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A comparison theorem on oscillation behavior is firstly established for a class of even-order nonlinear neutral delay difference
equations. By using the obtained comparison theorem, two oscillation criteria are derived for the class of even-order nonlinear
neutral delay difference equations. Two examples are given to show the effectiveness of the obtained results.

1. Introduction

Recently there have been a lot of research papers in con-
nection with the oscillation of solutions of difference equa-
tions with or without neutral terms. The literature on the
oscillation of neutral delay difference equations is growing
very fast, and it can be widely applied to the reality. In
fact, neutral delay difference equations arise in modelling
of the networks containing lossless transmission lines (as
in high speed computers where the lossless transmission
lines are used to interconnect switching circuits). For recent
contributions regarding the theoretical part and providing
systematic treatment of oscillation of solutions of neutral
type difference equations, the readers can refer to the recent
monographs by Agarwal [1], Györi and Ladas [2].

The oscillation behavior of the even-order nonlinear
neutral differential equation

[𝑥 (𝑡) + 𝑝 (𝑡) 𝑥 (𝜏 (𝑡))]
(𝑛)

+ 𝑞 (𝑡) 𝑓 [𝑥 (𝜎 (𝑡))] = 0 (1)

has been established by Zhang et al. [3]. In this paper,
the discrete analogue of the above equation is considered.
We consider the even-order nonlinear neutral difference
equation,

Δ𝑚 (𝑥𝑛 + 𝑝𝑛𝑥𝑛−𝜏) + 𝑞𝑛𝑓 (𝑥𝑛−𝑘) = 0, (2)

where 𝑚 ≥ 2 is an even and 𝜏, 𝑘 ∈ N; let N denote the set
of all natural numbers; 𝑛 ∈ 𝑁(𝑛0) = {𝑛0, 𝑛0 + 1, 𝑛0 + 2, . . .};

𝑛0 is a nonnegative integer; Δ denotes the forward difference
operator defined by Δ𝑥𝑛 = 𝑥𝑛+1 − 𝑥𝑛, Δ

𝑚𝑥𝑛 = Δ𝑚−1𝑥𝑛+1 −
Δ𝑚−1𝑥𝑛.

Throughout this paper, the following conditions are
assumed to hold:

(H1) {𝑝𝑛} is a sequence of nonnegative real number, 0 ≤
𝑝𝑛 < 1, and {𝑞𝑛} is a sequence of nonnegative real
number with {𝑞𝑛} being not eventually identically
equal to zero;

(H2) 𝑓 : R → R (R = (−∞, +∞)) is a continuous odd
function, and 𝑥𝑓(𝑥) > 0 for all 𝑥 ̸= 0.

Before deriving themain results, the following definitions
are given.

Definition 1. By a solution of (2), one means a real sequence
{𝑥𝑛} defined for 𝑛 ≥ 𝑛0 −𝜃 (𝜃 = max{𝜏, 𝑘})which satisfies (2)
for 𝑛 ∈ 𝑁(𝑛0).

In this paper, we restrict our attention to nontrivial
solutions of (2).

Definition 2. A nontrivial solution {𝑥𝑛} of (2) is said to
be oscillatory if the terms 𝑥𝑛 of the sequence are neither
eventually positive nor eventually negative. Otherwise, it is
called nonoscillatory.

Definition 3. An equation is said to be oscillatory if all its
solutions are oscillatory.
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In 2004, Stavroulakis [4] studied the oscillatory behavior
of all solutions of first-order delay difference equation,

𝑥𝑛+1 − 𝑥𝑛 + 𝑝𝑛𝑥𝑛−𝑘 = 0, (3)

and established one new oscillation criterion. Thandapani
et al. [5] studied the oscillatory behavior of all solutions of
second-order neutral delay difference equation,

Δ2 (𝑦𝑛 − 𝑝𝑦𝑛−𝑘) − 𝑞𝑛𝑓 (𝑦𝑛−𝑡) = 0, (4)

and established a number of new oscillation criteria. In 2000,
Zhou et al. [6] studied the oscillatory behavior of all solutions
of even-order neutral delay difference equation,

