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The present paper deals with the necessary optimality condition for a class of distributed parameter systems in which the system
is modeled in one-space dimension by a hyperbolic partial differential equation subject to the damping and mixed constraints on
state and controls. Pontryagin maximum principle is derived to be a necessary condition for the controls of such systems to be
optimal. With the aid of some convexity assumptions on the constraint functions, it is obtained that the maximum principle is also
a sufficient condition for the optimality.

1. Introduction

It is well known that many processes in science and engineer-
ing are modeled by partial differential equations. The prob-
lems concerning the control of vibrating systems are generally
governed by hyperbolic partial differential equations which
are obtained by using conservation laws as a description of
the distributed parameter system. In order to control these
systems, the derivation of necessary conditions in the form
of a maximum principle has been studied since the 1960s.

The Maximum principle is introduced for the first time
by Pontryagin and his students as a necessary condition
for the optimality of a mechanical system which is defined
by ordinary differential or difference-differential equations
[1]. Pontryagin’s maximum principle is given in the form
of a Hamiltonian that is defined in terms of an adjoint
variable and the control function. The first application of
maximum principle was the maximization of the terminal
velocity of a rocket. Following this initial work, it is shown
that the maximum principle is a necessary condition, if the
value of the Hamiltonian maximized over the controls is
concave in the state variables and the sufficient condition
with appropriate transversality conditions [2]. Necessary
conditions of optimality for distributed parameter systems
described by boundary-value problems for hyperbolic and

parabolic equations are studied in [3] where the completeness
assumption on the class of admissible controls is imposed.
In [4], Necessary condition for optimality is derived in a
form similar to Pontryagin’s maximum principle without
admissible control function set which is bounded or closed.
These necessary conditions are expressed in terms of certain
“generalized Jocabians.” For a general control problem formu-
lated in terms of a differential inclusion, maximum principle
is given by weak pseudo-Lipschitz behavior that is postulated
on the underlying multifunction [5]. Necessary condition
in the form of Pontryagin maximum principle by adopting
the Dubovitskiy-Milyutin functional analytical approach is
derived in [6]. In [7], Barnes presents amaximumprinciple as
a necessary condition for optimal control of vibrating system
that is modeled by second order linear hyperbolic PDEwhere
completeness assumption is dropped and a regular point is
used. Furthermore, Barnes shows that, by certain convexity
assumptions on the constraint functions, the maximum
principle is also a sufficient condition for the optimality
of distributed parameters systems. Other related theoretical
studies about the maximum principle in the literature are
available such as [8–25]. In [1–7], the optimal necessary
and sufficient conditions are derived for a single partial
differential equation without damping term subject to the
homogeneous boundary conditions in one space dimension.
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The systems that involve only one control function are studied
in [1–25], while studies in [26–30] examine the systems with
multiple control functions due to the size of the structures or
to increase the control efficiency.

In the present paper, inspired by [7], the necessary
optimality condition is given for a hyperbolic partial differ-
ential equation in one-space dimensional system.The system
involves a damping and several control functions and is
subject to the mixed integral constraints on state and control
functions. The partial differential equation under consider-
ation involves spatial derivatives of at most order four. The
main goal of the control problem interested here is to mini-
mize the performance index of the control problem in a given
period of time with the control functions and state variable
subject to the constraints in the form of integral equality
or/and inequality. Under proper convexity assumptions on
the constraint functions, the maximum principle is also a
sufficient condition for a general class of hyperbolic partial
differential equations in one-space dimensional system.

2. Mathematical Formulation of the Problem

Let us consider the following partial differential equation [31]:

𝜇 (𝑥)𝑤
𝑡𝑡
+ 𝑁 (𝑥) [𝑤] +𝑀 (𝑥) [𝑤

𝑡
] = 𝐸 (𝑥, 𝑡) +

𝑁

∑

𝑗=1

𝑓
𝑗
(𝑥, 𝑡)

on Ω = (0, ℓ) × (0, 𝑡
𝑓
) ,

(1)

where 𝑤(𝑥, 𝑡) is the transversal displacement at (𝑥, 𝑡) ∈ Ω =

{(𝑥, 𝑡) : 𝑥 ∈ [0, ℓ], 𝑡 ∈ [0, 𝑡
𝑓
]}, 𝑥 is the space variable, 𝑡 is

the time variable, 𝐸(𝑥, 𝑡) is the external excitation, 𝜇(𝑥) > 0

is the mass per unit length of the beam, 𝑡
𝑓
is predetermined

terminal time, and 𝑓
𝑗
(𝑥, 𝑡), 𝑗 = 1, . . . , 𝑁 are the control

functions,

𝑀(𝑥) [𝑤] =

4

∑

𝑗=0

𝑚
𝑗
(𝑥) (

𝜕
𝑗
𝑤

𝜕𝑥𝑗
) ,

𝑁 (𝑥) [𝑤] =

4

∑

𝑗=0

𝑛
𝑗
(𝑥) (

𝜕
𝑗
𝑤

𝜕𝑥𝑗
) ,

(2)

in which 𝑚
𝑗
(𝑥) and 𝑛

𝑗
(𝑥) are continuous functions on Ω,

𝑀(𝑥) and 𝑁(𝑥) are positive-definite operators, and𝑀(𝑥) is
the damping operator. Equation (1) is subject to the following
boundary conditions:

𝑎
𝑘

𝑗
(𝑥, 𝑡)

𝜕
𝑗
𝑤

𝜕𝑥𝑗

𝑥=0

= 𝑇
𝑗+𝑘

(𝑡) , 𝑘 = 1, 2, 𝑗 = 0, 1, 2, 3 (3a)

𝑎
𝑘

𝑗
(𝑥, 𝑡)

𝜕
𝑗
𝑤

𝜕𝑥𝑗

𝑥=ℓ

= 𝑆
𝑗+𝑘

(𝑡) , 𝑘 = 3, 4, 𝑗 = 0, 1, 2, 3, (3b)

where 𝑎𝑘
𝑗
(𝑥, 𝑡), 𝑆

𝑗+𝑘
(𝑡), and 𝑇

𝑗+𝑘
(𝑡) are continuous functions

onΩ and the initial conditions

𝑤 (𝑥, 0) = 𝑤
0
(𝑥) ∈ 𝐻

1
(0, ℓ) ,

𝑤
𝑡
(𝑥, 0) = 𝑤

1
(𝑥) ∈ 𝐿

2
(0, ℓ)

(4)

in which

𝐻
1
(0, ℓ) = {𝑤

0
(𝑥) ∈ 𝐿

2
(0, ℓ) :

𝜕𝑤
0
(𝑥)

𝜕𝑥
∈ 𝐿
2
(0, ℓ)} . (5)

The following assumptions are made:

(A1) 𝜕𝑗𝑤/𝜕𝑥𝑗, 𝜕𝑗+1𝑤/𝜕𝑥𝑗𝜕𝑡, 𝜕2𝑤/𝜕𝑡2 ∈ 𝐿
2
(Ω), 𝑗 = 0, 1

,. . . , 4, Ω is the closure of Ω;

(A2) 𝑎𝑘
𝑗
(𝑥, 𝑡), 𝑇

𝑗+𝑘
(𝑡), 𝑆
𝑗+𝑘
(𝑡) ∈ 𝐿

2
(Ω) 𝑘 = 1, . . . , 4, 𝑗 =

0, . . . , 3;

(A3) the set of admissible control functions is given by

𝑈ad = {𝑓
𝑘
(𝑥, 𝑡) | 𝑓

𝑘
(𝑥, 𝑡) ∈ 𝐿

2
(Ω) ,

𝑓𝑘 (𝑥, 𝑡)
 ≤ 𝑀𝑘 < ∞, 𝑘 = 1, . . . , 𝑁} .

(6)

in which 𝐿
2
(Ω) denotes the Hilbert space of real-

valued square-integrable functions on the domain Ω
in the Lebesgue sense with the usual inner product
and norm defined by

⟨𝑓, 𝑔⟩
Ω
= ∫
Ω

𝑓 (𝑥, 𝑡) 𝑔 (𝑥, 𝑡) 𝑑Ω,

𝑓

2

= ⟨𝑓, 𝑓⟩ ,

(7)

respectively. Under these assumptions, the system
equations (1)–(4) have a solution [32].

