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As an important tool in theoretical economics, Bellman equation is very powerful in solving optimization problems of discrete time
and is frequently used in monetary theory. Because there is not a general method to solve this problem in monetary theory, it is
hard to grasp the setting and solution of Bellman equation and easy to reach wrong conclusions. In this paper, we discuss the rules
and problems that should be paid attention to when incorporating money into general equilibrium models. A general setting and
solution of Bellman equation in monetary theory are provided. The proposed method is clear, is easy to grasp, is generalized, and
always leads to the correct results.

1. Introduction

In recent years, many economists applied business cycle
approaches to macroeconomic modeling so that monetary
factors could be modeled into dynamic general equilibrium
models. As an important method of monetary economics
modeling, infinite horizon representative-agent models pro-
vide a close link between theory and practice; its research
framework can guide practice behavior and be tested by
actual data. This method can link monetary economics and
other popularmodels for studying business cycle phenomena
closely.There are three basicmonetary economics approaches
introducing money to economic general equilibrium models
in the infinite horizon representative-agent framework. First,
it is assumed that utility could be yielded by money directly
so that the money variable has been incorporated into utility
function of the representative-agent models [1]. Second,
assuming asset exchanges are costly, transaction costs of some
form give rise to amoney demand [2, 3]. Clower [4] considers
that money is used for some types of transactions. Brock [5],
McCallum and Goodfriend [6], and Croushore [7] assume
that time and money can be combined to yield transaction
services. Third, money is treated as an asset that can be used
to transfer resources between generations [8].

Dynamic optimization is the main involved issue during
themodeling process. It is represented and solved by Bellman
equation method, namely, the value function method. The
method will obtain a forward-looking household’s path to
maximize lifetime utility through the optimal behavior and
further relevant conclusions.The setting of Bellman equation
is the first and crucial step to solve dynamic programming
problems. It is hard to grasp the setting and solution of
Bellman equation and easy to reach wrong conclusions since
there is not a general method to set Bellman equation or the
settings of Bellman equation are excessively flexible. Walsh
[9] used Bellman equation to set and solve dynamic general
equilibrium models of money. However he does not give
a general law of Bellman equation setting. The setting and
solution of the equation in his book are ambiguous and not
clear. To the best of the authors’ knowledge, there have been
no studies of uniform setting of Bellman equation.

In this paper, we provide a set of general setting and
solution methods for Bellman equation with multipliers. It
is very clear and easy to grasp. The most important thing is
that the proposed method can always lead to correct results.
We apply our method to monetary general equilibrium
models that are in the framework of the first two basic
monetary economic approaches which incorporate money
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into economic general equilibrium model and make some
extensions. At the same time, we compare our method with
other current methods of setting and solution for Bellman
equation to display the clarity and correctness of the proposed
method. It is assumed that all the relevant assumptions of
applying Bellman equation are satisfied. This is to ensure the
feasibility of analysis and solution. For the convenience of
discussion and suitable length of the paper, wemainly discuss
the certainty linear programming problems. The Bellman
equation’s setting and solution of uncertainty problems are
similar to those with certainty problems essentially.

2. A New Method of Setting and Solution of
Bellman Equation

First of all, we provide the theoretical details of the new
general method and steps when applying Bellman equation
to solve problems. It hasmany advantages.The relationship of
the results is very clear through the connection ofmultipliers.
There are no tedious expansions during the derivations. It
differs from the expansion method because it does not need
to consider which control variable should be replaced. The
technical details about the equivalence of Bellman equations
and dynamic programming problems and the solvability of
set problems can be found in [10]. Actually, it is easy to
reach wrong conclusions using other settings and solutions
of Bellman equation with multipliers, or it has to find some
particular skills to get the right results. But our method
does not meet the problem. The proposed method can be
described as the following five steps.

Step 1. List the expression of target problem.
Consider the dynamic programming problem as

𝐻 = max
∞

∑

𝑡=0

𝛽
𝑡

ℎ (𝑥
1𝑡
, 𝑥
2𝑡
, . . . , 𝑥

𝑝𝑡
) (1)

s.t.
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(2)

where the objective function (1) represents the maximum
sum of present value of a forward-looking behavioral agent’s
every period objective function ℎ(𝑥

1𝑡
, 𝑥
2𝑡
, . . . , 𝑥

𝑝𝑡
). In mon-

etary theory, ℎ(⋅) usually represents the utility function of
a family and 𝛽 is a subjective rate of discount. Equation
(2) is constraints; 𝑔

1
(⋅), . . . , 𝑔

𝑑
(⋅) are dynamic constraint

functions and usually are intertemporal budget constraints.
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state variables.

Step 2. Set up Bellman equation with multipliers to express
dynamic optimization problem in Step 1:

𝑉(𝑥
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, . . . , 𝑥

(𝑠)

𝑛𝑡
)

= max {ℎ (𝑥
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(3)

where 𝑉(⋅) is the value function and 𝜆
𝑖𝑡
is the multiplier of

the 𝑖th constraint 𝑔
𝑖
(⋅), 𝑖 = 1, 2, . . . , 𝑑.

Step 3. Compute the partial derivatives of all control variables
on the right side of the equation at Step 2 to derive first-order
conditions:
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(4)

During the derivation, it should be taken into account
that next period state variables can be represented by other
control variables according to the constraints, that is, to
expand 𝑥

(𝑠)

1,𝑡+1
, 𝑥
(𝑠)

2,𝑡+1
, . . . , 𝑥
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dynamic and are usually intertemporal budget constraints,
those control variables 𝑥

(𝑠)

1,𝑡+1
, 𝑥
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2,𝑡+1
, . . . , 𝑥
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at time 𝑡 +

1 can often be represented as expressions of the previ-
ous period control variables. Attention should be paid to
compute the derivatives of control variables hiding in
𝑉(𝑥
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tion. Other than that, no particular attention should be paid
to other current skills; for example, some control variables
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Step 4. By the envelope theorem, take the partial derivatives
of control variables at time 𝑡 on both sides of Bellman
equation to derive the remaining first-order conditions:

𝜕𝑉 (𝑥
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1𝑡
, . . . , 𝑥
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)
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,
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Still, it does not need to expand 𝑥
(𝑠)

1,𝑡+1
, 𝑥
(𝑠)

2,𝑡+1
, . . . , 𝑥

(𝑠)

𝑛,𝑡+1

after themultipliers during the derivations. Requirements are
the same as Step 3.

Step 5. Obtain the new relevant results about target problem
through recursion and substitution according to the above
results.

