4 and𝑅𝑓(𝑥)−𝑓(𝑥)

indicated by the thin lines and the thick line, respectively.

(S3) Find the optimal exponent 𝑘 = 𝑘
∗ of 𝑤

𝐿
(𝑘; 𝑥)

which minimizes ‖𝑁𝑓
𝑛,𝐿
(𝑘; 𝑥)‖

2
defined in (12), that

is, satisfies
󵄩󵄩󵄩󵄩𝑁𝑓𝑛,𝐿 (𝑘

∗
; 𝑥)
󵄩󵄩󵄩󵄩2 = min
𝑘>1

󵄩󵄩󵄩󵄩𝑁𝑓𝑛,𝐿 (𝑘; 𝑥)
󵄩󵄩󵄩󵄩2. (16)

As a result, we may expect that the presented approximate
solution 𝑓

𝑛,𝐿
(𝑘; 𝑥) with the parameters (𝑛, 𝐿, 𝑘) determined

by the procedure (S1)–(S3) will become a corrected approx-
imate solution which improves accuracy of both the series
solution 𝑆

𝑛
𝑓(𝑥) and the reference solution 𝑅𝑓(𝑥) over the

interval [0, 𝐿].
In addition, we may extend 𝑓

𝑛,𝐿
(𝑘; 𝑥) to the semi-infinite

interval [0,∞) continuously by setting 𝑓
𝑛,𝐿
(𝑘; 𝑥) = 𝑅𝑓(𝑥) for

all 𝑥 ≥ 𝐿, which assures sufficient accuracy over the interval
[𝐿,∞) for 𝐿 > 6 as can be observed in Figures 1(b) and 2.

For example, when we take 𝑛 = 0, from Figure 2, we can
find 𝑑 ≈ 3 and thus we may set 𝐿 = 2𝑑 = 6. The optimal
exponent is 𝑘∗ ≈ 4.31 which is obtained by the software,
MathematicaV.9. By the similarway, we can choose the values
of 𝐿 and 𝑘∗ for other cases of 𝑛. Table 1 includes the results

2 5 8 10

0.25

0.5

0.75

1.0

k = 2

k = 4

k = 8

(x)

Figure 3: Behavior of the weight function 𝑤
𝐿
(𝑘; 𝑥) with 𝐿 = 10 for

each 𝑘 = 2, 4, 8.

for the some small values, 𝑛 = 0, 2, 4, where 𝑘󸀠 indicates the
nearest integer to the optimal exponent 𝑘∗.

Figure 4 illustrates the availability of the presented
approximate solution 𝑓

𝑛,𝐿
(𝑘; 𝑥) with (𝑛, 𝐿, 𝑘) = (4, 8.5, 11)

given in Table 1. Additionally, numerical results for the 𝐿
2
-

norm errors of the approximate solution 𝑓
𝑛,𝐿
(𝑘; 𝑥) and its

derivatives are given in Table 2.

4. Further Improvement of
the Approximate Solution

In a particular case of (𝑛, 𝐿, 𝑘) = (4, 8.5, 11.49), observing the
behavior of the difference error𝑓

𝑛,𝐿
(𝑘; 𝑥)−𝑓(𝑥), we propose a
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Figure 4: Approximation of the weighted average 𝑓
𝑛,𝐿
(𝑘; 𝑥) with the parameters (𝑛, 𝐿, 𝑘) = (4, 8.5, 11) and its error in (a) and those of the

related velocity profile 𝑓󸀠
𝑛,𝐿
(𝑘; 𝑥) in (b).

correction formula by adding an auxiliary term to the formula
𝑓
𝑛,𝐿
(𝑘; 𝑥) as follows:

𝑓
𝑛,𝐿
(𝑘; 𝑥) = 𝑓

𝑛,𝐿
(𝑘; 𝑥) + 𝐴𝑒

−(𝑥−𝑐)
2

, (17)

where 𝐴 is the maximum of the absolute error |𝑓
𝑛,𝐿
(𝑘; 𝑥) −

𝑓(𝑥)| at the point 𝑥 = 𝑐. Values of 𝐴 and 𝑐 are numerically
evaluated as

𝐴 = 0.00064585, 𝑐 = 5.0402. (18)

Numerical implementation for 𝑓
𝑛,𝐿
(𝑘; 𝑥) results in the errors

󵄩󵄩󵄩󵄩󵄩
𝑓 − 𝑓
𝑛,𝐿

󵄩󵄩󵄩󵄩󵄩2
= 3.9 × 10

−5
,

󵄩󵄩󵄩󵄩󵄩
𝑓 − 𝑓

󸀠

𝑛,𝐿

󵄩󵄩󵄩󵄩󵄩2
= 1.3 × 10

−4
,

󵄩󵄩󵄩󵄩󵄩
𝑓 − 𝑓

󸀠󸀠

𝑛,𝐿

󵄩󵄩󵄩󵄩󵄩2
= 2.0 × 10

−2
.