3. Formulation of the Control Problem

The optimal control problem aims to determine optimal
control functions 𝑓∘

𝑖
(𝑥, 𝑡) ∈ 𝑈ad, 𝑖 = 1, . . . , 𝑁 that minimizes

the performance index at the terminal time 𝑡
𝑓
:

J
0
(𝑓
1
(𝑥, 𝑡) , 𝑓

2
(𝑥, 𝑡) , . . . , 𝑓

𝑁
(𝑥, 𝑡))

= ∫

ℓ

0

[G
1
(𝑥, 𝑤 (𝑥, 𝑡

𝑓
)) +G

2
(𝑥, 𝑤
𝑡
(𝑥, 𝑡
𝑓
))] 𝑑𝑥

+ ∫

𝑡𝑓

0

∫

ℓ

0

G
0
(𝑥, 𝑡, 𝑤 (𝑥, 𝑡) , 𝑓

1
(𝑥, 𝑡) , . . . , 𝑓

𝑁
(𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡.

(8)

The first two terms in the right hand side of (8) denote the
modified energy of the system and the last term represents
the control effort spent in control duration. 𝑘th admissible
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control function 𝑓∘
𝑘
(𝑥, 𝑡) subject to (1)–(4) and the following

constraints:

∫

ℓ

0

ℎ
2𝑘
(𝑥, 𝑤
𝑡
(𝑥, 𝑡
𝑓
)) 𝑑𝑥

+ ∫

𝑡𝑓

0

∫

ℓ

0

G
−2𝑘

(𝑥, 𝑡, 𝑤 (𝑥, 𝑡) , 𝑓
𝑘
(𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡 = 𝑐−2𝑘

(9a)

∫

ℓ

0

ℎ
1𝑘
(𝑥, 𝑤 (𝑥, 𝑡

𝑓
)) 𝑑𝑥

+∫

𝑡𝑓

0

∫

ℓ

0

G
−1𝑘

(𝑥, 𝑡, 𝑤 (𝑥, 𝑡) , 𝑓
𝑘
(𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡 = 𝑐

−1𝑘

(9b)

∫

𝑡𝑓

0

∫

ℓ

0

G
𝑖𝑘
(𝑥, 𝑡, 𝑤 (𝑥, 𝑡) , 𝑓

𝑘
(𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡 ≤ 𝑐

𝑖𝑘
, 1 ≤ 𝑖 ≤ 𝑚

(9c)

∫

𝑡𝑓

0

∫

ℓ

0

G
𝑖𝑘
(𝑥, 𝑡, 𝑤 (𝑥, 𝑡) , 𝑓

𝑘
(𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡 = 𝑐

𝑖𝑘
, 𝑚 < 𝑖 ≤ 𝑀,

(9d)

in which ℎ
1𝑘
, ℎ
2𝑘
,G
0
,G
1
,G
2
, andG

𝑖𝑘
, for 𝑘 = 1, 2, . . . , 𝑁,

𝑖 = −2, −1, 1, . . . ,𝑀, are continuous functions of their
parameters. Also, ℎ

1𝑘
,G
0
,G
1
, andG

𝑖𝑘
, for 𝑘 = 1, 2, . . . , 𝑁, 𝑖 =

−2, −1, 1, . . . ,𝑀, have the continuous derivatives with respect
to𝑤 and ℎ

2𝑘
,G
2
have the continuous derivatives with respect

to 𝑤
𝑡
.

4. Necessary and Sufficient
Conditions for Optimality

In this section, necessary condition of optimality is derived
in the form of the maximum principle. Also, under proper
convexity assumptions on the constraint functions, it is
shown that maximum principle is also sufficient condition of
optimality. For convenience, let us assume that

G
0
(𝑥, 𝑡, 𝑤, 𝑓

1
(𝑥, 𝑡) , . . . , 𝑓

𝑁
(𝑥, 𝑡))

=

𝑁

∑

𝑘=1

G
0𝑘
(𝑥, 𝑡, 𝑤, 𝑓

𝑘
(𝑥, 𝑡)) ,

(10)

whereG
0𝑘
(𝑥, 𝑡, 𝑤, 𝑓

𝑘
(𝑥, 𝑡)) is the related termwith 𝑘th control

function in G
0
. In order to achieve the maximum principle,

an adjoint variable V(𝑥, 𝑡) along with the adjoint operator is
introduced.The adjoint variable V(𝑥, 𝑡) satisfies the following
equation:

𝜇 (𝑥) V
𝑡𝑡
+ 𝑁
∗
(𝑥) [V] − 𝑀∗ (𝑥) [V

𝑡
]

=

𝑁

∑

𝑘=1

𝑀

∑

𝑖=−2

𝜆
𝑖𝑘

𝜕G
𝑖𝑘

𝜕𝑤
(𝑥, 𝑡, 𝑤, 𝑓

𝑘
(𝑥, 𝑡)) , 𝜆

0𝑘
= 𝜆
0
,

(11)

where we introduced the Lagrange multiplier 𝜆
𝑖𝑘
≤ 0 and

𝑀
∗
(𝑥) [V] =

4

∑

𝑗=0

(−1)
𝑗
(
𝜕
𝑗

𝜕𝑥𝑗
)(V𝑚

𝑗
(𝑥)) ,

𝑁
∗
(𝑥) [V] =

4

∑

𝑗=0

(−1)
𝑗
(
𝜕
𝑗

𝜕𝑥𝑗
)(V𝑛
𝑗
(𝑥)) .

(12)

Equation (11) is subject to the following homogeneous bound-
ary conditions:

𝑎
𝑘

𝑗
(𝑥, 𝑡)

𝜕
𝑗V
𝜕𝑥𝑗

𝑥=0

= 0, 𝑘 = 1, 2, 𝑗 = 0, 1, 2, 3 (13a)

𝑎
𝑘

𝑗
(𝑥, 𝑡)

𝜕
𝑗V
𝜕𝑥𝑗

𝑥=ℓ

= 0, 𝑘 = 3, 4, 𝑗 = 0, 1, 2, 3 (13b)

and the terminal conditions

V (𝑥, 𝑡
𝑓
) =

1

𝜇 (𝑥)
𝜆
0

𝜕G
2

𝜕𝑤
𝑡

(𝑥, 𝑤
𝑡
(𝑥, 𝑡
𝑓
))

+
1

𝜇 (𝑥)

𝑁

∑

𝑘=1

𝜆
−2𝑘

𝜕ℎ
2𝑘

𝜕𝑤
𝑡

(𝑥, 𝑤
𝑡
(𝑥, 𝑡
𝑓
)) ,

(14a)

V
𝑡
(𝑥, 𝑡
𝑓
) −𝑀

∗
(𝑥) [V] (𝑥, 𝑡

𝑓
)

= −
1

𝜇 (𝑥)

𝑁

∑

𝑘=1

𝜆
−1𝑘

𝜕ℎ
1𝑘

𝜕𝑤
(𝑥, 𝑤 (𝑥, 𝑡

𝑓
))

−
1

𝜇 (𝑥)
𝜆
0

𝜕G
1

𝜕𝑤
(𝑥, 𝑤 (𝑥, 𝑡

𝑓
)) .

(14b)

Let us introduce a special perturbation of the optimal
control problem and three lemmas to derive the maximum
principle. Suppose that 𝑓∘

𝑘
(𝑥, 𝑡), 𝑘 = 1, . . . , 𝑁 are optimal

control functions corresponding to optimal displacement𝑤∘.
Let (𝑥

1
, 𝑡
1
), . . . , (𝑥

𝑃
, 𝑡
𝑃
) be 𝑃 arbitrary points in the open

region Ω and let 𝑓
𝑘𝑗
(𝑥, 𝑡), 𝑘 = 1, . . . , 𝑁, 𝑗 = 1, . . . , 𝑃 be 𝑃

arbitrary subfunctions for every admissible control function
𝑓
𝑘
∈ 𝑈ad, 𝑘 = 1, 2, . . . , 𝑁. Also, let us assume that 𝑥

1
≤

𝑥
2
≤ ⋅ ⋅ ⋅ ≤ 𝑥

𝑃
. Choose 𝜍 > 0 such that 𝑥

𝑖
+ 𝑃𝜍 < 𝑥

𝑗
, if

𝑥
𝑖
< 𝑥
𝑗
, 𝑥
𝑃
+ 𝑃𝜍 < ℓ and 𝑡

𝑖
+ 𝜍 < 𝑡

𝑓
, for each 0 ≤ 𝑖 ≤ 𝑃.

Let 𝜀
1
, . . . , 𝜀

𝑃
be real parameters satisfying 0 ≤ 𝜀

𝑗
≤ 𝜍
2.