We could combine several state variables to one as
you need according to specific economic significance and
constraints when there is no need to describe the relevant
economic significance of state variables one by one. For exam-
ple, 𝑥(𝑠)
1𝑡
, 𝑥(𝑠)
2𝑡

could be combined as 𝑎(𝑥
(𝑠)

1𝑡
, 𝑥
(𝑠)

2𝑡
) = 𝐴

𝑡
. 𝐴
𝑡
is a

state variable in value function 𝑉(𝑎(𝑥
(𝑠)

1𝑡
, 𝑥
(𝑠)

2𝑡
), 𝑥
(𝑠)

3𝑡
, . . . , 𝑥

(𝑠)

𝑛𝑡
),

that is, 𝑉(𝐴
𝑡
, 𝑥
(𝑠)

2𝑡
, . . . , 𝑥

(𝑠)

𝑛𝑡
). And then we follow the above

five steps to solve specific problem. The rest of state variables
could be operated similarly. But combinations should not
be overlapped over state or combined state variables. For
instance, suppose that 𝑥

(𝑠)

1𝑡
, 𝑥
(𝑠)

2𝑡
have been combined as

𝑎(𝑥
(𝑠)

1𝑡
, 𝑥
(𝑠)

2𝑡
) = 𝐴

𝑡
. It is inflexible to take 𝑥

(𝑠)

2𝑡
as an independent

state variable in value function𝑉(𝐴
𝑡
, 𝑥
(𝑠)

2𝑡
, . . . , 𝑥

(𝑠)

𝑛𝑡
) or put the

combination of 𝑥
(𝑠)

2𝑡
, 𝑥(𝑠)
3𝑡
, 𝑏(𝑥(𝑠)
1𝑡

, 𝑥
(𝑠)

2𝑡
) = 𝐵

𝑡
in value function

𝑉(𝐴
𝑡
, 𝐵
𝑡
, . . . , 𝑥

(𝑠)

𝑛𝑡
) as a state variable.

The steps above give a general setting and solution of
Bellman equation. These can be summarized as follows: first,
set Bellman equation with multipliers of target dynamic
optimization problem under the requirement of no overlaps
of state variables; second, extend the late period state variables
in 𝑉(⋅) on the right side of Bellman equation and there is
no need to expand these variables after the multipliers; third,
let the derivatives of state variables of time 𝑡 equal zero and
take the partial derivatives of these variables on both sides of
Bellman equation to derive first-order conditions; finally, get
more needed results for analysis from these conditions.

Different from some current settings which allow overlap
of state variables in value function, our method does not
permit overlaps. In fact, overlap of state variable is easy to
reach wrong conclusions or it has to find some particular
skills to get the right results [9]. These methods are hard to
generalize. More details will be seen in the following sections.

Nowwewill take several discrete time dynamic optimiza-
tion problems that are under framework of the basic two
methods of incorporating money into general equilibrium
models as examples to show the applications of our setting

and solution method and compare with current popular
methods.

3. Setting and Solution of Bellman Equation in
Basic Money-In-Utility Model

3.1. Model and Solution Using Previous Approach. The basic
Money-In-Utility model has few features. The labor-leisure
options of families are ignored temporarily in utility function.
Only family consumption and real money balances are
involved in utility function; that is, real money balances yield
utility directly. We ignore the uncertainty of currency impact
and technological changes temporarily for convenience.

The total present utility value of family life cycle is
𝑈 = ∑

∞

𝑡=0
𝛽
𝑡

𝑢(𝑐
𝑡
, 𝑚
𝑡
). Usually the per capita version of

intertemporal budget constraint is

𝜔
𝑡
≡ 𝑓(

𝑘
𝑡−1

1 + 𝑛
) + 𝜏
𝑡
+ (

1 − 𝛿

1 + 𝑛
) 𝑘
𝑡−1

+
(1 + 𝑖
𝑡−1

) 𝑏
𝑡−1

+ 𝑚
𝑡−1

(1 + 𝜋
𝑡
) (1 + 𝑛)

= 𝑐
𝑡
+ 𝑘
𝑡
+ 𝑚
𝑡
+ 𝑏
𝑡
,

(6)

where 𝑐
𝑡
, 𝑏
𝑡
, 𝑘
𝑡
, 𝑚
𝑡
, 𝜏
𝑡
, 𝑖
𝑡−1

, and 𝜋
𝑡
are the per capita

consumption, bonds, stock of capital, money balances, net
lump-sum transfer received from the government, nominal
interest rate, and inflation rate, respectively, at time 𝑡. 𝛿 is the
rate of depreciation of physical capital, 𝑛 is the population
growth rate (assumed to be constant), and 𝑓(𝑘

𝑡−1
/(1 +

𝑛)) is the production function assumed to be continuously
differentiable and to satisfy the usual Inada conditions (see
[11]). Note that control variables can be changed and affect
the total discounted value of utility through consumption 𝑐

𝑡

in period 𝑡; state variables cannot be changed. Determination
of state and control variables is crucial to derive the first-order
conditions and other results. The control variables for this
problem are 𝑐

𝑡
, 𝑏
𝑡
, 𝑘
𝑡
and, 𝑚

𝑡
and the state variables are 𝑏

𝑡−1
,

𝑘
𝑡−1

,𝑚
𝑡−1

, 𝜏
𝑡
, and𝜔

𝑡
, the household’s initial level of resources.

This problem can be solved by the expansion method
below according to Walsh [9]. It is started with setting up
value function

𝑉 (𝜔
𝑡
) = max {𝑢 (𝑐

𝑡
, 𝑚
𝑡
) + 𝛽𝑉 (𝜔

𝑡+1
)} . (7)

Using (6), value function can be expanded as

𝑉 (𝜔
𝑡
)

= max{𝑢 (𝑐
𝑡
, 𝑚
𝑡
)

+ 𝛽𝑉(𝑓(
𝑘
𝑡

1 + 𝑛
)

+ 𝜏
𝑡+1

+ (
1 − 𝛿

1 + 𝑛
) 𝑘
𝑡

+
(1 + 𝑖
𝑡
) 𝑏
𝑡
+ 𝑚
𝑡

(1 + 𝜋
𝑡+1

) (1 + 𝑛)
)} .

(8)
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Replace 𝑘
𝑡
as 𝜔
𝑡
− 𝑐
𝑡
− 𝑚
𝑡
− 𝑏
𝑡
; according to (6), (8) can be

written as an expansion equation as follows:

𝑉 (𝜔
𝑡
) = max{𝑢 (𝑐

𝑡
, 𝑚
𝑡
)

+ 𝛽𝑉(𝑓(
𝜔
𝑡
− 𝑐
𝑡
− 𝑚
𝑡
− 𝑏
𝑡

1 + 𝑛
) + 𝜏
𝑡+1

+ (
1 − 𝛿

1 + 𝑛
) (𝜔
𝑡
− 𝑐
𝑡
− 𝑚
𝑡
− 𝑏
𝑡
)

+
(1 + 𝑖
𝑡
) 𝑏
𝑡
+ 𝑚
𝑡

(1 + 𝜋
𝑡+1

) (1 + 𝑛)
)} .