(19)

Comparing the results with those in Table 2, one can find that
the corrected approximation 𝑓

𝑛,𝐿
(𝑘; 𝑥) and its first derivative

𝑓
󸀠

𝑛,𝐿
(𝑘; 𝑥) reasonably improve the accuracy of 𝑓

𝑛,𝐿
(𝑘; 𝑥) and

𝑓
󸀠

𝑛,𝐿
(𝑘; 𝑥).
For comparisonwith the existing approximationmethod,

we consider the modified generalized Laguerre function Tau
method introduced in the literature [27] such as

𝑓
par
𝑁
(𝑥) = exp(−𝑥

2𝑙
)

𝑁−1

∑
𝑗=0

𝑎
𝑗
𝐿
𝛼

𝑗
(
𝑥

𝑙
) , (20)

based on the generalized Laguerre polynomials 𝐿𝛼
𝑗
(𝑥) for

𝛼 = 0.5, 0.8, 1, 1.3, 1.5 and a scaling parameter 𝑙 > 0. For the

Table 1: Values of 𝑛, 𝐿, and 𝑘∗ obtained by (S1)–(S3).

𝑛 Length (𝐿) Optimal exponent (𝑘∗) 𝑘
󸀠

0 6 4.31 4
2 8 7.87 8
4 8.5 11.49 11

Table 2: 𝐿
2
-norm errors of 𝑓

𝑛,𝐿
(𝑘; 𝑥) and its derivatives 𝑓󸀠

𝑛,𝐿
(𝑘; 𝑥)

and 𝑓󸀠󸀠
𝑛,𝐿
(𝑘; 𝑥).

(𝑛, 𝐿, 𝑘) ‖𝑓 − 𝑓
𝑛,𝐿
‖
2

‖𝑓
󸀠
− 𝑓
󸀠

𝑛,𝐿
‖
2

‖𝑓
󸀠󸀠
− 𝑓
󸀠󸀠

𝑛,𝐿
‖
2

(0, 6, 4) 1.4 × 10
−2

1.2 × 10
−2

3.1 × 10
−2

(2, 8, 8) 8.5 × 10
−3

1.3 × 10
−2

3.9 × 10
−2

(4, 8.5, 11) 4.6 × 10
−4

1.2 × 10
−3

2.0 × 10
−2

(4, 8.5, 11.49) 7.1 × 10
−4

7.1 × 10
−4

2.0 × 10
−2

unknown coefficients 𝑎
𝑗
’s the Tau method [28, 29] is used,

which generates a nonlinear system of algebraic equations.
Thus aNewton-like iterativemethod is required to determine
the coefficients 𝑎

𝑗
’s as a result.

To improve the accuracy, we introduced a correction
method 𝑓

𝑛,𝐿
(𝑘; 𝑥) in (17) which includes an additional term

reflecting the deviation of𝑓
𝑛,𝐿
(𝑘; 𝑥) from the Blasius function

𝑓(𝑥). As a result we can observe that the presented method
is available for approximation to 𝑓(𝑥) and 𝑓󸀠(𝑥) while the
approximation to the second derivative 𝑓󸀠󸀠(𝑥) is not so
effective.
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Table 3 includes numerical results of the relative errors
𝐸𝑓
𝑛,𝐿
(𝑘; 𝑥
𝑗
), 𝐸𝑓
𝑛,𝐿
(𝑘; 𝑥
𝑗
) and 𝐸𝑓Par

𝑁
(𝑥
𝑗
), with the parameters

(𝑁, 𝛼, 𝑙) = (21, 1, 1), for the Blasius function 𝑓(𝑥). Addition-
ally, numerical results of 𝐸

1
𝑓
𝑛,𝐿
(𝑘; 𝑥
𝑗
) and 𝐸

1
𝑓
𝑛,𝐿
(𝑘; 𝑥
𝑗
), and

𝐸
1
𝑓
Par
𝑁
(𝑥
𝑗
) for the first derivative 𝑓󸀠(𝑥) are given in Table 4.

In the tables, the relative errors are defined as

𝐸𝑔 (𝑥
𝑗
) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝑥
𝑗
) − 𝑔 (𝑥

𝑗
)

𝑓 (𝑥
𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

𝐸
1
𝑔 (𝑥
𝑗
) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓
󸀠
(𝑥
𝑗
) − 𝑔
󸀠
(𝑥
𝑗
)

𝑓󸀠 (𝑥
𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(21)

for an approximation 𝑔(𝑥) to the Blasius function 𝑓(𝑥).
Therein, 𝑓(𝑥

𝑗
) and 𝑓

󸀠
(𝑥
𝑗
) are replaced by the numerical

solutions for a set of nodes {𝑥
𝑗
}
9

𝑗=1
= {1, 2, . . . , 9}. From

Tables 3 and 4 we can see that the presented approximations
𝑓
𝑛,𝐿
(𝑘; 𝑥
𝑗
) and 𝑓󸀠

𝑛,𝐿
(𝑘; 𝑥
𝑗
) are less accurate than 𝑓Par

𝑁
(𝑥
𝑗
) and

𝑓
Par
𝑁

󸀠

(𝑥
𝑗
) on the region 4 ≤ 𝑥 ≤ 7, and vice versa outside the

region. However, it is also noticed that the inferiority of the
presented approximations is quite overcome by the corrected
approximation 𝑓

𝑛,𝐿
(𝑘; 𝑥
𝑗
) and 𝑓󸀠

𝑛,𝐿
(𝑘; 𝑥
𝑗
).