Let 𝑋
1
= 𝑥
1
and 𝑋

𝑗
= 𝑥
𝑗
+ √𝜀1 + ⋅ ⋅ ⋅ + √𝜀𝑗−1 be for

1 < 𝑗 ≤ 𝑃. Hence, the intervals 𝑋
𝑗
≤ 𝑥 ≤ 𝑋

𝑗
+ √𝜀𝑗 and the

rectangles 𝑅
𝑗
: [𝑋
𝑗
, 𝑋
𝑗
+√𝜀𝑗] × [𝑡𝑗, 𝑡𝑗 +√𝜀𝑗] do not have any

intersection for 1 ≤ 𝑗 ≤ 𝑃, respectively. 𝜀 denotes the vector
(𝜀
1
, . . . , 𝜀

𝑃
) ∈ R𝑃; R𝑃 is 𝑃-dimensional Euclidean space, and

the norm of 𝜀 is given by |𝜀| = 𝜀
1
+ ⋅ ⋅ ⋅ + 𝜀

𝑃
. The admissible

controls 𝑓
𝑘𝜀
(𝑥, 𝑡) ∈ Ω are defined by

𝑓
𝑘𝜀
(𝑥, 𝑡) =

{{

{{

{

𝑓
∘

𝑘
(𝑥, 𝑡) , if (𝑥, 𝑡) ∉

𝑃

⋃

𝑗=1

𝑅
𝑗
,

𝑓
𝑘𝑗
(𝑥, 𝑡) , if (𝑥, 𝑡) ∈ 𝑅

𝑗
, 𝑗 = 1, . . . , 𝑃,

(15)

for 𝑘 = 1, 2, . . . , 𝑁.

Lemma 1. Let 𝑤
𝜀
satisfy the system given by (1)–(4) corre-

sponding to the controls 𝑓
1𝜀
(𝑥, 𝑡), 𝑓

2𝜀
(𝑥, 𝑡), . . . , 𝑓

𝑁𝜀
(𝑥, 𝑡). Con-

sider the following difference functions,

Δ𝐹 (𝑥, 𝑡) = 𝐹
𝜀
(𝑥, 𝑡) − 𝐹

∘
(𝑥, 𝑡) ,

Δ𝑤 (𝑥, 𝑡) = 𝑤
𝜀
(𝑥, 𝑡) − 𝑤

∘
(𝑥, 𝑡) ,

(16)
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in which

𝐹 (𝑥, 𝑡) =

𝑁

∑

𝑘=1

𝑓
𝑘
(𝑥, 𝑡) . (17)

Note that Δ𝑤(𝑥, 𝑡) satisfies following equation:

𝜇 (𝑥) Δ𝑤
𝑡𝑡
+ 𝑁 (𝑥) [Δ𝑤] +𝑀 (𝑥) [Δ𝑤

𝑡
] = Δ𝐹 (𝑥, 𝑡) , (18)

and the following homogeneous boundary conditions:

𝑏
𝑘

𝑗
(𝑥, 𝑡)

𝜕
𝑗
Δ𝑤

𝜕𝑥𝑗

𝑥=0

= 0, 𝑘 = 1, 2, 𝑗 = 0, 1, 2, 3 (19a)

𝑏
𝑘

𝑗
(𝑥, 𝑡)

𝜕
𝑗
Δ𝑤

𝜕𝑥𝑗

𝑥=ℓ

= 0, 𝑘 = 3, 4, 𝑗 = 0, 1, 2, 3 (19b)

and also, the zero initial conditions:

Δ𝑤 (𝑥, 0) = 0, Δ𝑤
𝑡
(𝑥, 0) = 0. (20)

Then,

∫

ℓ

0

Δ𝑤
2
(𝑥, 𝑡
𝑓
) 𝑑𝑥 = 𝑜 (𝜀) , ∫

ℓ

0

Δ𝑤
2

𝑡
(𝑥, 𝑡
𝑓
) 𝑑𝑥 = 𝑜 (𝜀) ,

∫

𝑡𝑓

0

∫

ℓ

0

Δ𝑤
2
(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡 = 𝑜 (𝜀) .

(21)

𝑜(𝜀) is a quantity such that

lim
𝜀→0

(
𝑜 (𝜀)

|𝜀|
) = 0. (22)

Proof. We start the proof by examining the following energy
integral:

𝐸 (𝑡) =
1

2
∫

ℓ

0

{(𝜇 (𝑥) Δ𝑤
𝑡
)
2

+
1

2
𝑁 (𝑥) [Δ𝑤]

2
} 𝑑𝑥; (23)

then, it can be rewritten in [33] as

𝐸 (𝑡) = ∫

𝑡

0

𝑑𝐸 (𝜏)

𝑑𝜏
𝑑𝜏

= ∫

𝑡

0

1

2
∫

ℓ

0

{2𝜇 (𝑥) Δ𝑤
𝑡
Δ𝑤
𝑡𝑡

+
1

2
𝑁 (𝑥) [2Δ𝑤Δ𝑤

𝑡
]} 𝑑𝑥 𝑑𝜏.

(24)

With integration by parts and using homogeneous boundary
conditions given by (19a) and (19b), (24) becomes

𝐸 (𝑡) = ∫

𝑡

0

∫

ℓ

0

{𝜇 (𝑥) Δ𝑤
𝑡𝑡
+ 𝑁 (𝑥) [Δ𝑤]} Δ𝑤

𝑡
𝑑𝑥 𝑑𝜏

= ∫

𝑡

0

∫

ℓ

0

{Δ𝐹 (𝑥, 𝜏) Δ𝑤
𝑡
− Δ𝑤
𝑡
𝑀(𝑥) [Δ𝑤

𝑡
]} 𝑑𝑥 𝑑𝜏

≤ ∫

𝑡

0

∫

ℓ

0

Δ𝐹 (𝑥, 𝜏) Δ𝑤
𝑡
(𝑥, 𝜏) 𝑑𝑥 𝑑𝜏.

(25)

Note that if 𝑁(𝑥) is nonself adjoint operator, the foregoing
inequality is also satisfied. By applying the Cauchy-Schwartz
inequality to the space integral, we obtain

𝐸 (𝑡) ≤ ∫

𝑡

0

[∫

ℓ

0

(Δ𝑤
𝑡
)
2

𝑑𝑥]

1/2

[∫

ℓ

0

(Δ𝐹 (𝑥, 𝜏))
2
𝑑𝑥]

1/2

𝑑𝜏

≤ ∫

𝑡

0

𝐸
1/2
(𝜏) [∫

ℓ

0

(Δ𝐹 (𝑥, 𝜏))
2
𝑑𝑥]

1/2

𝑑𝜏.

(26)

Taking the sup of both sides of (26) leads to

sup𝐸 (𝑡) ≤ sup𝐸1/2 (𝑡) ∫
𝑡

0

[∫

ℓ

0

(Δ𝐹 (𝑥, 𝜏))
2
𝑑𝑥]

1/2

𝑑𝜏

= sup𝐸
1

2 (𝑡)

𝑃

∑

𝑖=1

𝑜 (𝜀
5/4

𝑖
) ,

(27)

where 𝑜(𝑟) is a quantity such that

lim
𝑟→0
+
(
𝑜 (𝑟)

𝑟
) = constant. (28)

By means of (27), the following inequality is observed for
each 𝑡 ∈ [0, 𝑡

𝑓
]:

0 ≤ 𝐸
1/2
(𝑡) ≤ 𝑜 (𝜀

5/4
) . (29)

Because 5/4 > 0 [34], the following equality is obtained:

𝐸 (𝑡) = 𝑜 (𝜀) . (30)

Because the coefficients of (1) are bounded away from zero,
the conclusion of Lemma 1 is obtained from (30). It is
concluded from Lemma 1 that

lim
Δ𝐹(𝑥,𝑡)→0

Δ𝑤 (𝑥, 𝑡) = 0. (31)

Namely, (1)–(4) have a unique solution.

Let us define the differential operator L and its adjoint
operatorM as follows:

L [𝑤] ≡ 𝜇 (𝑥)𝑤
𝑡𝑡
+ 𝑁 (𝑥) [𝑤] +𝑀 (𝑥) [𝑤

𝑡
] ,

M [V] ≡ 𝜇 (𝑥) V
𝑡𝑡
+ 𝑁
∗
(𝑥) [V] − 𝑀∗ (𝑥) [V

𝑡
] .