(9)

Compute the partial derivatives of control variables to
derive first-order conditions:

𝜕𝑉 (𝜔
𝑡
)

𝜕𝑐
𝑡

= 𝑢
𝑐
(𝑐
𝑡
, 𝑚
𝑡
) − 𝑉
𝜔
(𝜔
𝑡+1

)

⋅
𝛽

1 + 𝑛
⋅ [𝑓 (𝑘

𝑡
) + 1 − 𝛿] = 0,

𝜕𝑉 (𝜔
𝑡
)

𝜕𝑏
𝑡

= 𝛽𝑉
𝜔
(𝜔
𝑡+1

) ⋅
1 + 𝑖
𝑡

(1 + 𝜋
𝑡+1

) (1 + 𝑛)

− 𝛽𝑉
𝜔
(𝜔
𝑡+1

) [
𝑓
𝑘
(𝑘
𝑡
) + 1 − 𝛿

1 + 𝑛
] = 0,

𝜕𝑉 (𝜔
𝑡
)

𝜕𝑚
𝑡

= 𝑢
𝑚

(𝑐
𝑡
, 𝑚
𝑡
) +

𝛽𝑉
𝜔
(𝜔
𝑡+1

)

(1 + 𝜋
𝑡+1

) (1 + 𝑛)

− 𝛽𝑉
𝜔
(𝜔
𝑡+1

) [
𝑓
𝑘
(𝑘
𝑡
) + 1 − 𝛿

1 + 𝑛
] = 0,

(10)

and the envelope theorem yields

𝑉
𝜔
(𝜔
𝑡
) = 𝑢
𝑐
(𝑐
𝑡
, 𝑚
𝑡
) . (11)

Another expansionmethod will replace 𝑐
𝑡
as𝜔
𝑡
−𝑘
𝑡
−𝑚
𝑡
−

𝑏
𝑡
; according to (6), (8) can be written as

𝑉 (𝜔
𝑡
) = max{𝑢 (𝜔

𝑡
− 𝑘
𝑡
− 𝑚
𝑡
− 𝑏
𝑡
, 𝑚
𝑡
)

+ 𝛽𝑉(𝑓(
𝑘
𝑡

1 + 𝑛
) + 𝜏
𝑡+1

+ (
1 − 𝛿

1 + 𝑛
) 𝑘
𝑡

+
(1 + 𝑖
𝑡
) 𝑏
𝑡
+ 𝑚
𝑡

(1 + 𝜋
𝑡+1

) (1 + 𝑛)
)} .

(12)

Compute the partial derivatives of control variables to
derive first-order conditions as

𝜕𝑉 (𝜔
𝑡
)

𝜕𝑏
𝑡

= −𝑢
𝑐
(𝜔
𝑡
− 𝑘
𝑡
− 𝑚
𝑡
− 𝑏
𝑡
, 𝑚
𝑡
)

+ 𝛽𝑉
𝜔
(𝜔
𝑡+1

) ⋅
1 + 𝑖
𝑡

(1 + 𝜋
𝑡+1

) (1 + 𝑛)
= 0,

𝜕𝑉 (𝜔
𝑡
)

𝜕𝑘
𝑡

= −𝑢
𝑐
(𝜔
𝑡
− 𝑘
𝑡
− 𝑚
𝑡
− 𝑏
𝑡
, 𝑚
𝑡
) + 𝑉
𝜔
(𝜔
𝑡+1

)

⋅
𝛽

1 + 𝑛
⋅ [𝑓
𝑘
(𝑘
𝑡
) + 1 − 𝛿] = 0,

𝜕𝑉 (𝜔
𝑡
)

𝜕𝑚
𝑡

= −𝑢
𝑐
(𝜔
𝑡
− 𝑘
𝑡
− 𝑚
𝑡
− 𝑏
𝑡
, 𝑚
𝑡
)

+ 𝑢
𝑚

(𝜔
𝑡
− 𝑘
𝑡
− 𝑚
𝑡
− 𝑏
𝑡
, 𝑚
𝑡
)

+
𝛽𝑉
𝜔
(𝜔
𝑡+1

)

(1 + 𝜋
𝑡+1

) (1 + 𝑛)
= 0.

(13)

Using the envelope theoremand computing the derivative
with respect to state variable 𝜔

𝑡
, we get

𝑉
𝜔
(𝜔
𝑡
) = 𝑢
𝑐
(𝜔
𝑡
− 𝑘
𝑡
− 𝑚
𝑡
− 𝑏
𝑡
, 𝑚
𝑡
) . (14)

3.2. Our Solving Approach. Now, we use our proposed steps
of setting and solution of Bellman equation to solve the
above basic Money-In-Utility problem. First, let the Bellman
equation with multiplier 𝜆

𝑡
be

𝑉 (𝜔
𝑡
) = max {𝑢 (𝑐

𝑡
, 𝑚
𝑡
) + 𝛽𝑉 (𝜔

𝑡+1
)}

+ 𝜆
𝑡
(𝜔
𝑡
− 𝑐
𝑡
− 𝑘
𝑡
− 𝑚
𝑡
− 𝑏
𝑡
) .

(15)

Second, computing the partial derivatives for the control
variables, we obtain the first-order conditions as

𝜕𝑉 (𝜔
𝑡
)

𝜕𝑐
𝑡

= 𝑢
𝑐
(𝑐
𝑡
, 𝑚
𝑡
) = 𝜆
𝑡
,

𝜕𝑉 (𝜔
𝑡
)

𝜕𝑏
𝑡

= 𝛽𝑉
𝜔
(𝜔
𝑡+1

) ⋅
1 + 𝑖
𝑡

(1 + 𝜋
𝑡+1

) (1 + 𝑛)
= 𝜆
𝑡
,

𝜕𝑉 (𝜔
𝑡
)

𝜕𝑘
𝑡

= 𝛽𝑉
𝜔
(𝜔
𝑡+1

) ⋅
1

1 + 𝑛
⋅ [𝑓
𝑘
(𝑘
𝑡
) + 1 − 𝛿] = 𝜆

𝑡
,

𝜕𝑉 (𝜔
𝑡
)

𝜕𝑚
𝑡

= 𝑢
𝑚

(𝑐
𝑡
, 𝑚
𝑡
) + 𝛽𝑉

𝜔
(𝜔
𝑡+1

)

⋅
1

(1 + 𝜋
𝑡+1

) (1 + 𝑛)
= 𝜆
𝑡
.

(16)

Third, using the envelope theorem and computing the
derivatives of both sides of Bellman equation with respect to
state variable 𝜔

𝑡
, we get

𝑉
𝜔
(𝜔
𝑡
) = 𝜆
𝑡
. (17)
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Finally, based on the above results, it is easy to get

𝑢
𝑐
(𝑐
𝑡
, 𝑚
𝑡
) = 𝜆
𝑡
= 𝑢
𝑚

(𝑐
𝑡
, 𝑚
𝑡
)

+ 𝛽𝑉
𝜔
(𝜔
𝑡+1

) ⋅
1

(1 + 𝜋
𝑡+1

) (1 + 𝑛)
.

(18)

This expression indicates that the marginal benefit of
increased money holdings should be equal to the marginal
utility of consumption on period 𝑡. Similarly, we can easily
obtain the allocation of initial level of resources 𝜔

𝑡
among

consumption, capital, bonds, and money balances, and the
same marginal benefit must be yielded by each use at an
optimum allocation.

These results with multiplier are open-and-shut, and it is
easy to find the economic significance of marginal utility of
consumption. Comparing with current approach mentioned
above, during the process of solving problem, there is no need
to consider which variable should be replaced. There are no
tedious expanded expressions. Using expansion method, if
we replace 𝑘

𝑡
, the derived first-order conditions are seen to

be messy and it is not easy to find the relationships of results.
If we replace 𝑐

𝑡
, the derived results are a bit more clear, but we

might not think of replacing 𝑐
𝑡
at the beginning. So expansion

methods are not easy to operate, and it is not clear to replace
variable.

