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We study a class of evolutionary pseudodifferential equations of the second order in 𝑡, (𝜕
2
𝑢(𝑡, 𝑥)/𝜕𝑡

2
+ 2𝑎
2
𝑇
𝛼/2

(𝜕𝑢(𝑡, 𝑥)/𝜕𝑡) +

𝑏
2
𝑇
𝛼
𝑢(𝑡, 𝑥) + 𝑐

2
𝑢(𝑡, 𝑥) = 𝑞(𝑡, 𝑥)), where 𝑡 ∈ (0, 𝑧] and 𝑇

𝛼 is pseudodifferential operator in 𝑥 ∈ 𝑄
𝑝
, which defined by Weiyi Su in

1992. We obtained the exact solutions to the equations which belong to mixed classes of real and 𝑝-adic functions.

1. Introduction

In recent years 𝑝-adic analysis has received a lot of attention
due to its applications in mathematical physics; see, for
example, [1–9] and references therein. The definition of
pseudodifferential operator is very important in the theory of
PDE on 𝑝-adic field. In 1960s, Gibbs defined logic derivative
over dyadic field. Then, Vladimirov et al. [8] generalized
logic derivative over 𝑝-adic field, and we called the oper-
ator referred to as Vladimirov pseudodifferential operator.
Chuong et al. have done a lot of work on PDE over 𝑝-
adic field using Vladimirov operator; see, for example, [9–
12]. However, as a kind of operation, Vladimirov pseudod-
ifferential operator is not closed in the test function space
𝑆(Q
𝑝
). This makes the definition of Vladimirov operator

difficult to be applied to distribution space 𝑆

(Q
𝑝
). In

1992, Su [13] redefined derivative and integral operator 𝑇
𝛼

over 𝑝-adic field. The definition makes the operator closed
in 𝑆(Q

𝑝
) and can be extended to its dual space 𝑆


(Q
𝑝
).

In 2011, Su [14] has applied the differential operator to
study two-dimensional wave equations with fractal bound-
aries.

In this paper, we consider the exact solutions to the
pseudodifferential equations of the second order in 𝑡 over 𝑝-
adic fieldQ

𝑝
of the type

𝜕
2
𝑢 (𝑡, 𝑥)

𝜕𝑡
2

+ 2𝑎
2
𝑇
𝛼/2 𝜕𝑢 (𝑡, 𝑥)

𝜕𝑡
+ 𝑏
2
𝑇
𝛼
𝑢 (𝑡, 𝑥)

+ 𝑐
2
𝑢 (𝑡, 𝑥) = 𝑞 (𝑡, 𝑥) ,

(1)

with initial conditions

𝑢 (0, 𝑥) = 𝑓 (𝑥) , 𝑢


𝑡
(0, 𝑥) = 𝑔 (𝑥) , (2)

where 𝑎, 𝑏, 𝑐 ∈ R and 𝑎
4

− 𝑏
2

< 0, 𝑡 ∈ [0, 𝑧], using
pseudodifferential operator𝑇

𝛼
(𝛼 > 0)whichwas introduced

by Su in [14, 15]. Here, 𝑞, 𝑓, 𝑔 are functions given by

𝑞 (𝑡, 𝑥) : [0, 𝑧] × Q
𝑝

→ C,

𝑓 (𝑥) : Q
𝑝

→ C,

𝑔 (𝑥) : Q
𝑝

→ C,

(3)

and unknown function is
𝑢 (𝑡, 𝑥) : [0, 𝑧] × Q

𝑝
→ C. (4)
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We will give the existence of the solution 𝑢(𝑡, 𝑥) to (1) and (2)
with the form

𝑢 (𝑡, 𝑥) = ∑

𝑁,𝑗,𝐼

𝑢
𝑁𝑗𝐼

(𝑡) 𝜓
𝑁𝑗𝐼

(𝑥) , (5)

under some assumptions of 𝑓, 𝑔, 𝑞 where 𝜓
𝑁𝑗𝐼

(𝑥) is an
orthonormal base of eigenfunctions of the operator 𝑇

𝛼 in
𝐿
2
(Q
𝑝
), which is constructed by Qiu and Su in [17].