(32)

Lemma 2. Let V and Δ𝑤(𝑥, 𝑡) = 𝑤(𝑥, 𝑡) − 𝑤
∘
(𝑥, 𝑡) be two

functions which are defined in 𝐿2(Ω). Also, let us assume that
V and Δ𝑤(𝑥, 𝑡) satisfy conditions (13a) and (13b) and (19a) and
(19b)-(20), respectively. Then,

∫

𝑡𝑓

0

∫

ℓ

0

{VL [Δ𝑤] − Δ𝑤M [V]} 𝑑𝑥 𝑑𝑡

= ∫

ℓ

0

𝜇 (𝑥) {V (𝑥, 𝑡
𝑓
) Δ𝑤
𝑡
(𝑥, 𝑡
𝑓
) − Δ𝑤 (𝑥, 𝑡

𝑓
)

× {V
𝑡
(𝑥, 𝑡
𝑓
) −𝑀

∗
(𝑥) [V (𝑥, 𝑡

𝑓
)]}} 𝑑𝑥.

(33)
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Proof. The reader is referred to [31].

Definition 3. For the arbitrary constants, 𝜆
−2𝑘
, 𝜆
−1𝑘
, 𝜆
0
, . . .,

𝜆
𝑀𝑘

, 𝑘 = 1, . . . , 𝑁, V is the solution of the system equations
(11)–(14a) and (14b). Let 𝑤∘ be the response function corre-
sponding to optimal control functions 𝑓∘

𝑘
∈ 𝑈ad, 𝑘 = 1,

. . . , 𝑁, 𝑢 be any of the following functions:

𝑢 (𝑥, 𝑡) = G
𝑖𝑘
(𝑥, 𝑡, 𝑤, 𝑓

𝑘
(𝑥, 𝑡)) , 𝑓

𝑘
∈ 𝑈ad is fixed

𝑢 (𝑥, 𝑡) = G
𝑖𝑘
(𝑥, 𝑡, 𝑤

∘
, 𝑓
∘

𝑘
(𝑥, 𝑡)) ,

𝑢 (𝑥, 𝑡) =

𝑁

∑

𝑘=1

V𝑓∘
𝑘
, 𝑓
∘

𝑘
∈ 𝑈ad,

𝑢 (𝑥, 𝑡) =

𝑁

∑

𝑘=1

V𝑓
𝑘
, 𝑓
𝑘
∈ 𝑈ad is fixed.

(34)

A point (𝑥, 𝑡) is called a regular point, for each 𝑓
𝑘
, 𝑘 =

1, . . . , 𝑁 ∈ 𝑈ad, if it satisfies the following equality for any
sufficiently small 𝜀 > 0:

∫

𝑡+√𝜀

𝑡

∫

𝑥+√𝜀

𝑥

𝑢 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡 = 𝜀𝑢 (𝑥, 𝑡) + 𝑜 (𝜀) . (35)

It can be concluded from [35] that all points of [0, ℓ] × [0, 𝑡
𝑓
]

are regular for each 𝑓
𝑘
, 𝑘 = 1, . . . , 𝑁 ∈ 𝑈ad.

Let J
𝑘
and 𝑍 denote the vector valued functional

(J
−2𝑘
,J
−1𝑘
,J
0𝑘
, . . . ,J

𝑀𝑘
), for 𝑘 = 1, . . . , 𝑁, and the set

𝑍 = {J
𝑘
(𝑓
𝑘
) : 𝑓
𝑘
∈ 𝑈ad} ⊂ R

𝑀+3
. (36)

Definition 4. If there exists a surface in the following form:

J
𝑘𝜀
= J
𝑘
(𝑓
∘

𝑘
) +

𝑃

∑

𝑗=1

𝑑
𝑘𝑗
𝜀
𝑗
+ 𝑜 (𝜀) (37)

in 𝑍 for sufficiently small 𝜀
𝑗
and 𝑑

𝑘1
, . . . , 𝑑

𝑘𝑃
are any finite

collection of vectors from 𝐷, then the set 𝐷 is called as a
derived set of the set 𝑍 atJ

𝑘
(𝑓
∘

𝑘
) [36].

Lemma 5. Assume that the points (𝑥
𝑖
, 𝑡
𝑖
) are regular points in

Ω, for 𝑖 = 1, 2, . . . , 𝑃, and J
𝑘
(𝑓
𝑘
) is introduced as follows, for

any 𝑓
𝑘
∈ 𝑈ad, 𝑘 = 1, . . . , 𝑁:

J
𝑘
(𝑓
𝑘
) = ∫

ℓ

0

{(
𝜆
0

𝑁
)

× [G
1
(𝑥, 𝑤 (𝑥, 𝑡

𝑓
)) +G

2
(𝑥, 𝑤
𝑡
(𝑥, 𝑡
𝑓
))]

+ [𝜆
−2𝑘
ℎ
2𝑘
(𝑥, 𝑤
𝑡
(𝑥, 𝑡
𝑓
))

+ 𝜆
−1𝑘
ℎ
1𝑘
(𝑥, 𝑤 (𝑥, 𝑡

𝑓
))] } 𝑑𝑥

+ ∫

𝑡𝑓

0

∫

ℓ

0

𝑀

∑

𝑖=−2

[𝜆
𝑖𝑘
G
𝑖𝑘
(𝑥, 𝑡, 𝑤, 𝑓

𝑘
)] 𝑑𝑥 𝑑𝑡.

(38)

If 𝑃 = 1, for 𝑘 = 1, . . . , 𝑁 𝑓
𝑘
∈ 𝑈ad, there exist constants

𝜆
−2𝑘
, 𝜆
−1𝑘
, 𝜆
0
, . . . , 𝜆

𝑀𝑘
(not all zero) such that

𝜆
0
≤ 0, 𝜆

𝑖𝑘
≤ 0 (0 ≤ 𝑖 ≤ 𝑚) ,

lim
𝜀→0
+

J
𝑘
(𝑓
𝑘𝜀
) −J
𝑘
(𝑓
∘

𝑘
)

𝜀
≤ 0,

(39)

in which 𝑓∘
𝑘
’s and 𝑓

𝜀𝑘
’s are functions which are defined in (15).

Proof. Define the functionals J
−2𝑘
,J
−1𝑘
,J
1𝑘
, . . . ,J

𝑀𝑘
on

the class of admissible controls by

J
−2𝑘

(𝑓
𝑘
) = ∫

ℓ

0

ℎ
2𝑘
(𝑥, 𝑤
𝑡
(𝑥, 𝑡
𝑓
)) 𝑑𝑥

+ ∫

𝑡𝑓

0

∫

ℓ

0

𝐺
−2𝑘

(𝑥, 𝑡, 𝑤, 𝑓
𝑘
) 𝑑𝑥 𝑑𝑡,

J
−1𝑘

(𝑓
𝑘
) = ∫

ℓ

0

ℎ
1𝑘
(𝑥, 𝑤
𝑡
(𝑥, 𝑡
𝑓
)) 𝑑𝑥

+ ∫

𝑡𝑓

0

∫

ℓ

0

𝐺
−1𝑘

(𝑥, 𝑡, 𝑤, 𝑓
𝑘
) 𝑑𝑥 𝑑𝑡,

J
𝑖𝑘
(𝑓
𝑘
) = ∫

𝑡𝑓

0

∫

ℓ

0

𝐺
𝑖𝑘
(𝑥, 𝑡, 𝑤, 𝑓

𝑘
) 𝑑𝑥 𝑑𝑡, 𝑖 = 1, . . . ,𝑀.