4. Setting and Solution of Bellman Equation in
Shopping-Time Model

4.1. Model and Solution Using Previous Approach. In Shop-
ping-Time Model, shopping time is a function of consump-
tion and money balances. Because consumption needs shop-
ping time, leisure is reduced. Household utility is assumed to
depend on consumption and leisure. Consumption can not
only yield utility directly but also decrease utility indirectly.
In this section, 𝑛 is time spent in market employment and
𝑛
𝑠 is time spent shopping. 𝑛𝑠 is the function of consumption

and money balances; that is, 𝑛𝑠 = 𝑔(𝑐,𝑚), 𝑔
𝑐

> 0, 𝑔
𝑚

≤ 0.
Total time available is normalized to equal 1. Growth rate of
population is assumed to be 0 for convenience. Let 𝑙 be the
leisure time. The utility function is 𝑢(𝑐,𝑚, 𝑙) = V[𝑐, 1 − 𝑛 −

𝑔(𝑐, 𝑚)]. It donates utility as a function of consumption, labor
supply, and money holdings.

The household’s intertemporal objective is maximum
discounted utility subject to resource constraint as

max
∞

∑

𝑖=0

𝛽
𝑖V (𝑐
𝑡+𝑖

, 1 − 𝑛
𝑡+𝑖

− 𝑔 (𝑐
𝑡+𝑖

, 𝑚
𝑡+𝑖

))

= max
∞

∑

𝑖=0

𝛽
𝑖V (𝑐
𝑡+𝑖

, 𝑙
𝑡+𝑖

)

s.t. 𝑓 (𝑘
𝑡−1

, 𝑛
𝑡
) + 𝜏
𝑡
+ (1 − 𝛿) 𝑘

𝑡−1

+
(1 + 𝑖
𝑡−1

) 𝑏
𝑡−1

+ 𝑚
𝑡−1

1 + 𝜋
𝑡

= 𝑐
𝑡
+ 𝑘
𝑡
+ 𝑚
𝑡
+ 𝑏
𝑡
.

(19)

Because controllable factors, labor supply, and consump-
tion affect labor supply, output is affected not only by state

variable 𝑘
𝑡−1

but also by these controllable factors. The left
side of the budget constraint is unsuitable to be combined as
a state variable 𝜔

𝑡
. Combining the money holdings, bonds,

and transfers to 𝑎
𝑡
= 𝜏
𝑡
+ (((1 + 𝑖

𝑡−1
)𝑏
𝑡−1

+ 𝑚
𝑡−1

)/(1 + 𝜋
𝑡
)), the

household’s financial assets, value function can be written as

𝑉 (𝑎
𝑡
, 𝑘
𝑡−1

) = max {V (𝑐
𝑡
, 𝑙
𝑡
) + 𝛽𝑉 (𝑎

𝑡+1
, 𝑘
𝑡
)} . (20)

According to Walsh [9], after replacing 𝑎
𝑡+1

, 𝑘
𝑡
, value

function can be expanded as

𝑉 (𝑎
𝑡
, 𝑘
𝑡−1

)

= max{V [𝑐
𝑡
, 1 − 𝑛

𝑡
− 𝑔 (𝑐

𝑡
, 𝑚
𝑡
)]

+ 𝛽𝑉[𝜏
𝑡+1

+
(1 + 𝑖
𝑡
) 𝑏
𝑡
+ 𝑚
𝑡

1 + 𝜋
𝑡+1

, 𝑓 (𝑘
𝑡−1

, 𝑛
𝑡
)

+ (1 − 𝛿) 𝑘
𝑡−1

+ 𝑎
𝑡
− 𝑚
𝑡
− 𝑏
𝑡
− 𝑐
𝑡
]} .

(21)

Computing the partial derivatives with respect to control
variables, we get

𝜕𝑉 (𝑎
𝑡
, 𝑘
𝑡−1

)

𝜕𝑐
𝑡

= V
𝑐
[𝑐
𝑡
, 1 − 𝑛

𝑡
− 𝑔 (𝑐

𝑡
, 𝑚
𝑡
)]

− V
𝑙
[𝑐
𝑡
, 1 − 𝑛

𝑡
− 𝑔 (𝑐

𝑡
, 𝑚
𝑡
)] 𝑔
𝑐
(𝑐
𝑡
, 𝑚
𝑡
)

− 𝛽𝑉
𝑘
(𝑎
𝑡+1

, 𝑘
𝑡
) = 0,

𝜕𝑉 (𝑎
𝑡
, 𝑘
𝑡−1

)

𝜕𝑘
𝑡

= −V
𝑙
[𝑐
𝑡
, 1 − 𝑛

𝑡
− 𝑔 (𝑐

𝑡
, 𝑚
𝑡
)]

+ 𝛽𝑉
𝑘
(𝑎
𝑡+1

, 𝑘
𝑡
) ⋅ 𝑓
𝑛
(𝑘
𝑡−1

, 𝑛
𝑡
) = 0,

𝜕𝑉 (𝑎
𝑡
, 𝑘
𝑡−1

)

𝜕𝑚
𝑡

= −V
𝑙
[𝑐
𝑡
, 1 − 𝑛

𝑡
− 𝑔 (𝑐

𝑡
, 𝑚
𝑡
)] 𝑔
𝑚

(𝑐
𝑡
, 𝑚
𝑡
)

+ 𝛽𝑉
𝑎
(𝑎
𝑡+1

, 𝑘
𝑡
) ⋅

1

1 + 𝜋
𝑡+1

− 𝛽𝑉
𝑘
(𝑎
𝑡+1

, 𝑘
𝑡
) = 0.

(22)

Computing the partial derivatives of both sides of the
value equation with respect to the state variables 𝑎

𝑡
, 𝑘
𝑡−1

, we
get

𝑉
𝑎
(𝑎
𝑡
, 𝑘
𝑡−1

) = 𝛽𝑉
𝑘
(𝑎
𝑡+1

, 𝑘
𝑡
)

𝑉
𝑘
(𝑎
𝑡
, 𝑘
𝑡−1

) = 𝛽𝑉
𝑘
(𝑎
𝑡+1

, 𝑘
𝑡
) [𝑓
𝑘
(𝑘
𝑡−1

, 𝑛
𝑡
) + 1 − 𝛿] .

(23)

4.2. Our Solving Approach. Now, we use our proposed
method to solve the above Shopping-Time Model problem.
First, let the Bellman equation with multiplier 𝜆

𝑡
be

𝑉 (𝑎
𝑡
, 𝑘
𝑡−1

) = max {V (𝑐
𝑡
, 𝑙
𝑡
) + 𝛽𝑉 (𝑎

𝑡+1
, 𝑘
𝑡
)}

+ 𝜆
𝑡
[𝑎
𝑡
+ 𝑓 (𝑘

𝑡−1
, 𝑛
𝑡
) + (1 − 𝛿) 𝑘

𝑡−1

− 𝑐
𝑡
− 𝑘
𝑡
− 𝑚
𝑡
− 𝑏
𝑡
] ,

(24)



6 Journal of Applied Mathematics

where state variable 𝑎
𝑡+1

= 𝜏
𝑡+1

+ (((1 + 𝑖
𝑡
)𝑏
𝑡
+𝑚
𝑡
)/(1 +𝜋

𝑡+1
)).