Δ𝑚 (𝑥𝑛 − 𝑝𝑛𝑔 (𝑥𝑛−𝑘)) − 𝑞𝑛ℎ (𝑥𝑛−𝑙) = 0, (5)

and established three new oscillation criteria under certain
conditions.The studies on oscillatory behavior of all solutions
of even-order delay difference equations, we recommend
referring to [7–10]. On the basis of the abovework, we studied
the oscillatory behavior of all solutions of (2). Firstly, a com-
parison theorem on oscillation behavior is established for (2).
The comparison theorem changes the discriminant criteria of
the oscillation of (2) into the oscillation’s discriminant criteria
in the first-order nonneutral delay difference equations.Then,
by using the above comparison theorem, we obtain some
oscillation criteria for (2) and improve the well-known results
of Ladas et al. [11], Erbe and Zhang [12], and Stavroulakis [4].
In particular, the results are new when𝑚 = 2, 𝑝𝑛 ≡ 0.

The paper is organized as follows. In Section 2, a compar-
ison theorem on oscillation behavior is firstly established for
a class of even-order nonlinear neutral delay difference equa-
tions. Then the comparison theorem changes the discrimi-
nant of the oscillation in the even-order nonlinear neutral
delay difference equation into the oscillation’s discriminant
in the first-order nonneutral delay difference equations. In
Section 3, some oscillation criteria are obtained for the class
of even-order nonlinear neutral delay difference equation
by using the above comparison theorem. In Section 4, two
examples are given.

2. Comparison Theorem

To obtain the comparison theorem in this section, we need
the following lemmas which can be founded in [1]; see also
Chen [7] andThandapani and Arul [8].

Lemma 4. Let {𝑢𝑛} be a sequence of real numbers for 𝑛 ≥ 𝑛0.
Let {𝑢𝑛} and {Δ𝑚𝑢𝑛} be of constant sign, where Δ𝑚𝑢𝑛 is not
identically zero for 𝑛 ≥ 𝑛1. If

𝑢𝑛Δ
𝑚𝑢𝑛 ≤ 0, (6)

then

(i) there is a natural number 𝑛2 ≥ 𝑛1 such that the
sequences {Δ𝑗𝑢𝑛, 𝑗 = 1, 2, . . . , 𝑚 − 1} are of constant
sign for 𝑛 ≥ 𝑛2;

(ii) there exists a number 𝑙 ∈ {0, 1, . . . , 𝑚 − 1} with
(−1)𝑚−𝑙−1 = 1 such that

𝑢𝑛Δ
𝑗𝑢𝑛 > 0 𝑓𝑜𝑟 𝑗 = 0, 1, 2, . . . , 𝑙, 𝑛 ≥ 𝑛2,

(−1)𝑗−𝑙𝑢𝑛Δ
𝑗𝑢𝑛 > 0 𝑓𝑜𝑟 𝑗 = 𝑙 + 1, . . . , 𝑚 − 1, 𝑛 ≥ 𝑛2.

(7)

Lemma 5. Observe that under the hypotheses of Lemma 4, if
{𝑢𝑛} is increasing for 𝑛 ≥ 𝑛0, then there exists a natural number
𝑛1 ≥ 𝑛0 such that, for all 𝑛 ≥ 2𝑚−1𝑛1,

𝑢𝑛 ≥
𝜆𝑚

(𝑚 − 1)!
𝑛𝑚−1Δ𝑚−1𝑢𝑛, (8)

where 𝜆𝑚 = 1/2(𝑚−1)
2

.

Theorem 6. Assume that conditions (𝐻1) and (𝐻2) hold. Let
|𝑓(𝑥)| ≥ |𝑥| for all |𝑥| ≥ 𝑥0 > 0. If there exists a constant
𝜆𝑚 = 1/2(𝑚−1)

2

, such that the first-order difference equation

Δ𝑧𝑛 +
𝜆𝑚

(𝑚 − 1)!
𝑞𝑛(𝑛 − 𝑘)𝑚−1 (1 − 𝑝𝑛−𝑘) 𝑧𝑛−𝑘 = 0 (9)

is oscillatory, then (2) is oscillatory.