(40)

In order to use the Lagrange multiplier rule, we should
construct a derived set𝐷 for the set 𝑍 atJ

𝑘
(𝑓
∘

𝑘
) [36]. To this

end, functions V
𝑗𝑘

are introduced, for 𝑘 = 1, 2, . . . , 𝑁, 𝑗 =
−2, −1, 1, . . . ,𝑀, satisfying

𝜇 (𝑥)
𝜕
2V
𝑗𝑘

𝜕𝑡2
+ 𝑁
∗
(𝑥) [V

𝑗𝑘
] −𝑀

∗
(𝑥) [

𝜕V
𝑗𝑘

𝜕𝑡
]

=
𝜕G
𝑗𝑘

𝜕𝑤
(𝑥, 𝑡, 𝑤, 𝑓

𝑘
) , 0 ≤ 𝑥 ≤ ℓ, 0 ≤ 𝑡 ≤ 𝑡

𝑓
,

(41a)

𝑎
𝛼

𝑖
(𝑥, 𝑡)

𝜕
𝑖V
𝑗𝑘

𝜕𝑥𝑖

𝑥=0

= 0,

𝛼 = 1, 2, 𝑖 = 0, 1, 2, 3 − 2 ≤ 𝑗 ≤ 𝑀, 𝑘 = 1, . . . , 𝑁,

(41b)

𝑎
𝛼

𝑖
(𝑥, 𝑡)

𝜕
𝑖V
𝑗𝑘

𝜕𝑥𝑖

𝑥=ℓ

= 0,

𝛼 = 3, 4, 𝑖 = 0, 1, 2, 3 − 2 ≤ 𝑗 ≤ 𝑀, 𝑘 = 1, . . . , 𝑁,

(41c)

V
−2𝑘

(𝑥, 𝑡
𝑓
) =

1

𝜇 (𝑥)

𝜕ℎ
2𝑘

𝜕𝑤
𝑡

(𝑥, 𝑤
𝑡
(𝑥, 𝑡
𝑓
)) ,

𝜕V
−2𝑘

𝜕𝑡
(𝑥, 𝑡
𝑓
) = 0,

(41d)

V
−1𝑘

(𝑥, 𝑡
𝑓
) = 0,

𝜕V
−1𝑘

𝜕𝑡
(𝑥, 𝑡
𝑓
) =

−1

𝜇 (𝑥)

𝜕ℎ
1𝑘

𝜕𝑤
(𝑥, 𝑤 (𝑥, 𝑡

𝑓
)) ,

(41e)

V
𝑗𝑘
(𝑥, 𝑡
𝑓
) = 0,

𝜕V
𝑗𝑘

𝜕𝑡
(𝑥, 𝑡
𝑓
) = 0,

𝑗 = 1, . . . ,𝑀, 𝑘 = 1, . . . , 𝑁

(41f)
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and, for 𝑘 = 1, . . . , 𝑁 and 𝑗 = 0, satisfying

𝜇 (𝑥)
𝜕
2V
0𝑘

𝜕𝑡2
+ 𝑁
∗
(𝑥) [V
0𝑘
] − 𝑀

∗
(𝑥) [

𝜕V
0𝑘

𝜕𝑡
]

=
1

𝑁

𝜕G
0

𝜕𝑤
(𝑥, 𝑡, 𝑤, 𝑓

𝑘
) ,

(42a)

V
0𝑘
(𝑥, 𝑡
𝑓
) =

1

𝑁𝜇 (𝑥)

𝜕G
2

𝜕𝑤
𝑡

(𝑥, 𝑤
𝑡
(𝑥, 𝑡
𝑓
)) (42b)

𝜕V
0𝑘

𝜕𝑡
(𝑥, 𝑡
𝑓
) −𝑀

∗
(𝑥) [V
0𝑘
] (𝑥, 𝑡

𝑓
)

=
−1

𝑁𝜇 (𝑥)

𝜕G
1

𝜕𝑤
(𝑥, 𝑤 (𝑥, 𝑡

𝑓
)) .

(42c)

For each point, (𝑥, 𝑡) ∈ (0, ℓ) × (0, 𝑡
𝑓
), 𝑖 = −2, −1, 0, . . .,

𝑀, 𝑘 = 1, . . . , 𝑁, 𝑑
𝑖

𝑘
(𝑥, 𝑡, 𝑓

𝑘
) is defined as follows:

𝑑
𝑖

𝑘
(𝑥, 𝑡, 𝑓

𝑘
) = V
𝑖𝑘
(𝑥, 𝑡) (𝑓

𝑘
− 𝑓
∘

𝑘
) +G

𝑖𝑘
(𝑥, 𝑡, 𝑤

∘
(𝑥, 𝑡) , 𝑓

𝑘
)

−G
𝑖𝑘
(𝑥, 𝑡, 𝑤

∘
(𝑥, 𝑡) , 𝑓

∘

𝑘
) .

(43)

To show that

𝐷 = {𝑑
𝑘
| 𝑑
𝑘
= (𝑑
−2

𝑘
(𝑥, 𝑡, 𝑓

𝑘
) , . . . , 𝑑

𝑀

𝑘
(𝑥, 𝑡, 𝑓

𝑘
)) ,

(𝑥, 𝑡) a regular point of 𝑓∘
𝑘
, 𝑓
𝑘
∈ 𝑈ad}

(44)

is a derived set for 𝑍 at J
𝑘
(𝑓
∘

𝑘
), let 𝑑

𝑘1
, 𝑑
𝑘2
, . . . , 𝑑

𝑘𝑃
be an

arbitrary finite collection of vectors from 𝐷. We must show
that there exist pointsJ

𝜀𝑘
∈ 𝑍, which are subject to the vector

parameter 𝜀 = (𝜀
1
, . . . , 𝜀

𝑃
) for all sufficiently small positive

values of 𝜀 such that

J
𝜀𝑘
= J
𝑘
(𝑓
∘

𝑘
) +

𝑃

∑

𝑗=1

𝑑
𝑘𝑗
𝜀
𝑗
+ 𝑜 (𝜀) . (45)

Since 𝑑
𝑘𝑗

∈ 𝐷, 𝑗 = 1, . . . , 𝑃 𝑘 = 1, . . . , 𝑁, there exist
(𝑥
1
, 𝑡
1
), . . . , (𝑥

𝑃
, 𝑡
𝑃
) regularity points of 𝑓∘

𝑘
and subfunctions

𝑓
𝑘1
, . . . , 𝑓

𝑘𝑃
∈ 𝑈ad such that

𝑑
𝑘𝑗
= (𝑑
−2

𝑘
(𝑥
𝑗
, 𝑡
𝑗
, 𝑓
𝑘𝑗
) , . . . , 𝑑

𝑀

𝑘
(𝑥
𝑗
, 𝑡
𝑗
, 𝑓
𝑘𝑗
)) ,

𝑗 = 1, . . . , 𝑃, 𝑘 = 1, . . . , 𝑁.
(46)

To show thatJ
𝜀𝑘
can be written as J

𝜀𝑘
= J
𝑘
(𝑓
𝑘𝜀
) where 𝑓

𝑘𝜀

is the admissible control given by (15), for 𝑖 = 1, . . . ,𝑀, we
observe that

J
𝑖𝑘
(𝑓
𝑘𝜀
) −J
𝑖𝑘
(𝑓
∘

𝑘
)

= ∫

𝑡𝑓

0

∫

ℓ

0

[G
𝑖𝑘
(𝑥, 𝑡, 𝑤

𝜀
(𝑥, 𝑡) , 𝑓

𝑘𝜀
(𝑥, 𝑡))

−G
𝑖𝑘
(𝑥, 𝑡, 𝑤

∘
(𝑥, 𝑡) , 𝑓

∘

𝑘
(𝑥, 𝑡))] 𝑑𝑥 𝑑𝑡

= ∫

𝑡𝑓

0

∫

ℓ

0

[G
𝑖𝑘
(𝑥, 𝑡, 𝑤

𝜀
(𝑥, 𝑡) , 𝑓

𝑘𝜀
(𝑥, 𝑡))

−G
𝑖𝑘
(𝑥, 𝑡, 𝑤

∘
(𝑥, 𝑡) , 𝑓

𝑘𝜀
(𝑥, 𝑡))] 𝑑𝑥 𝑑𝑡

+ ∫

𝑡𝑓

0

∫

ℓ

0

[G
𝑖𝑘
(𝑥, 𝑡, 𝑤

∘
(𝑥, 𝑡) , 𝑓

𝑘𝜀
(𝑥, 𝑡))

−G
𝑖𝑘
(𝑥, 𝑡, 𝑤

∘
(𝑥, 𝑡) , 𝑓

∘

𝑘
(𝑥, 𝑡))] 𝑑𝑥 𝑑𝑡

= ∫

𝑡𝑓

0

∫

ℓ

0

𝜕G
𝑖𝑘

𝜕𝑤
(𝑥, 𝑡, 𝑤

∘
, 𝑓
∘

𝑘
(𝑥, 𝑡)) Δ𝑤 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+

𝑃

∑

𝑗=1

𝜀
𝑗
[G
𝑖𝑘
(𝑥
𝑗
, 𝑡
𝑗
, 𝑤
∘
(𝑥
𝑗
, 𝑡
𝑗
) , 𝑓
𝑘𝑗
)

−G
𝑖𝑘
(𝑥
𝑗
, 𝑡
𝑗
, 𝑤
∘
(𝑥
𝑗
, 𝑡
𝑗
) , 𝑓
∘

𝑘𝑗
(𝑥
𝑗
, 𝑡
𝑗
))]

+

𝑃

∑

𝑗=1

𝑜 (𝜀
𝑗
) .