Then, compute the partial derivatives with respect to control
variables to derive first-order conditions,

𝜕𝑉 (𝑎
𝑡
, 𝑘
𝑡−1

)

𝜕𝑐
𝑡

= V
𝑐
(𝑐
𝑡
, 𝑙
𝑡
) − V
𝑙
(𝑐
𝑡
, 𝑙
𝑡
) 𝑔
𝑐
(𝑐
𝑡
, 𝑚
𝑡
) = 𝜆
𝑡
,

𝜕𝑉 (𝑎
𝑡
, 𝑘
𝑡−1

)

𝜕𝑏
𝑡

= 𝛽𝑉
𝑎
(𝑎
𝑡+1

, 𝑘
𝑡
) ⋅

1 + 𝑖
𝑡

1 + 𝜋
𝑡+1

= 𝜆
𝑡
,

𝜕𝑉 (𝑎
𝑡
, 𝑘
𝑡−1

)

𝜕𝑘
𝑡

= 𝛽𝑉
𝑘
(𝑎
𝑡+1

, 𝑘
𝑡
) = 𝜆
𝑡
,

𝜕𝑉 (𝑎
𝑡
, 𝑘
𝑡−1

)

𝜕𝑚
𝑡

= −V
𝑙
(𝑐
𝑡
, 𝑙
𝑡
) 𝑔
𝑚

(𝑐
𝑡
, 𝑚
𝑡
) +

𝛽𝑉
𝑎
(𝑎
𝑡+1

, 𝑘
𝑡
)

1 + 𝜋
𝑡+1

= 𝜆
𝑡
.

(25)

Using the envelope theorem and computing the deriva-
tives with respect to the state variables 𝑎

𝑡
, 𝑘
𝑡−1

, we get

𝑉
𝑎
(𝑎
𝑡
, 𝑘
𝑡−1

) = 𝜆
𝑡
,

𝑉
𝑘
(𝑎
𝑡
, 𝑘
𝑡−1

) = 𝜆
𝑡
[𝑓
𝑘
(𝑘
𝑡−1

, 𝑛
𝑡
) + 1 − 𝛿] .

(26)

Now, we use the above results to compute the opportunity
cost of holding money. Since the utility function is

𝑢 (𝑐, 𝑚, 𝑙) = V [𝑐, 𝑙 − 𝑛 − 𝑔 (𝑐,𝑚)] , (27)

and based on (6), (25), and (26), we obtain

𝑢
𝑚

(𝑐
𝑡
, 𝑚
𝑡
, 𝑙
𝑡
)

𝑢
𝑐
(𝑐
𝑡
, 𝑚
𝑡
, 𝑙
𝑡
)

=
−V
𝑙
(𝑐
𝑡
, 𝑙
𝑡
) 𝑔
𝑚

(𝑐
𝑡
, 𝑚
𝑡
)

V
𝑐
(𝑐
𝑡
, 𝑙
𝑡
) − V
𝑙
(𝑐
𝑡
, 𝑙
𝑡
) 𝑔
𝑐
(𝑐
𝑡
, 𝑚
𝑡
)

=
𝜆
𝑡
− ((𝛽𝑉

𝑎
(𝑎
𝑡+1

, 𝑘
𝑡
)) / (1 + 𝜋

𝑡+1
))

𝜆
𝑡

= 1 −
((𝛽𝑉
𝑎
(𝑎
𝑡+1

, 𝑘
𝑡
)) / (1 + 𝜋

𝑡+1
))

𝛽𝑉
𝑎
(𝑎
𝑡+1

, 𝑘
𝑡
) ⋅ ((1 + 𝑖

𝑡
) / (1 + 𝜋

𝑡+1
))

= 1 −
1

1 + 𝑖
𝑡

=
𝑖
𝑡

1 + 𝑖
𝑡

.

(28)

Obviously, the expressions of the derived first-order
conditions by previousmethod seem to be tedious andmessy,
and it is not so easy to compute the relevant results such as the
opportunity cost of holding money. Our proposed method
is comparatively neat and can easily obtain relevant results
correctly.

5. Setting and Solution of Bellman Equation in
Cash-In-Advance Model

5.1. Model and Solution Using Previous Approach. In basic
Cash-In-Advance model, money is used to purchase goods.
Money cannot yield utility itself, but the consumption of
future can yield utility. Svensson [12] assumed that agents
are available for spending only the cash carried over from
the previous period.This is essentially different fromMoney-
In-Utility model. Consider a simple form of discounted

household utility value∑
∞

𝑡=0
𝛽
𝑡

𝑢(𝑐
𝑡
). More complicated utility

function will be discussed in the following sections. Take
Cash-In-Advance constraint form as 𝑐

𝑡
≤ (𝑚
𝑡−1

/(1 + 𝜋
𝑡
)) + 𝜏
𝑡

due to Svensson [12]. This means that the agent enters the
period with money holdings 𝑚

𝑡−1
and receives a lump-sum

transfer 𝜏
𝑡
(in real currency terms) for consumption goods.

Bonds and capital may not be purchased by currency. If
capital is assumed to be purchased by money, the Cash-In-
Advance constraint will become (𝑚

𝑡−1
/(1 + 𝜋

𝑡
)) + 𝜏
𝑡
≥ 𝑐
𝑡
+ 𝑘
𝑡
.

The budget constraint is rewritten in real terms as

𝑓 (𝑘
𝑡−1

) + 𝜏
𝑡
+ (1 − 𝛿) 𝑘

𝑡−1

+
(1 + 𝑖
𝑡−1

) 𝑏
𝑡−1

+ 𝑚
𝑡−1

1 + 𝜋
𝑡

≥ 𝑐
𝑡
+ 𝑘
𝑡
+ 𝑚
𝑡
+ 𝑏
𝑡
.

(29)

In monetary theory, constraints are expressed as inequal-
ity frequently. This constraint describes that the represen-
tative agent’s time 𝑡 real resources should be more than
or equal to the use of it, that is, purchasing consumption,
capital, bonds, and money holdings that are then carried into
period 𝑡 + 1. Because of the assumption of rational agents,
the certainty problems we are discussing, and the positive
opportunity cost of money holdings, the constraints become
equations in equilibriums.