Proof. Suppose that (2) has a nonoscillatory solution {𝑥𝑛}.
Without the loss of generality, we assume that {𝑥𝑛} is an
eventually positive solution of (2); then there is a natural
number 𝑛1 ≥ 𝑛0 such that 𝑥𝑛 > 0, 𝑥𝑛−𝑘 > 0, 𝑥𝑛−𝜏 > 0, and
𝑥𝑛−𝑘−𝜏 > 0 for all 𝑛 ≥ 𝑛1. Let

𝑦𝑛 = 𝑥𝑛 + 𝑝𝑛𝑥𝑛−𝜏. (10)

Then, from (H1) and (H2), there exists a natural number 𝑛2 ≥
𝑛1 such that

𝑦𝑛 > 0, Δ𝑚𝑦𝑛 ≤ 0 ∀𝑛 ≥ 𝑛2. (11)

By Lemma 4, there exist an integer 𝑛3 ≥ 𝑛2 and an integer
𝑙 (0 ≤ 𝑙 ≤ 𝑚), where (𝑚 + 𝑙) is an odd integer. For all 𝑛 ≥ 𝑛3,
we can get

Δ𝑗𝑦𝑛 > 0 for 𝑗 = 1, 2, . . . , 𝑙;

(−1)(𝑗−𝑙)Δ𝑗𝑦𝑛 > 0 for 𝑗 = 𝑙 + 1, . . . , 𝑚 − 1.
(12)

Thus from (12), Δ𝑦𝑛 > 0 and Δ𝑚−1𝑦𝑛 > 0 for 𝑛 ≥ 𝑛3. By
Lemma 5, there exists an integer 𝑛4 ≥ 𝑛3. For all 𝑛 ≥ 2𝑚−1𝑛4,
we derive

𝑦𝑛 ≥
𝜆𝑚

(𝑚 − 1)!
𝑛𝑚−1Δ𝑚−1𝑦𝑛, 𝜆𝑚 =

1

2(𝑚−1)
2
. (13)

From (10),

𝑥𝑛−𝑘 = 𝑦𝑛−𝑘 − 𝑝𝑛−𝑘𝑥𝑛−𝑘−𝜏. (14)

Consequently, we have

Δ𝑚𝑦𝑛 + 𝑞𝑛𝑓 (𝑦𝑛−𝑘 − 𝑝𝑛−𝑘𝑥𝑛−𝑘−𝜏) = 0,

for all sufficient large 𝑛.
(15)
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Noting that |𝑓(𝑥)| ≥ |𝑥|, for all |𝑥| ≥ 𝑥0 > 0, we obtain

Δ𝑚𝑦𝑛 + 𝑞𝑛 (𝑦𝑛−𝑘 − 𝑝𝑛−𝑘𝑥𝑛−𝑘−𝜏) ≤ 0,

for all sufficient large 𝑛.
(16)

By 𝑦𝑛 ≥ 𝑥𝑛, Δ𝑦𝑛 > 0, and 𝑛 − 𝑘 − 𝜏 ≤ 𝑛 − 𝑘, we obtain

Δ𝑚𝑦𝑛 + 𝑞𝑛 (𝑦𝑛−𝑘 − 𝑝𝑛−𝑘𝑥𝑛−𝑘−𝜏) ≥ Δ𝑚𝑦𝑛 + 𝑞𝑛 (1 − 𝑝𝑛−𝑘) 𝑦𝑛−𝑘.
(17)

Therefore, we have

Δ𝑚𝑦𝑛 + 𝑞𝑛 (1 − 𝑝𝑛−𝑘) 𝑦𝑛−𝑘 ≤ 0,

for all sufficient large 𝑛.
(18)

Now, by using (13), we have that for 𝜆𝑚 = 1/2(𝑚−1)
2

,

𝑦𝑛−𝑘 ≥
𝜆𝑚

(𝑚 − 1)!
(𝑛 − 𝑘)𝑚−1Δ𝑚−1𝑦𝑛−𝑘,

for all sufficient large 𝑛.