(47)

In order to obtain (47), we use that 𝑓∘
𝑘
is regular at each of the

points (𝑥
𝑗
, 𝑡
𝑗
) and we use the conclusion of Lemma 1 . If the

following equality is substituted in (33)

MV
𝑘𝑖
=
𝜕G
𝑖𝑘

𝜕𝑤
(𝑥, 𝑡, 𝑤

∘
(𝑥, 𝑡) , 𝑓

∘

𝑘
) ,

𝑖 = 1, . . . ,𝑀, 𝑘 = 1, . . . , 𝑁,

(48)

it is observed that

∫

ℓ

0

∫

𝑡𝑓

0

Δ𝑤 (𝑥, 𝑡)MV
𝑘𝑖
𝑑𝑥 𝑑𝑡

= ∫

ℓ

0

∫

𝑡𝑓

0

V
𝑘𝑖
(𝑥, 𝑡) (𝑓

𝑘𝜀
(𝑥, 𝑡) − 𝑓

∘

𝑘
(𝑥, 𝑡))

=

𝑃

∑

𝑗=1

𝜀
𝑗
V
𝑘𝑖
(𝑥
𝑗
, 𝑡
𝑗
) (𝑓
𝑘𝑗
− 𝑓
∘

𝑘𝑗
(𝑥
𝑗
, 𝑡
𝑗
)) + 𝑜 (𝜀) .

(49)

By means of (43) and (47), we can write

J
𝑖𝑘
(𝑓
𝑘𝜀
) = J

𝑖𝑘
(𝑓
∘

𝑘
) +

𝑃

∑

𝑗=1

𝑑
𝑖

𝑘𝑗
𝜀
𝑗
+ 𝑜 (𝜀) ,

𝑖 = 1, . . . ,𝑀, 𝑘 = 1, . . . , 𝑁,

(50)

where 𝑑𝑖
𝑘𝑗
denotes the 𝑖th component of 𝑑

𝑘𝑗
. For 𝑖 = 0, we

have
J
0𝑘
(𝑓
𝑘𝜀
) −J
0𝑘
(𝑓
∘

𝑘
)

= ∫

ℓ

0

[
1

𝑁

𝜕G
1

𝜕𝑤
(𝑥, 𝑤
∘
(𝑥, 𝑡
𝑓
)) Δ𝑤 (𝑥, 𝑡

𝑓
)

+
1

𝑁

𝜕G
2

𝜕𝑤
𝑡

(𝑥, 𝑤
∘

𝑡
(𝑥, 𝑡
𝑓
)) Δ𝑤

𝑡
(𝑥, 𝑡
𝑓
)] 𝑑𝑥

+

𝑃

∑

𝑗=1

𝜀
𝑗
[G
0𝑘
(𝑥
𝑗
, 𝑡
𝑗
, 𝑤
𝜀
(𝑥
𝑗
, 𝑡
𝑗
) , 𝑓
𝑘𝑗
)

−G
0𝑘
(𝑥
𝑗
, 𝑡
𝑗
, 𝑤
𝜀
(𝑥
𝑗
, 𝑡
𝑗
) , 𝑓
∘

𝑘𝑗
)]

+ ∫

ℓ

0

∫

𝑡𝑓

0

(MV
0𝑘
) Δ𝑤 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡 + 𝑜 (𝜀) ,

(51)
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in which J
0𝑘

= (1/𝑁) ∫
ℓ

0
[G
1
(𝑥, 𝑤(𝑥, 𝑡

𝑓
)) + G

2
(𝑥, 𝑤
𝑡
(𝑥,

𝑡
𝑓
))]𝑑𝑥 + ∫

𝑡𝑓

0
∫
ℓ

0
G
0𝑘
(𝑥, 𝑡, 𝑤, 𝑓

𝑘
)𝑑𝑥 𝑑𝑡. Considering (33) and

(41a), (41b), (41c), (41d), (41e), and (41f), it is observed that

∫

𝑡𝑓

0

∫

ℓ

0

Δ𝑤 (𝑥, 𝑡)MV
0𝑘
𝑑𝑥 𝑑𝑡

= ∫

𝑡𝑓

0

∫

ℓ

0

V
0𝑘
(𝑥, 𝑡) (𝑓

𝑘𝜀
(𝑥, 𝑡) − 𝑓

∘

𝑘
(𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡

− ∫

ℓ

0

[
1

𝑁

𝜕G
1

𝜕𝑤
(𝑥, 𝑤
∘
(𝑥, 𝑡
𝑓
)) Δ𝑤 (𝑥, 𝑡

𝑓
)

+
1

𝑁

𝜕G
2

𝜕𝑤
𝑡

(𝑥, 𝑤
𝑡
(𝑥, 𝑡
𝑓
)) Δ𝑤

𝑡
(𝑥, 𝑡
𝑓
)] .

(52)

If (52) is substituted into (51), (50) is obtained for 𝑖 = 0, 𝑘 =
1, . . . , 𝑁. For 𝑖 = −2, −1, (50) can be obtained by using (33)–
(41a), (41b), (41c), (41d), (41e), and (41f). By the definitionJ

𝑘
,

one obtains

J
𝑘
(𝑓
𝑘𝜀
) −J
𝑘
(𝑓
∘

𝑘
) =

𝑃

∑

𝑗=1

𝑑
𝑘𝑗
𝜀
𝑗
+ 𝑜 (𝜀) , (53)

where J
𝑘𝜀

is taken as J
𝑘
(𝑓
𝑘𝜀
). This completes the proof of

𝐷 being a derived set for 𝑍 atJ
𝑘
(𝑓
∘

𝑘
). Then, there exist non-

positive Lagrange multipliers [36], not zero simultaneously,
satisfying

𝑀

∑

𝑖=−2

𝜆
𝑖𝑘
𝑑
𝑖

𝑘
≤ 0, 𝜆

0𝑘
= 𝜆
0
, (54)

for any vector 𝑑
𝑘
= (𝑑
−2

𝑘
, 𝑑
−1

𝑘
, 𝑑
0

𝑘
, . . . , 𝑑

𝑀

𝑘
) in 𝐷. Let us take

𝑃 = 1 in the foregoing discussion to obtain the conclusion of
Lemma 5 and put

J
𝑘
=

𝑀

∑

𝑖=−2

𝜆
𝑖𝑘
J
𝑖𝑘
. (55)

By (50), it follows that

J
𝑘
(𝑓
𝑘𝜀
) −J
𝑘
(𝑓
∘

𝑘
) = 𝜀

𝑀

∑

𝑖=−2

𝜆
𝑖𝑘
𝑑
𝑖

𝑘
+ 𝑜 (𝜀) , (56)

for any 𝑑
𝑘
= (𝑑
−2

𝑘
, 𝑑
−1

𝑘
, 𝑑
0

𝑘
, . . . , 𝑑

𝑀

𝑘
) in 𝐷. Then, we obtain the

proof of Lemma 5 as follows:

lim
𝜀→0
+

J
𝑘
(𝑓
𝑘𝜀
) −J
𝑘
(𝑓
∘

𝑘
)

𝜀
=

𝑀

∑

𝑖=−2

𝜆
𝑖𝑘
𝑑
𝑖

𝑘
≤ 0. (57)

Theorem 6 (maximum principle). For the optimal con-
trol functions 𝑓∘

1
(𝑥, 𝑡), . . . , 𝑓

∘

𝑁
(𝑥, 𝑡) ∈ 𝑈ad, the correspond-

ing optimal state and adjoint variables are 𝑤
∘
(𝑥, 𝑡) =

𝑤(𝑥, 𝑡, 𝑓
∘

1
(𝑥, 𝑡), 𝑓

∘

2
(𝑥, 𝑡), . . . , 𝑓

∘

𝑁
(𝑥, 𝑡)) satisfying (1)–(4) and

V∘(𝑥, 𝑡) = V(𝑥, 𝑡, 𝑓∘
1
(𝑥, 𝑡), 𝑓

∘

2
(𝑥, 𝑡), . . . , 𝑓

∘

𝑁
(𝑥, 𝑡)) satisfying (11),

boundary conditions (13a) and (13b), and terminal conditions
(14a) and (14b), respectively. The maximum principle states
that if

H [𝑥, 𝑡, V∘, 𝑓∘
1
(𝑥, 𝑡) , . . . , 𝑓

∘

𝑁
(𝑥, 𝑡)]

= max
𝑓𝑘∈𝑈ad

H [𝑥, 𝑡, V, 𝑓
1
(𝑥, 𝑡) , . . . , 𝑓

𝑁
(𝑥, 𝑡)] , 𝑘 = 1, . . . , 𝑁,

(58)

where the Hamiltonian is given by

H [𝑥, 𝑡, V, 𝑓
1
, . . . , 𝑓

𝑁
] =

𝑁

∑

𝑘=1

V (𝑥, 𝑡) 𝑓
𝑘

+

𝑁

∑

𝑘=1

𝑀

∑

𝑖=−2

𝜆
𝑖𝑘
G
𝑖𝑘
(𝑥, 𝑡, 𝑤 (𝑥, 𝑡) , 𝑓

𝑘
) ,

(59)

then the performance index equation (8) is minimized; that is,

J
0
[𝑓
∘

1
(𝑥, 𝑡) , . . . , 𝑓

∘

𝑁
(𝑥, 𝑡)] ≤ J

0
[𝑓
1
(𝑥, 𝑡) , . . . , 𝑓

𝑁
(𝑥, 𝑡)]

for any 𝑓
𝑘
∈ 𝑈ad.