Output is only affected by state variable 𝑘
𝑡−1

without
considering the effect of labor supply. Following the solution
methods ofWalsh [9], let the left side of the budget constraint
be a state variable𝜔

𝑡
= 𝑓(𝑘

𝑡−1
)+𝜏
𝑡
+(1−𝛿)𝑘

𝑡−1
+(((1+𝑖

𝑡−1
)𝑏
𝑡−1

+

𝑚
𝑡−1

)/(1 + 𝜋
𝑡
)). It will be very tedious adopting expansion

method with two constraints. Setting Bellman equation with
multipliers will be better. Let state variable 𝑚

𝑡−1
in value

function get the economic significance of money in first-
order conditions. However, there is an overlapped setting
with 𝜔

𝑡
,

𝑉 (𝜔
𝑡
, 𝑚
𝑡−1

) = max {𝑢 (𝑐
𝑡
) + 𝛽𝑉 (𝜔

𝑡+1
, 𝑚
𝑡
)}

+ 𝜆
𝑡
(𝜔
𝑡
− 𝑐
𝑡
− 𝑘
𝑡
− 𝑚
𝑡
− 𝑏
𝑡
)

+ 𝜇
𝑡
(

𝑚
𝑡−1

1 + 𝜋
𝑡

+ 𝜏
𝑡
− 𝑐
𝑡
) .

(30)

5.2. Our Solving Approach. Let 𝜉
𝑡
= 𝑓(𝑘

𝑡−1
)+𝜏
𝑡
+(1−𝛿)𝑘

𝑡−1
+

(((1 + 𝑖
𝑡−1

)𝑏
𝑡−1

)/(1 + 𝜋
𝑡
)). There is no overlap with 𝑚

𝑡
in the

value function. The Bellman equation is set as

𝑉 (𝜉
𝑡
, 𝑚
𝑡−1

) = max {𝑢 (𝑐
𝑡
) + 𝛽𝑉 (𝜉

𝑡+1
, 𝑚
𝑡
)}

+ 𝜆
𝑡
(𝜉
𝑡
+

𝑚
𝑡−1

1 + 𝜋
𝑡

− 𝑐
𝑡
− 𝑘
𝑡
− 𝑚
𝑡
− 𝑏
𝑡
)

+ 𝜇
𝑡
(

𝑚
𝑡−1

1 + 𝜋
𝑡

+ 𝜏
𝑡
− 𝑐
𝑡
) .

(31)

The solution of this problem is similar to the application
of the proposed method in Sections 3 and 4. We will not give
unnecessary details here.

Note that Walsh [9] puts overlapping state variables 𝑚
𝑡−1

and𝜔
𝑡
in value function; it is easy to get wrong results in those
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problems with Cash-In-Advance constraints although it is no
problem setting 𝑉(𝜔

𝑡
, 𝑚
𝑡−1

) with no more results required
now. This will be seen in the following example of Section 6.

6. Setting and Solution of Bellman Equation
in Model considering Both Labor Time and
Cash-In-Advance Constraints

6.1. Model and Solution Using Previous Approach. Assum-
ing that money is used to purchase consumption goods
and investments, the Cash-In-Advance constraint becomes
(𝑚
𝑡−1

/(1 + 𝜋
𝑡
)) + 𝜏

𝑡
≥ 𝑐
𝑡
+ 𝑥
𝑡
, where 𝑥 is investment and

𝑥
𝑡

= 𝑘
𝑡
− (1 − 𝛿)𝑘

𝑡−1
. In considering of the effects of labor

supply on output and leisure on utility, we have 𝑙
𝑡

= 1 − 𝑛
𝑡
.

The agent’s objective becomes

max
∞

∑

𝑡=0

𝑢 (𝑐
𝑡
, 𝑙
𝑡
)

s.t. 𝑓 (𝑘
𝑡−1

) + 𝜏
𝑡
+ (1 − 𝛿) 𝑘

𝑡−1

+
(1 + 𝑖
𝑡−1

) 𝑏
𝑡−1

+ 𝑚
𝑡−1

1 + 𝜋
𝑡

≥ 𝑐
𝑡
+ 𝑘
𝑡
+ 𝑚
𝑡
+ 𝑏
𝑡
,

𝑚
𝑡−1

1 + 𝜋
𝑡

+ 𝜏
𝑡
≥ 𝑐
𝑡
+ 𝑥
𝑡
.

(32)

Output is affected not only by state variable 𝑘
𝑡−1

but also
by controllable factor 𝑛

𝑡
; the left side of the budget constraint

is unsuitable to be combined as a state variable. Thinking
of the setting of the Shopping-Time Model and Cash-In-
Advance model above, it is plausible to put overlapped state
variables 𝑎

𝑡
= 𝜏
𝑡
+(((1+ 𝑖

𝑡−1
)𝑏
𝑡−1

+𝑚
𝑡−1

)/(1+𝜋
𝑡
)) and𝑚

𝑡−1
in

value function following the solution methods of Walsh [9].
The Bellman equation will be

𝑉 (𝑎
𝑡
, 𝑘
𝑡−1

, 𝑚
𝑡−1

)

= max {𝑢 (𝑐
𝑡
, 𝑙
𝑡
) + 𝛽𝑉 (𝑎

𝑡+1
, 𝑘
𝑡
, 𝑚
𝑡
)}

+ 𝜆
𝑡
[𝑎
𝑡
+ 𝑓 (𝑘

𝑡−1
, 𝑛
𝑡
) + (1 − 𝛿) 𝑘

𝑡−1

− 𝑐
𝑡
− 𝑘
𝑡
− 𝑚
𝑡
− 𝑏
𝑡
]

+ 𝜇
𝑡
[𝑎
𝑡
− 𝑐
𝑡
− 𝑘
𝑡
+ (1 − 𝛿) 𝑘

𝑡−1
] .

(33)

The first-order conditions are
𝜕𝑉 (𝑎
𝑡
, 𝑘
𝑡−1

, 𝑚
𝑡−1

)

𝜕𝑐
𝑡

= 𝑢
𝑐
(𝑐
𝑡
, 𝑙
𝑡
) = 𝜆
𝑡
+ 𝜇
𝑡
,

𝜕𝑉 (𝑎
𝑡
, 𝑘
𝑡−1

, 𝑚
𝑡−1

)

𝜕𝑏
𝑡

= 𝛽𝑉
𝑎
(𝑎
𝑡+1

, 𝑘
𝑡
, 𝑚
𝑡
) ⋅

1 + 𝑖
𝑡

1 + 𝜋
𝑡+1

= 𝜆
𝑡
,

𝜕𝑉 (𝑎
𝑡
, 𝑘
𝑡−1

, 𝑚
𝑡−1

)

𝜕𝑘
𝑡

= 𝛽𝑉
𝑘
(𝑎
𝑡+1

, 𝑘
𝑡
, 𝑚
𝑡
) = 𝜆
𝑡
+ 𝜇
𝑡
,

𝜕𝑉 (𝑎
𝑡
, 𝑘
𝑡−1

, 𝑚
𝑡−1

)

𝜕𝑚
𝑡

= 𝛽𝑉
𝑚

(𝑎
𝑡+1

, 𝑘
𝑡
, 𝑚
𝑡
)

+ 𝛽𝑉
𝑎
(𝑎
𝑡+1

, 𝑘
𝑡
, 𝑚
𝑡
) ⋅

1

1 + 𝜋
𝑡+1

= 𝜆
𝑡
,

𝜕𝑉 (𝑎
𝑡
, 𝑘
𝑡−1

, 𝑚
𝑡−1

)

𝜕𝑛
𝑡

= −𝑢
𝑙
(𝑐
𝑡
, 𝑙
𝑡
) + 𝜆
𝑡
𝑓
𝑛
(𝑘
𝑡−1

, 𝑛
𝑡
) = 0.