2. Preliminaries

We will use the notations and results from Taibleson’s book
[16]. LetQ

𝑝
be the 𝑝-adic field, in which 𝑝 is a prime number.

It is a nondiscrete, locally compact, totally disconnected and
complete topological field endowed with nonarchimedean
norm | ⋅ | : Q

𝑝
→ R+ satisfying

(i) |𝑥| ≥ 0; |𝑥| = 0 ⇔ 𝑥 = 0;
(ii) |𝑥𝑦| = |𝑥||𝑦|;
(iii) |𝑥 + 𝑦| ≤ max{|𝑥|, |𝑦|}

for 𝑥, 𝑦 ∈ Q
𝑝
, so that it is also ultrametric.

Define D as the ring of integers in Q
𝑝
; D = {𝑥 ∈ Q

𝑝
:

|𝑥| ≤ 1}. It is the uniquemaximal compact subring inQ
𝑝
with

the Haar measures |D| = 1. Define 𝐵 = {𝑥 ∈ Q
𝑝

: |𝑥| ≤ 𝑝
−1

}

as the prime ideal. There exists a prime element 𝛽 ofQ
𝑝
with

|𝛽| = 𝑝
−1 such that 𝐵 = 𝛽D. It is the unique maximal ideal in

D. Define the fractional ideal in Q
𝑝
as 𝐵
𝑘

= {𝑥 ∈ Q
𝑝

: |𝑥| ≤

𝑝
−𝑘

} with the Haar measures |𝐵
𝑘
| = 𝑝
−𝑘, 𝑘 ∈ Z.

For 𝑥 ∈ Q
𝑝
, it has a unique expression 𝑥 = 𝑥

𝑡
𝛽
𝑡

+

𝑥
𝑡+1

𝛽
𝑡+1

+ ⋅ ⋅ ⋅ , 𝑡 ∈ Z with |𝑥| = 𝑝
−𝑡. For each 𝑙 ∈ Z,

we choose elements 𝑧
𝑙,𝑖

∈ Q
𝑝
, 𝑖 ∈ Z+, so that the subsets

𝐵
𝑙,𝑖

= 𝑧
𝑙,𝑖

+ 𝐵
𝑙

⊂ Q
𝑝
satisfy 𝐵

𝑙,𝑖
∩ 𝐵
𝑙,𝑗

= 0 if 𝑖 ̸= 𝑗 and
∪
∞

𝑖=0
𝐵
𝑙,𝑖

= Q
𝑝
.

Define indicative function of Haarmeasurable subset𝐸 ⊂

Q
𝑝
as

Φ
𝐸

(𝑥) = {
1, 𝑥 ∈ 𝐸,

0, 𝑥 ∈ 𝐸
𝑐
;

(6)

then, the Haar measure of 𝐸 is |𝐸| = ∫
𝐸

𝑑𝑥 = ∫
Q𝑝

Φ
𝐸
(𝑥)𝑑𝑥

where 𝑑𝑥 denote the Haar measure onQ
𝑝
normalized by the

condition ∫
D

𝑑𝑥 = 1.
Define translation operator 𝜏

ℎ
: 𝑓 → 𝜏

ℎ
𝑓, ℎ ∈ Q

𝑝
as

𝜏
ℎ
𝑓(𝑥) = 𝑓(𝑥 − ℎ), 𝑥 ∈ Q

𝑝
. Then, the test function space

𝑆 = 𝑆(Q
𝑝
) is defined as

𝑆 (Q
𝑝
) =

{

{

{

𝜑 : Q
𝑝

→ C, 𝜑 (𝑥) =

𝑛

∑

𝑗=1

𝑐
𝑗
𝜏
ℎ𝑗

Φ
𝐵𝑘𝑗
(𝑥)

,

𝑐
𝑗

∈ C, ℎ
𝑗

∈ Qp, 𝑘
𝑗

∈ Z, 1 ≤ 𝑗 ≤ 𝑛

}

}

}

,

(7)

where the element 𝜑(𝑥) is called test function.