5. Conclusions

For the Blasius problem on the semi-infinite interval we pro-
posed a uniformly accurate approximation formula 𝑓

𝑛,𝐿
(𝑘; 𝑥)

in (11). The proposed method employs the weight function
𝑤
𝐿
(𝑘; 𝑥) in (8) to combine a near origin series solution and a

faraway reference solution.
Comparing the presented solutions 𝑓

𝑛,𝐿
(𝑘; 𝑥) and

𝑓
𝑛,𝐿
(𝑘; 𝑥) with the existing solution 𝑓Par

𝑁
(𝑥
𝑗
), a solution from

the generalized Laguerre spectral approach [27] based on
Tau method, we summarize advantages of the presented
method with discussions as follows.

(i) The presented solution 𝑓
𝑛,𝐿
(𝑘; 𝑥) is composed of

simple forms of known solutions, that is, a series
solution 𝑆

𝑛
𝑓(𝑥) and a reference solution 𝑅𝑓(𝑥) = 𝑥

+√2𝐵
0
, while the spectral method requires solving a

nonlinear system of algebraic equations. This implies
that the presented method will save number of evalu-
ations in numerical implementation.

(ii) The corrected solution 𝑓
𝑛,𝐿
(𝑘; 𝑥) highly improves

accuracy of 𝑓
𝑛,𝐿
(𝑘; 𝑥) with a small number of terms

𝑛 = 4, and numerical results show that it is
comparable to the spectral solution𝑓Par

𝑁
(𝑥
𝑗
)with𝑁 =

21.
(iii) There is a room for further improvement of the

present method, for example, by replacing the weight
function 𝑤

𝐿
(𝑘, 𝑥) by some more appropriate one or

employing other partial solutions instead of 𝑆
𝑛
𝑓(𝑥) or

𝑅𝑓(𝑥).

To conclude, though the presented method is limitedly
applicable to theBlasius problemunlike the spectralmethods,

Table 3: Relative errors for the Blasius function 𝑓(𝑥).

𝑥
𝑗

Existing method (in [27]) Presented methods
𝐸𝑓

Par
𝑁
(𝑥
𝑗
) 𝐸𝑓

𝑛,𝐿
(𝑘; 𝑥
𝑗
) 𝐸𝑓

𝑛,𝐿
(𝑘; 𝑥
𝑗
)

1 8.1 × 10
−6

1.8 × 10
−7

1.8 × 10
−7

2 1.6 × 10
−5

3.9 × 10
−7

4.9 × 10
−7

3 1.2 × 10
−5

4.3 × 10
−6

2.9 × 10
−6

4 6.7 × 10
−6

9.3 × 10
−5

2.3 × 10
−6

5 5.4 × 10
−6

2.0 × 10
−4

7.3 × 10
−8

6 6.2 × 10
−6

6.2 × 10
−5

1.5 × 10
−6

7 4.4 × 10
−6

4.9 × 10
−6

2.2 × 10
−6

8 3.5 × 10
−6

1.6 × 10
−7

1.5 × 10
−7

9 3.6 × 10
−6

1.2 × 10
−8

1.2 × 10
−8

Table 4: Relative errors for the first derivative 𝑓󸀠(𝑥).

𝑥
𝑗

Existing method (in [27]) Presented methods
𝐸
1
𝑓
Par
𝑁
(𝑥
𝑗
) 𝐸

1
𝑓
𝑛,𝐿
(𝑘; 𝑥
𝑗
) 𝐸

1
𝑓
𝑛,𝐿
(𝑘; 𝑥
𝑗
)

1 4.7 × 10
−5

1.2 × 10
−7

1.2 × 10
−7

2 1.3 × 10
−5

2.0 × 10
−6

2.6 × 10
−6

3 1.7 × 10
−5

5.3 × 10
−5

4.3 × 10
−6

4 7.4 × 10
−6

3.2 × 10
−4

1.5 × 10
−4

5 1.7 × 10
−5

6.5 × 10
−5

1.2 × 10
−5

6 1.5 × 10
−5

4.5 × 10
−4

4.3 × 10
−5

7 5.6 × 10
−6

7.3 × 10
−5

1.9 × 10
−5

8 3.8 × 10
−6

3.8 × 10
−6

3.2 × 10
−6

9 1.5 × 10
−7

1.5 × 10
−7

1.5 × 10
−7

we may expect to develop an extensive method for other
nonlinear differential equations motivated by the advantages
above.
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