(34)

Using the envelope theorem and computing the deriva-
tives with respect to state variables, we get

𝜕𝑉 (𝑎
𝑡
, 𝑘
𝑡−1

, 𝑚
𝑡−1

)

𝜕𝑎
𝑡

= 𝑉
𝑎
(𝑎
𝑡
, 𝑘
𝑡−1

, 𝑚
𝑡−1

) = 𝜆
𝑡
+ 𝜇
𝑡
,

𝜕𝑉 (𝑎
𝑡
, 𝑘
𝑡−1

, 𝑚
𝑡−1

)

𝜕𝑘
𝑡−1

= 𝑉
𝑘
(𝑎
𝑡
, 𝑘
𝑡−1

, 𝑚
𝑡−1

)

= 𝜆
𝑡
[𝑓
𝑘
(𝑘
𝑡−1

, 𝑛
𝑡
) + (1 − 𝛿)]

+ 𝜇
𝑡
(1 − 𝛿) ,

𝜕𝑉 (𝑎
𝑡
, 𝑘
𝑡−1

, 𝑚
𝑡−1

)

𝜕𝑚
𝑡−1

= 𝑉
𝑚

(𝑎
𝑡
, 𝑘
𝑡−1

, 𝑚
𝑡−1

) = (𝜆
𝑡
+ 𝜇
𝑡
)

1

1 + 𝜋
𝑡

.

(35)

When the question is to derive the effect of inflation rate
on the steady-state capital-labor ratio, that is, the steady-
state relationship of 𝑘𝑠𝑠/𝑛𝑠𝑠 and 𝜋

𝑠𝑠, assume that the aggregate
production takes the form 𝑦

𝑡
= 𝑓(𝑘

𝑡−1
, 𝑛
𝑡
) = 𝐴𝑘

𝛼

𝑡−1
𝑛
1−𝛼

𝑡
.

Using (34) and (35),

𝑢
𝑙
(𝑐
𝑡
, 𝑙
𝑡
)

𝑢
𝑐
(𝑐
𝑡
, 𝑙
𝑡
)

=
𝜆
𝑡
𝑓
𝑛
(𝑘
𝑡−1

, 𝑛
𝑡
)

𝜆
𝑡
+ 𝜇
𝑡

= ([𝛽𝑉
𝑚

(𝑎
𝑡+1

, 𝑘
𝑡
, 𝑚
𝑡
) + 𝛽𝑉

𝑎
(𝑎
𝑡+1

, 𝑘
𝑡
, 𝑚
𝑡
) ⋅

1

1 + 𝜋
𝑡+1

]

× 𝑓
𝑛
(𝑘
𝑡−1

, 𝑛
𝑡
) ) (𝜆

𝑡
+ 𝜇
𝑡
)
−1

= ([𝛽 (𝜆
𝑡+1

+ 𝜇
𝑡+1

)
1

1 + 𝜋
𝑡+1

+ 𝛽 (𝜆
𝑡+1

+ 𝜇
𝑡+1

)
1

1 + 𝜋
𝑡+1

]

× 𝑓
𝑛
(𝑘
𝑡−1

, 𝑛
𝑡
) ) (𝜆

𝑡
+ 𝜇
𝑡
)
−1

= 2𝛽
1

1 + 𝜋
𝑡+1

𝑓
𝑛
(𝑘
𝑡−1

, 𝑛
𝑡
) ⋅

𝜆
𝑡+1

+ 𝜇
𝑡+1

𝜆
𝑡
+ 𝜇
𝑡

.

(36)

Then
𝜆
𝑡

𝜆
𝑡
+ 𝜇
𝑡

= 2𝛽
1

1 + 𝜋
𝑡+1

𝜆
𝑡+1

+ 𝜇
𝑡+1

𝜆
𝑡
+ 𝜇
𝑡

. (37)

From (35),

𝑓
𝑘
(𝑘
𝑡−1

, 𝑛
𝑡
) =

𝑉
𝑘
(𝑎
𝑡
, 𝑘
𝑡−1

, 𝑚
𝑡−1

) − (1 − 𝛿) (𝜆
𝑡
+ 𝜇
𝑡
)

𝜆
𝑡

= [
1

𝛽
− (1 − 𝛿)]

𝜆
𝑡
+ 𝜇
𝑡

𝜆
𝑡

.

(38)

Rewriting the aggregate production as 𝑓
𝑘

= 𝛼𝐴(𝑘
𝑡−1

/

𝑛
𝑡
)
𝛼−1, we have

𝜆
𝑡

𝜆
𝑡
+ 𝜇
𝑡

= (𝛼𝐴)
−1

(
𝑘
𝑡−1

𝑛
𝑡

)

1−𝛼

[
1

𝛽
− (1 − 𝛿)] . (39)
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Using (37), we obtain

(𝛼𝐴)
−1

(
𝑘
𝑡−1

𝑛
𝑡

)

1−𝛼

[
1

𝛽
− (1 − 𝛿)]

= 2𝛽
1

1 + 𝜋
𝑡+1

𝜆
𝑡+1

+ 𝜇
𝑡+1

𝜆
𝑡
+ 𝜇
𝑡

.

(40)

Rewriting this equation, we get

𝑘
𝑡−1

𝑛
𝑡

= [
2𝛽𝛼𝐴

1 + 𝜋
𝑡+1

(
1

𝛽
− 1 + 𝛿)

−1

𝜆
𝑡+1

+ 𝜇
𝑡+1

𝜆
𝑡
+ 𝜇
𝑡

]

1/(1−𝛼)

. (41)

In steady-state, 𝜆
𝑡
= 𝜆
𝑡+1

= 𝜆
𝑠𝑠
, 𝜇
𝑡
= 𝜇
𝑡+1

= 𝜇
𝑠𝑠
, 𝜋
𝑡+1

=

𝜋
𝑠𝑠
, 𝑘
𝑡−1

= 𝑘
𝑠𝑠
, 𝑛
𝑡
= 𝑛
𝑠𝑠
, from (41), we have

𝑘
𝑠𝑠

𝑛
𝑠𝑠

= [
1 + 𝜋
𝑠𝑠

2𝛼𝛽
(

1

𝛽
− 1 + 𝛿)]

1/(𝛼−1)

. (42)

This steady-state capital-labor ratio is derived by using
current prevailing methods. However, it is a wrong result. We
will provide the correct result by using the proposed method
of this paper.