For the test function space 𝑆, we give the following
topology: for 𝜑 ∈ 𝑆(Qp), there exists unique integers (𝑘, 𝑙)

such that the function 𝜑 is constant on the coset of 𝐵
𝑘
,

with supports in the ball 𝐵
𝑙
; lim
𝑛→+∞

𝜑
𝑛
(𝑥) = 0 converges

uniformly for 𝑥 ∈ Qp. Then, 𝑆 is complete topological linear
spaces.

Denote by 𝑆


= 𝑆

(Q
𝑝
) the distribution space of test

function space 𝑆. 𝑆
 is a complete topological linear space

under the dual topology.
Let 𝜒(𝑥) be a fixed nontrivial character of Q

𝑝
which is

trivial onD. For the 𝑝-adic field, 𝜒 can be constructed by the
base value [17] as

𝜒 (𝛽
−𝑗

) =

{

{

{

exp(
2𝜋𝑖

𝑝
𝑗

) , for 𝑗 ∈ N,

1, otherwise.
(8)

Then for 𝑥 = 𝑥
𝑡
𝛽
𝑡
+𝑥
𝑡+1

𝛽
𝑡+1

+⋅ ⋅ ⋅ , 𝜒(𝑥) = exp(2𝜋𝑖 ∑
−1

𝑗=𝑡
𝑥
𝑗
𝑝
𝑗
)

and for 𝜆 = 𝜆
𝜏
𝛽
𝜏

+ 𝜆
𝜏+1

𝛽
𝜏+1

+ ⋅ ⋅ ⋅

𝜒
𝜆

(𝑥) = 𝜒 (𝜆𝑥)

= exp(2𝜋𝑖

−(𝑡+𝜏+1)

∑

𝑘=0

(

𝑘

∑

𝑗=0

𝑥
𝑡+𝜏−𝑗

𝜆
𝑡+𝜏

) 𝑝
𝑡+𝜏+𝑘

) .

(9)

For 𝜑 ∈ 𝑆(Q
𝑝
), we define its Fourier transform 𝜑

∧ by

𝜑
∧

(𝜉) = ∫

Q𝑝

𝜑 (𝑥) 𝜒
𝜉

(𝑥) 𝑑𝑥, 𝜉 ∈ Q
𝑝 (10)

and inverse Fourier transform 𝜑
∨ by

𝜑
∨

(𝑥) = ∫

Q𝑝

𝜑 (𝜉) 𝜒
𝑥

(𝜉) 𝑑𝜉, 𝑥 ∈ Q
𝑝
. (11)

In 1992, Su [13] has given definitions of the derivative
for the 𝑝-adic local fields Q

𝑝
, including derivatives of the

fractional orders and real orders.

Definition 1. Let ⟨𝜉⟩ = max{1, |𝜉|}, 𝛼 ≥ 0 if for 𝜑 ∈ 𝑆(Q
𝑝
), the

integral

𝑇
𝛼
𝜑 (𝑥) = (⟨𝜉⟩

𝛼

𝜑
∧

(𝜉))
∨

(𝑥) (12)

exists at 𝑥 ∈ Q
𝑝
, where 𝜒(𝑥) is a fixed nontrivial character of

Q
𝑝
. Then it is called a pointwise derivative of order 𝛼 of 𝜑 at

𝑥.
Note that the defined domain of 𝑇

𝛼 in the definition can
be extended to the space 𝑆


(Q
𝑝
), where 𝑆


(Q
𝑝
) denote the set

of all functionals (distributions) on 𝑆(Q
𝑝
).

Let 𝐷(𝑇
𝛼
) be the domain of 𝑇

𝛼 defined as

𝐷 (𝑇
𝛼
) = {𝜑 ∈ 𝐿

2
: ⟨𝜉⟩
𝛼

𝜑
∧

∈ 𝐿
2
} . (13)

We have the following.