(60)

Proof. Let (𝑥, 𝑡) be a regular point for admissible optimal
control functions 𝑓∘

𝑘
, 𝑘 = 1, . . . , 𝑁. By Lemma 5, for 0 ≤

𝑖 ≤ 𝑚 and some 𝜆
𝑖𝑘

̸= 0, there exists Lagrange multipliers
𝜆
−2𝑘
, 𝜆
−1𝑘
, 𝜆
0
, . . . , 𝜆

𝑁𝑀
independent of (𝑥, 𝑡) with 𝜆

𝑖𝑘
≤ 0

such that
𝑁

∑

𝑘=1

𝑀

∑

𝑖=−2

𝜆
𝑖𝑘
[V
𝑖𝑘
(𝑥, 𝑡) (𝑓

𝑘
− 𝑓
∘

𝑘
(𝑥, 𝑡)) +G

𝑖𝑘
(𝑥, 𝑡, 𝑤 (𝑥, 𝑡) , 𝑓

𝑘
)

−G
𝑖𝑘
(𝑥, 𝑡, 𝑤

∘
(𝑥, 𝑡) , 𝑓

∘

𝑘
(𝑥, 𝑡))] ≤ 0,

(61)

for any function 𝑓
𝑘
∈ 𝑈ad. Note that the term

𝑁

∑

𝑘=1

𝑀

∑

𝑖=−2

𝜆
𝑖𝑘
V
𝑖𝑘
(𝑥, 𝑡) 𝑓

𝑘
+

𝑁

∑

𝑘=1

𝑀

∑

𝑖=−2

𝜆
𝑖𝑘
G
𝑖𝑘
(𝑥, 𝑡, 𝑤 (𝑥, 𝑡) , 𝑓

𝑘
)

in (61)

(62)

reaches its maximum value at 𝑓
𝑘
= 𝑓
∘

𝑘
(𝑥, 𝑡) ∈ 𝑈ad, for 𝑘 =

1, . . . , 𝑁. Let us consider the first term in (62),

𝑁

∑

𝑘=1

𝑀

∑

𝑖=−2

𝜆
𝑖𝑘
V
𝑖𝑘
(𝑥, 𝑡) 𝑓

𝑘
, (63)

that can be rewritten in the form
𝑁

∑

𝑘=1

𝑀

∑

𝑖=−2

𝑁

∑

𝑟=1

𝜆
𝑖𝑘
V
𝑖𝑘
(𝑥, 𝑡) 𝑓

𝑟
(64)

to be subject to

𝜆
𝑖𝑘
V
𝑖𝑘
(𝑥, 𝑡) 𝑓

𝑟
= {

𝜆
𝑖𝑘
V
𝑖𝑘
(𝑥, 𝑡) 𝑓

𝑘
, 𝑟 = 𝑘,

0, 𝑟 ̸= 𝑘.
(65)

If we define V = ∑𝑁
𝑘=1

∑
𝑀

𝑖=−2
𝜆
𝑖𝑘
V
𝑖𝑘
(𝑥, 𝑡), we obtain

𝑁

∑

𝑘=1

V (𝑥, 𝑡) 𝑓
𝑘
+

𝑁

∑

𝑘=1

𝑀

∑

𝑖=−2

𝜆
𝑖𝑘
G
𝑖𝑘
(𝑥, 𝑡, 𝑤 (𝑥, 𝑡) , 𝑓

𝑘
) , (66)

the conclusion of the maximum principle.This completes the
proof of Theorem 6.
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Theorem7. Consider the control system equations (1)–(4) and
(8)-(9a), (9b), (9c), and (9d). Let the functions 𝐺

𝑖𝑘
be in the

form

𝐺
𝑖𝑘
(𝑥, 𝑡, 𝑤, 𝑓

𝑘
) = G

𝑖

𝑘
(𝑥, 𝑡, 𝑤) + 𝐻

𝑖

𝑘
(𝑥, 𝑡, 𝑓

𝑘
) ,

𝑖 = −2, −1, 0, . . . ,𝑀, 𝑘 = 1, . . . , 𝑁
(67)

and let V satisfying (13a) and (13b)-(14a) and (14b) be the
nonzero solution of

MV =
𝑁

∑

𝑘=1

𝑀

∑

𝑖=−2

𝜆
𝑖𝑘

𝜕𝐺
𝑖

𝑘
(𝑥, 𝑡, 𝑤

∘
(𝑥, 𝑡))

𝜕𝑤
. (68)

Assume that there exist admissible control functions
𝑓
∘

1
, 𝑓
∘

2
, . . . , 𝑓

∘

𝑁
and the constants 𝜆

0
, 𝜆
𝑖𝑘
, 𝑖 =

−2, −1, 1, . . . ,𝑀, 𝑘 = 1, . . . , 𝑁 that satisfy the maximum
principle equations (58). Let us assume that following
assumptions are satisfied:

(a) for 𝑘 = 1, . . . , 𝑁, G
1
, ℎ
1𝑘
,G
𝑖𝑘
, . . . ,G

𝑚𝑘
are convex

functions of 𝑤 andG
2
, ℎ
2𝑘
are convex functions of 𝑤

𝑡
;

(b) 𝜆
0
< 0, 𝜆

𝑖𝑘
≤ 0, for 𝑖 = −1, . . . , 𝑚, 𝑘 = 1, . . . , 𝑁;

(c) the constraints equation (9a), (9b), (9c), and (9d) are
satisfied by 𝑓∘

1
, 𝑓
∘

2
, . . . , 𝑓

∘

𝑁
;

(d) if the strict inequality holds in (9a), (9b), (9c), and (9d),
the corresponding Lagrange multiplier 𝜆

𝑖𝑘
= 0;

(e) −𝜆
𝑖𝑘
𝐺
𝑖

𝑘
, −𝜆
−1𝑘
ℎ
1𝑘

are convex functions of 𝑤 and
−𝜆
−2𝑘
ℎ
2𝑘

is convex function of 𝑤
𝑡
, for 𝑘 = 1, . . .,

𝑁, 𝑚 < 𝑖 < 𝑀.

Under these assumptions, themaximumprinciple given by (58)
is also sufficient condition for the admissible control functions
𝑓
∘

1
, 𝑓
∘

2
, . . . , 𝑓

∘

𝑁
to be optimal. The condition (d) is proved in

[36]. If the ℎ
1𝑘
, 𝐺
𝑖𝑘
, and ℎ

2𝑘
are linear functions of 𝑤 and 𝑤

𝑡
,

respectively, the condition (e) is satisfied, for 𝑘 = 1, . . . , 𝑁, 𝑚 <

𝑖 ≤ 𝑀.

Proof. If 𝑓
𝑘
’s and 𝑤 satisfy (9a), (9b), (9c), and (9d), then, by

the condition (d),

∫

𝑡𝑓

0

∫

ℓ

0

𝜆
𝑖𝑘
[𝐺
𝑖

𝑘
(𝑥, 𝑡, 𝑤) − 𝐺

𝑖

𝑘
(𝑥, 𝑡, 𝑤

∘
)] 𝑑𝑥 𝑑𝑡

+ ∫

𝑡𝑓

0

∫

ℓ

0

𝜆
𝑖𝑘
[𝐻
𝑖

𝑘
(𝑥, 𝑡, 𝑓

𝑘
) − 𝐻

𝑖

𝑘
(𝑥, 𝑡, 𝑓

∘

𝑘
)] 𝑑𝑥 𝑑𝑡 = 0,

(69)

for 𝑖 = −2, −1, . . . ,𝑀, 𝑘 = 1, . . . , 𝑁. Then, we can write the
following inequality

− 𝜆
0
[J
0
(𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑁
) −J
0
(𝑓
∘

1
, 𝑓
∘

2
, . . . , 𝑓

∘

𝑁
)]

≥ −∫

ℓ

0

𝜆
0
[G
2
(𝑥, 𝑤
𝑡
(𝑥, 𝑡
𝑓
)) −G

2
(𝑥, 𝑤
∘

𝑡
(𝑥, 𝑡
𝑓
))

+G
1
(𝑥, 𝑤 (𝑥, 𝑡

𝑓
)) −G

1
(𝑥, 𝑤
∘
(𝑥, 𝑡
𝑓
))] 𝑑𝑥.