6.2. Our Solving Approach. Output is affected by state vari-
able 𝑘

𝑡−1
and control variable 𝑛

𝑡
; it is unsuitable to let the left

side of the budget constraint be combined as a state variable.
We should separate 𝑘

𝑡−1
from it. Let state variable 𝑚

𝑡−1
in

value function alone get the economic significance of money
in first-order conditions. Because overlaps of state variables
are not allowed according to our proposed method, we put
𝜁
𝑡
= 𝜏
𝑡
+ (((1 + 𝑖

𝑡−1
)𝑏
𝑡−1

)/(1 + 𝜋
𝑡
)) in value function as a state

variable.
First, set up value function with multipliers:

𝑉 (𝜁
𝑡
, 𝑘
𝑡−1

, 𝑚
𝑡−1

)

= max {𝑢 (𝑐
𝑡
, 𝑙
𝑡
) + 𝛽𝑉 (𝜁

𝑡+1
, 𝑘
𝑡
, 𝑚
𝑡
)}

+ 𝜆
𝑡
[𝜁
𝑡
+

𝑚
𝑡−1

1 + 𝜋
𝑡

+ 𝑓 (𝑘
𝑡−1

, 𝑛
𝑡
)

+ (1 − 𝛿) 𝑘
𝑡−1

− 𝑐
𝑡
− 𝑘
𝑡
− 𝑚
𝑡
− 𝑏
𝑡
]

+ 𝜇
𝑡
[𝜁
𝑡
−

(1 + 𝑖
𝑡−1

) 𝑏
𝑡−1

1 + 𝜋
𝑡

+
𝑚
𝑡−1

1 + 𝜋
𝑡

− 𝑐
𝑡
− 𝑘
𝑡
+ (1 − 𝛿) 𝑘

𝑡−1
] .

(43)

Second, compute the derivatives of state variables and
derive first-order conditions:

𝜕𝑉 (𝑎
𝑡
, 𝑘
𝑡−1

, 𝑚
𝑡−1

)

𝜕𝑐
𝑡

= 𝑢
𝑐
(𝑐
𝑡
, 𝑙
𝑡
) = 𝜆
𝑡
+ 𝜇
𝑡
,

𝜕𝑉 (𝑎
𝑡
, 𝑘
𝑡−1

, 𝑚
𝑡−1

)

𝜕𝑏
𝑡

= 𝛽𝑉
𝜁
(𝜁
𝑡+1

, 𝑘
𝑡
, 𝑚
𝑡
) ⋅

1 + 𝑖
𝑡

1 + 𝜋
𝑡+1

= 𝜆
𝑡
,

𝜕𝑉 (𝑎
𝑡
, 𝑘
𝑡−1

, 𝑚
𝑡−1

)

𝜕𝑘
𝑡

= 𝛽𝑉
𝑘
(𝜁
𝑡+1

, 𝑘
𝑡
, 𝑚
𝑡
) = 𝜆
𝑡
+ 𝜇
𝑡
,

𝜕𝑉 (𝑎
𝑡
, 𝑘
𝑡−1

, 𝑚
𝑡−1

)

𝜕𝑚
𝑡

= 𝛽𝑉
𝑚

(𝜁
𝑡+1

, 𝑘
𝑡
, 𝑚
𝑡
) = 𝜆
𝑡
,

𝜕𝑉 (𝑎
𝑡
, 𝑘
𝑡−1

, 𝑚
𝑡−1

)

𝜕𝑛
𝑡

= −𝑢
𝑙
(𝑐
𝑡
, 𝑙
𝑡
) + 𝜆
𝑡
𝑓
𝑛
(𝑘
𝑡−1

, 𝑛
𝑡
) = 0.

(44)

Third, compute the partial derivatives with respect to 𝜁
𝑡
,

𝑘
𝑡−1

, and 𝑚
𝑡−1

and the envelope theorem yields

𝜕𝑉 (𝑎
𝑡
, 𝑘
𝑡−1

, 𝑚
𝑡−1

)

𝜕𝜁
𝑡

= 𝑉
𝜁
(𝜁
𝑡
, 𝑘
𝑡−1

, 𝑚
𝑡−1

) = 𝜆
𝑡
+ 𝜇
𝑡
,

𝜕𝑉 (𝑎
𝑡
, 𝑘
𝑡−1

, 𝑚
𝑡−1

)

𝜕𝑘
𝑡−1

= 𝑉
𝑘
(𝜁
𝑡
, 𝑘
𝑡−1

, 𝑚
𝑡−1

)

= 𝜆
𝑡
[𝑓
𝑘
(𝑘
𝑡−1

, 𝑛
𝑡
) + (1 − 𝛿)] + 𝜇

𝑡
(1 − 𝛿) ,

𝜕𝑉 (𝑎
𝑡
, 𝑘
𝑡−1

, 𝑚
𝑡−1

)

𝜕𝑚
𝑡−1

= 𝑉
𝑚

(𝜁
𝑡
, 𝑘
𝑡−1

, 𝑚
𝑡−1

) = (𝜆
𝑡
+ 𝜇
𝑡
)

1

1 + 𝜋
𝑡

.

(45)

Finally, derive the steady-state capital-labor ratio by the
results above:

𝑘
𝑠𝑠

𝑛
𝑠𝑠

= [
1 + 𝜋
𝑠𝑠

𝛼𝛽
(

1

𝛽
− 1 + 𝛿)]

1/(𝛼−1)

. (46)

The process of deriving this ratio is similar to the
deriving process of (42). We will not give unnecessary
details here. Compare (46) with (42); the result of (42) is
(1/2)
1/(𝛼−1) times that of (46). Equation (46) is the correct

result. It is the different partial derivatives with respect
to 𝑚
𝑡
in (34) and (44) that cause this deviation. In (34),

𝛽𝑉
𝑚
(𝑎
𝑡+1

, 𝑘
𝑡
, 𝑚
𝑡
) + 𝛽𝑉

𝑎
(𝑎
𝑡+1

, 𝑘
𝑡
, 𝑚
𝑡
) ⋅ (1/(1 + 𝜋

𝑡+1
)) = 𝜆

𝑡
. In

(44), 𝛽𝑉
𝑚
(𝜁
𝑡+1

, 𝑘
𝑡
, 𝑚
𝑡
) = 𝜆

𝑡
. Fundamentally speaking, the

reason for the deviation is the overlapped setting of state
variables 𝑎

𝑡
and𝑚

𝑡−1
versus the nonoverlapped setting of state

variables 𝜁
𝑡
, 𝑘
𝑡−1

, and𝑚
𝑡−1

. One has to use the particular skills
in [9] that is hard to think about and grasp to obtain the right
answer or get a wrong result adopting the overlapped setting
𝑉(𝑎
𝑡
, 𝑘
𝑡−1

, 𝑚
𝑡−1

). For this reason, the setting of value function
byWalsh could not be generalized. In this model considering
both Labor Time and Cash-In-Advance constraints, the basic
methods of incorporating money into general equilibrium
models are generalized, and our proposed method of setting
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and solution of Bellman equation demonstrates its clarity
and validity and corrects the defect that some other current
methods of setting and solution are easy to get wrong results.

7. Conclusions

As an important tool in theory economics, Bellman equation
is very powerful in solving optimization problems of discrete
time and is frequently used in monetary theory. It is hard to
grasp the setting and solution of Bellman equation and easy to
reach wrong conclusions since there is no general method to
set Bellman equation or the settings of Bellman equation are
excessively flexible. In this paper, we provide a set of general
setting and solution methods for Bellman equation with
multipliers. In the processes of solving monetary problems,
comparing with other current methods in classic reference,
our proposed method demonstrates its features of clarity,
validity, correct results, easy operation, and generalization.
Bellman equation is used not only in monetary problems
but also in almost every dynamic programming problem
associated with discrete time optimization. Our future work
is to study the applicability of the proposed method in this
paper in other areas.
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