Lemma 2. Consider

𝐷 (𝑇
𝛼
) ⊂ 𝐷 (𝑇

𝛼/2
) , (14)

with 𝛼 > 0.
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Proof. Let 𝜑 ∈ 𝐷(𝑇
𝛼
), then

∫

𝐾𝑝


𝜑
∧

(𝜉)


2

𝑑𝜉 < ∞, ∫

𝐾𝑝

⟨𝜉⟩
2𝛼

𝜑
∧

(𝜉)


2

𝑑𝜉 < ∞, (15)

with ⟨𝜉⟩
𝛼

≤ ((1 + ⟨𝜉⟩
2𝛼

)/2); thus

∫

𝐾𝑝

⟨𝜉⟩
𝛼

𝜑
∧

(𝜉)


2

𝑑𝜉 ≤ ∫

𝐾𝑝

1 + ⟨𝜉⟩
2𝛼

2


𝜑
∧

(𝜉)


2

𝑑𝜉 < ∞,

(16)

and we have

𝑇
𝛼/2

𝜑 ∈ 𝐿
2
,


𝑇
𝛼/2

𝜑


2

= ∫

𝐾𝑝

⟨𝜉⟩
𝛼

𝜑
∧

(𝜉)


2

𝑑𝜉. (17)

Then 𝜑 ∈ 𝐷(𝑇
𝛼/2

).

Lemma 3 (see [17]). 𝑇
𝛼 is a positive definite self-adjoint

operator on 𝐷(𝑇
𝛼
); {𝜓
𝑁𝑗𝐼

} is an orthonormal base of 𝐿
2

consisting of eigenfunctions of the operator 𝑇
𝛼, defined as

follows:

𝜓
𝑁𝑗𝐼

(𝑥) = 𝑝
−𝑁/2

𝜒
𝑗
(𝑝
𝑁−1

𝑥) Φ
𝐵
0 (𝑝
𝑁

𝑥 − 𝑧
𝐼
) ,

𝑁 ∈ Z, 𝐼 = 𝑧
𝐼

+ 𝐵
0

∈

𝐾
𝑝

𝐵
0

,

(18)

where Φ
𝐵
0(𝑥) is a characteristic function of a unit ball.

And

𝑇
𝛼
𝜓
𝑁𝑗𝐼

(𝑥) = {
𝑝
(1−𝑁)𝛼

𝜓
𝑁𝑗𝐼

(𝑥) , 𝑁 < 1,

𝜓
𝑁𝑗𝐼

(𝑥) , 𝑁 ≥ 1.
(19)

3. Main Results

We will solve the following pseudodifferential equation over
𝑝-adic field by using the orthonormal base {𝜓

𝑁𝑗𝐼
} constructed

in Lemma 3.
First, we consider the case of homogeneous equation.

Theorem 4. Let

𝜕
2
𝑢 (𝑡, 𝑥)

𝜕𝑡
2

+ 2𝑎
2
𝑇
𝛼/2 𝜕𝑢 (𝑡, 𝑥)

𝜕𝑡
+ 𝑏
2
𝑇
𝛼
𝑢 (𝑡, 𝑥) + 𝑐

2
𝑢 (𝑡, 𝑥) = 0,

𝑢 (0, 𝑥) = 𝑓 (𝑥) ,

𝑢


𝑡
(0, 𝑥) = 𝑔 (𝑥) ,

(20)

where 𝑎, 𝑏, 𝑐 ∈ R, 𝑎4 −𝑏
2

< 0, 𝛼 > 0, 𝑓 ∈ 𝐷(𝑇
𝛼
), 𝑔 ∈ 𝐷(𝑇

𝛼/2
).

Then one has a formal solution

𝑢 (𝑡, 𝑥) = ∑

𝑁,𝑗,𝐼

𝑢
𝑁𝑗𝐼

(𝑡) 𝜓
𝑁𝑗𝐼

(𝑥) , 𝑡 ∈ [0, 𝑧] , 𝑥 ∈ Q
𝑝
, (21)

and 𝑢(𝑡, 𝑥) ∈ 𝑉 = 𝐶([0, 𝑧], 𝐷(𝑇
𝛼
)) ∩ 𝐶

1
([0, 𝑧], 𝐷(𝑇

𝛼/2
)) ∩

𝐶
2
([0, 𝑧], 𝐿

2
(Q
𝑝
)).