−∫

𝑡𝑓

0

∫

ℓ

0

𝑁

∑

𝑘=1

𝑀

∑

𝑖=−2

𝜆
𝑖𝑘
{𝐺
𝑖

𝑘
(𝑥, 𝑡, 𝑤 (𝑥, 𝑡)) − 𝐺

𝑖

𝑘
(𝑥, 𝑡, 𝑤

∘
(𝑥, 𝑡))

− [𝐻
𝑖

𝑘
(𝑥, 𝑡, 𝑓

𝑘
(𝑥, 𝑡))

−𝐻
𝑖

𝑘
(𝑥, 𝑡, 𝑓

∘

𝑘
(𝑥, 𝑡))]} 𝑑𝑥 𝑑𝑡

−∫

ℓ

0

𝑁

∑

𝑘=1

𝜆
−1𝑘

[ℎ
1𝑘
(𝑥, 𝑤 (𝑥, 𝑡

𝑓
)) − ℎ

1𝑘
(𝑥, 𝑤
∘
(𝑥, 𝑡
𝑓
))] 𝑑𝑥

−∫

ℓ

0

𝑁

∑

𝑘=1

𝜆
−2𝑘

[ℎ
2𝑘
(𝑥, 𝑤
𝑡
(𝑥, 𝑡
𝑓
)) − ℎ

2𝑘
(𝑥, 𝑤
∘

𝑡
(𝑥, 𝑡
𝑓
))] 𝑑𝑥

(70)

By using the convexity assumption (e),

− 𝜆
0
[J
0
(𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑁
) −J
0
(𝑓
∘

1
, 𝑓
∘

2
, . . . , 𝑓

∘

𝑁
)]

≥ −∫

ℓ

0

𝜆
0
[
𝜕G
1

𝜕𝑤
(𝑥, 𝑤
∘
(𝑥, 𝑡
𝑓
) Δ𝑤 (𝑥, 𝑡

𝑓
))

+
𝜕G
2

𝜕𝑤
𝑡

(𝑥, 𝑤
∘

𝑡
(𝑥, 𝑡
𝑓
) Δ𝑤
𝑡
(𝑥, 𝑡
𝑓
))] 𝑑𝑥

− ∫

𝑡𝑓

0

∫

ℓ

0

𝑁

∑

𝑘=1

𝑀

∑

𝑖=−2

𝜆
𝑖𝑘

𝜕𝐺
𝑖

𝑘

𝜕𝑤
(𝑥, 𝑡, 𝑤

∘
(𝑥, 𝑡)) Δ𝑤 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+ ∫

𝑡𝑓

0

∫

ℓ

0

𝑁

∑

𝑘=1

𝑀

∑

𝑖=−2

𝜆
𝑖𝑘
[𝐻
𝑖

𝑘
(𝑥, 𝑡, 𝑓

∘

𝑘
(𝑥, 𝑡))

−𝐻
𝑖

𝑘
(𝑥, 𝑡, 𝑓

𝑘
(𝑥, 𝑡))] 𝑑𝑥 𝑑𝑡

− ∫

ℓ

0

𝑁

∑

𝑘=1

𝜆
−1𝑘

𝜕ℎ
1𝑘

𝜕𝑤
(𝑥, 𝑤
∘
(𝑥, 𝑡
𝑓
)) Δ𝑤 (𝑥, 𝑡

𝑓
) 𝑑𝑥

− ∫

ℓ

0

𝑁

∑

𝑘=1

𝜆
−2𝑘

𝜕ℎ
2𝑘

𝜕𝑤
𝑡

(𝑥, 𝑤
∘

𝑡
(𝑥, 𝑡
𝑓
)) Δ𝑤

𝑡
(𝑥, 𝑡
𝑓
) 𝑑𝑥

= −∫

ℓ

0

𝜆
0
[
𝜕G
1

𝜕𝑤
(𝑥, 𝑤
∘
(𝑥, 𝑡
𝑓
)) Δ𝑤 (𝑥, 𝑡

𝑓
)

+
𝜕G
2

𝜕𝑤
𝑡

(𝑥, 𝑤
∘

𝑡
(𝑥, 𝑡
𝑓
)) Δ𝑤

𝑡
(𝑥, 𝑡
𝑓
)] 𝑑𝑥

− ∫

𝑡𝑓

0

∫

ℓ

0

(MV) Δ𝑤 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+ ∫

𝑡𝑓

0

∫

ℓ

0

𝑁

∑

𝑘=1

𝑀

∑

𝑖=−2

𝜆
𝑖𝑘
[𝐻
𝑖

𝑘
(𝑥, 𝑡, 𝑓

∘

𝑘
(𝑥, 𝑡))

−𝐻
𝑖

𝑘
(𝑥, 𝑡, 𝑓

𝑘
(𝑥, 𝑡))] 𝑑𝑥 𝑑𝑡

− ∫

ℓ

0

𝑁

∑

𝑘=1

[𝜆
−1𝑘

𝜕ℎ
1𝑘

𝜕𝑤
(𝑥, 𝑤
∘
(𝑥, 𝑡
𝑓
)) Δ𝑤 (𝑥, 𝑡

𝑓
)

+ 𝜆
−2𝑘

𝜕ℎ
2𝑘

𝜕𝑤
𝑡

(𝑥, 𝑤
∘

𝑡
(𝑥, 𝑡
𝑓
)) Δ𝑤

𝑡
(𝑥, 𝑡
𝑓
)] 𝑑𝑥.

(71)
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And finally by applying Lemma 2 and the conditions (13a)
and (13b)-(14a) and (14b), we obtain

− 𝜆
0
[J
0
(𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑁
) −J
0
(𝑓
∘

1
, 𝑓
∘

2
, . . . , 𝑓

∘

𝑁
)]

≥ ∫

𝑡𝑓

0

∫

ℓ

0

{

𝑁

∑

𝑘=1

V (𝑥, 𝑡) [𝑓∘
𝑘
(𝑥, 𝑡) − 𝑓

𝑘
(𝑥, 𝑡)]

+

𝑁

∑

𝑘=1

𝑀

∑

𝑖=−2

𝜆
𝑖𝑘
[𝐻
𝑖

𝑘
(𝑥, 𝑡, 𝑓

∘

𝑘
(𝑥, 𝑡))

−𝐻
𝑖

𝑘
(𝑥, 𝑡, 𝑓

𝑘
(𝑥, 𝑡))] } 𝑑𝑥 𝑑𝑡.

(72)

Note that the right-hand side of (72) is nonnegative due to
the condition (b). Then, we obtain

J
0
(𝑓
1
(𝑥, 𝑡) , 𝑓

2
(𝑥, 𝑡) , . . . , 𝑓

𝑁
(𝑥, 𝑡))

−J
0
(𝑓
∘

1
(𝑥, 𝑡) , 𝑓

∘

2
(𝑥, 𝑡) , . . . , 𝑓

∘

𝑁
(𝑥, 𝑡)) ≥ 0.

(73)

It follows that the maximum principle is also a sufficient
condition for a global minimum of the performance index
(8). It completes the proof of Theorem 7.

5. Conclusion

A necessary optimality condition for a general class of dam-
pedhyperbolic partial differential equation in one-space dim-
ension is derived in the form of a maximum principle by
using the derived set and regular point concepts. Under pro-
per convexity assumption on state variable, it is proved that-
the maximum principle is also sufficient condition for the
controls to be optimal . In [1–7], the systems under consider-
ation include only one control function. Also, the necessary
and sufficient conditions for optimality are given for a
single hyperbolic differential equation without damping term
subject to the homogeneous boundary conditions in one-
space dimension. But, in the present paper, as an original con-
tribution to literature, the necessary and sufficient optimality
conditions obtained in [1–7] are generalized for a general
class of damped hyperbolic equation involving damping
and several control functions subject to nonhomogeneous
boundary conditions in one space dimension.
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