(19)

Thus, we get

Δ𝑚𝑦𝑛 +
𝜆𝑚

(𝑚 − 1)!
𝑞𝑛(𝑛 − 𝑘)𝑚−1 (1 − 𝑝𝑛−𝑘) Δ

𝑚−1𝑦𝑛−𝑘 ≤ 0,

for all sufficient large 𝑛,
(20)

where𝜆𝑚 = 1/2(𝑚−1)
2

. Let𝑢𝑛 = Δ𝑚−1𝑦𝑛; then for large enough
𝑛, we get

Δ𝑢𝑛 +
𝜆𝑚

(𝑚 − 1)!
𝑞𝑛(𝑛 − 𝑘)𝑚−1 (1 − 𝑝𝑛−𝑘) 𝑢𝑛−𝑘 ≤ 0, (21)

where 𝜆𝑚 = 1/2(𝑚−1)
2

. Therefore, inequality (21) has an
eventually positive solution. By Lemma 5 in [9], (9) has
an eventually positive solution which contradicts that (9) is
oscillatory. This completes the proof.

3. Applications of the Comparison Theorem

The following lemma is well known (see, e.g., [2, 11, 12] and
the references therein).

Lemma 7. Let {𝑞𝑛} be a sequence of eventually nonnegative
real number and 𝑘 ≥ 1; if either

lim inf
𝑛→∞

𝑛−1

∑
𝑖=𝑛−𝑘

𝑞𝑖 > (
𝑘

1 + 𝑘
)
1+𝑘

(22)

or

lim sup
𝑛→∞

𝑛

∑
𝑖=𝑛−𝑘

𝑞𝑖 > 1, (23)

then the first-order difference equation

Δ𝑥𝑛 + 𝑞𝑛𝑥𝑛−𝑘 = 0 (24)

is oscillatory.

Thus, from Theorem 6 and Lemma 7, we can obtain the
following results.

Theorem 8. Assume that conditions (𝐻1) and (𝐻2) hold. Let
|𝑓(𝑥)| ≥ |𝑥| for all |𝑥| ≥ 𝑥0 > 0. For 𝑘 ≥ 1, if either

lim inf
𝑛→∞

𝑛−1

∑
𝑖=𝑛−𝑘

𝑞𝑖(𝑖 − 𝑘)𝑚−1 (1 − 𝑝𝑖−𝑘)

> 2(𝑚−1)
2

(𝑚 − 1)!(
𝑘

1 + 𝑘
)
1+𝑘

(25)

or

lim sup
𝑛→∞

𝑛

∑
𝑖=𝑛−𝑘

𝑞𝑖(𝑖 − 𝑘)𝑚−1 (1 − 𝑝𝑖−𝑘) > 2(𝑚−1)
2

(𝑚 − 1)!, (26)

then (2) is oscillatory.

Proof. From (25) and (26), we can obtain

lim inf
𝑛→∞

𝑛−1

∑
𝑖=𝑛−𝑘

𝜆𝑚
(𝑚 − 1)!

𝑞𝑖(𝑖 − 𝑘)𝑚−1 (1 − 𝑝𝑖−𝑘) > (
𝑘

1 + 𝑘
)
1+𝑘

(27)

or

lim sup
𝑛→∞

𝑛

∑
𝑖=𝑛−𝑘

𝜆𝑚
(𝑚 − 1)!

𝑞𝑖(𝑖 − 𝑘)𝑚−1 (1 − 𝑝𝑖−𝑘) > 1, (28)

where 𝜆𝑚 = 1/2(𝑚−1)
2

. By Lemma 7, we know (9) is
oscillatory.Then similar to the proof ofTheorem 6, the results
follow immediately. This completes the proof.

According toTheorem 8, we obtain Corollary 9.

Corollary 9. Assume that conditions (H1) and (H2) hold. Let
|𝑓(𝑥)| ≥ |𝑥| for all |𝑥| ≥ 𝑥0 > 0. For 𝑘 ≥ 1, when 𝑝𝑛 ≡ 0,
𝑚 = 2, if either

lim inf
𝑛→∞

𝑛−1

∑
𝑖=𝑛−𝑘

𝑞𝑖 (𝑖 − 𝑘) > 2(
𝑘

1 + 𝑘
)
1+𝑘

(29)

or

lim sup
𝑛→∞

𝑛

∑
𝑖=𝑛−𝑘

𝑞𝑖 (𝑖 − 𝑘) > 2, (30)

then the second-order difference equation

Δ2𝑥𝑛 + 𝑞𝑛𝑓 (𝑥𝑛−𝑘) = 0 (31)

is oscillatory.

The following lemma is given in [4, Theorem 2.6].

Lemma 10. Let {𝑞𝑛} be a sequence of nonnegative real numbers
and 𝑘 a positive integer. Assume that

0 < 𝛼 ≤ (
𝑘

1 + 𝑘
)
1+𝑘

(32)
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if either

lim sup
𝑛→∞

𝑛−1

∑
𝑖=𝑛−𝑘

𝑞𝑖 > 1 −
𝛼2

4
(33)

or

lim sup
𝑛→∞

𝑛−1

∑
𝑖=𝑛−𝑘

𝑞𝑖 > 1 − 𝛼𝑘, (34)

then (24) is oscillatory.

Thus, fromTheorem 6 and Lemma 10, we can obtain the
following results.

Theorem 11. Assume that conditions (𝐻1) and (𝐻2) hold. Let
|𝑓(𝑥)| ≥ |𝑥| for all |𝑥| ≥ 𝑥0 > 0 and let 𝑘 be a positive integer.
Assume that

0 < 𝛼 ≤ (
𝑘

1 + 𝑘
)
1+𝑘

(35)

if either

lim sup
𝑛→∞

𝑛−1

∑
𝑖=𝑛−𝑘

𝑞𝑖(𝑖 − 𝑘)𝑚−1 (1 − 𝑝𝑖−𝑘)

> 2(𝑚−1)
2

(𝑚 − 1)! (1 −
𝛼2

4
)

(36)

or

lim sup
𝑛→∞

𝑛−1

∑
𝑖=𝑛−𝑘

𝑞𝑖(𝑖 − 𝑘)𝑚−1 (1 − 𝑝𝑖−𝑘)

> 2(𝑚−1)
2

(𝑚 − 1)! (1 − 𝛼𝑘) ,

(37)

then (2) is oscillatory.

Proof. From (36) and (37), we can obtain

lim sup
𝑛→∞

𝑛−1

∑
𝑖=𝑛−𝑘

𝜆𝑚
(𝑚 − 1)!

𝑞𝑖(𝑖 − 𝑘)𝑚−1 (1 − 𝑝𝑖−𝑘) > 1 −
𝛼2

4
(38)

or

lim sup
𝑛→∞

𝑛−1

∑
𝑖=𝑛−𝑘

𝜆𝑚
(𝑚 − 1)!

𝑞𝑖(𝑖 − 𝑘)𝑚−1 (1 − 𝑝𝑖−𝑘) > 1 − 𝛼𝑘, (39)

where 𝜆𝑚 = 1/2(𝑚−1)
2

. By Lemma 10, we know (9) is
oscillatory.Then similar to the proof ofTheorem 6, the results
follow immediately. This completes the proof.

According to Theorem 11, we can obtain the following
corollary.

Corollary 12. Assume that conditions (𝐻1) and (𝐻2) hold; let
|𝑓(𝑥)| ≥ |𝑥| for all |𝑥| ≥ 𝑥0 > 0 and let 𝑘 be a positive integer.
For 𝑝𝑛 ≡ 0,𝑚 = 2, assume that

0 < 𝛼 ≤ (
𝑘

1 + 𝑘
)
1+𝑘

(40)

if either

lim sup
𝑛→∞

𝑛−1

∑
𝑖=𝑛−𝑘

𝑞𝑖 (𝑖 − 𝑘) > 2(1 −
𝛼2

4
) (41)

or

lim sup
𝑛→∞

𝑛−1

∑
𝑖=𝑛−𝑘

𝑞𝑖 (𝑖 − 𝑘) > 2 (1 − 𝛼𝑘) , (42)

then (31) is oscillatory.

4. Examples

Example 1. Considering the equation

Δ𝑚 (𝑥𝑛 +
1

𝑛
𝑥𝑛−𝑙) +

2(𝑚−1)
2

(𝑚 − 1)! [2 + ((−1)𝑛/𝑛)]

𝑒 (𝑛 − 3) (𝑛 − 2)𝑚−2

× 𝑥𝑛−2 ln (𝑒 + 𝑥2𝑛−2) = 0,

(43)

where 𝑛 > 3,𝑚 is an even, and 𝑙 is a positive integer, then we
have

0 < 𝑝𝑛 =
1

𝑛
< 1, 𝑞𝑛 =

2(𝑚−1)
2

(𝑚 − 1)! [2 + ((−1)𝑛/𝑛)]

𝑒 (𝑛 − 3) (𝑛 − 2)𝑚−2
,

𝑓 (𝑥) = 𝑥 ln (𝑒 + 𝑥2) , 𝑘 = 2,

(44)

where {𝑞𝑛} is a positive sequence. Then

𝑛

∑
𝑖=𝑛−2

𝑞𝑖(𝑖 − 2)𝑚−1 (1 −
1

𝑖 − 2
)

=
𝑛

∑
𝑖=𝑛−2

2(𝑚−1)
2

(𝑚 − 1)! [2 + ((−1)𝑛/𝑛)]

𝑒
.

(45)

Thus

lim sup
𝑛→∞

𝑛

∑
𝑖=𝑛−2

2(𝑚−1)
2

(𝑚 − 1)! [2 + ((−1)𝑛/𝑛)]

𝑒

=
6

𝑒
2(𝑚−1)

2

(𝑚 − 1)! > 2(𝑚−1)
2

(𝑚 − 1)!.

(46)

Therefore, by Theorem 8, (43) is oscillatory.

Example 2. Considering the equation

Δ𝑚 [𝑥𝑛 +
𝑛 − 1

𝑛
𝑥𝑛−𝑙]

+
2(𝑚−1)

2

(𝑚 − 1)! [(15/32) + ((−1)𝑛/𝑛)]

(𝑛 − 2)𝑚−2

× 𝑥𝑛−2 ln (𝑒 + 𝑥2𝑛−2) = 0,

(47)
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where 𝑛 > 2,𝑚 is an even, and 𝑙 is a positive integer, then we
have

0 < 𝑝𝑛 =
𝑛 − 1

𝑛
< 1,

𝑞𝑛 =
2(𝑚−1)

2

(𝑚 − 1)! [(15/32) + ((−1)𝑛/𝑛)]

(𝑛 − 2)𝑚−2
,

𝑓 (𝑥) = 𝑥 ln (𝑒 + 𝑥2) , 𝑘 = 2,

(48)

where {𝑞𝑛} is a positive sequence. Denote 𝛼 = 4/14; then

𝑛−1

∑
𝑖=𝑛−2

𝑞𝑖(𝑖 − 2)𝑚−1 (1 −
𝑖 − 2 − 1

𝑖 − 2
)

=
𝑛−1

∑
𝑖=𝑛−2

2(𝑚−1)
2

(𝑚 − 1)! [
15

32
+
(−1)𝑛

𝑛
] .

(49)

Thus

lim sup
𝑛→∞

𝑛−1

∑
𝑖=𝑛−2

2(𝑚−1)
2

(𝑚 − 1)! [
15

32
+
(−1)𝑛

𝑛
]

=
15

16
2(𝑚−1)

2

(𝑚 − 1)! > 2(𝑚−1)
2

(𝑚 − 1)! (1 − (
4

14
)
2

) .

(50)

Therefore, by Theorem 11, (47) is oscillatory.
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