Proof. Consider the following.

Step 1.Wewill write∑ instead of∑
𝑁,𝑗,𝐼

in the following proof.
Let 𝑢(𝑡, 𝑥) = ∑ 𝑢

𝑁𝑗𝐼
(𝑡)𝜓
𝑁𝑗𝐼

(𝑥) be the exact form of
problem (20); it is a lacunary series. Then

𝜕
2
𝑢 (𝑡, 𝑥)

𝜕𝑡
2

= ∑

𝑑
2
𝑢
𝑁𝑗𝐼

(𝑡)

𝑑𝑡
2

𝜓
𝑁𝑗𝐼

(𝑥) ,

𝑇
𝛼

𝑥
𝑢 (𝑡, 𝑥) = ∑

𝑁<1

𝑝
𝛼(1−𝑁)

𝑢
𝑁𝑗𝐼

(𝑡) 𝜓
𝑁𝑗𝐼

(𝑥)

+ ∑

𝑁≥1

𝑢
𝑁𝑗𝐼

(𝑡) 𝜓
𝑁𝑗𝐼

(𝑥) .

(22)

From
𝜕
2
𝑢 (𝑡, 𝑥)

𝜕𝑡
2

+ 2𝑎
2
𝑇
𝛼/2 𝜕𝑢 (𝑡, 𝑥)

𝜕𝑡
+ 𝑏
2
𝑇
𝛼
𝑢 (𝑡, 𝑥)

+ 𝑐
2
𝑢 (𝑡, 𝑥) = 0,

(23)

we get

∑

𝑁<1

{𝑢


𝑁𝑗𝐼
(𝑡) + 2𝑎

2
𝑝
(𝛼/2)(1−𝑁)

𝑢


𝑁𝑗𝐼
(𝑡)

+ 𝑏
2
𝑝
𝛼(1−𝑁)

𝑢
𝑁𝑗𝐼

(𝑡) + 𝑐
2
𝑢
𝑁𝑗𝐼

(𝑡)} 𝜓
𝑁𝑗𝐼

(𝑥)

+ ∑

𝑁≥1

{𝑢


𝑁𝑗𝐼
(𝑡) + 2𝑎

2
𝑢


𝑁𝑗𝐼
(𝑡)

+ (𝑏
2

+ 𝑐
2
) 𝑢
𝑁𝑗𝐼

(𝑡)} 𝜓
𝑁𝑗𝐼

(𝑥) = 0.

(24)

Due to the orthogonality of {𝜓
𝑁𝑗𝐼

(𝑥)}, we have

𝑢


𝑁𝑗𝐼
(𝑡) + 2𝑎

2
𝑝
(𝛼/2)(1−𝑁)

𝑢


𝑁𝑗𝐼
(𝑡)

+ (𝑏
2
𝑝
𝛼(1−𝑁)

+ 𝑐
2
) 𝑢
𝑁𝑗𝐼

(𝑡) = 0, 𝑁 < 1,

𝑢


𝑁𝑗𝐼
(𝑡) + 2𝑎

2
𝑢


𝑁𝑗𝐼
(𝑡) + (𝑏

2
+ 𝑐
2
) 𝑢
𝑁𝑗𝐼

(𝑡) = 0, 𝑁 ≥ 1.

(25)
Then we obtain an ODE of order 2 on R. And the character-
istic equation is

𝜆
2

+ 2𝑎
2
𝑝
(𝛼/2)(1−𝑁)

𝜆 + 𝑏
2
𝑝
𝛼(1−𝑁)

+ 𝑐
2

= 0, 𝑁 < 1,

𝜆
2

+ 2𝑎
2
𝜆 + 𝑏
2

+ 𝑐
2

= 0, 𝑁 ≥ 1.

(26)

With 𝑎
4

− 𝑏
2

< 0, we have

Δ =

{

{

{

4 [(𝑎
4

− 𝑏
2
) 𝑝
𝛼(1−𝑁)

− 𝑐
2
] , 𝑁 < 1,

4 [(𝑎
4

− 𝑏
2
) − 𝑐
2
] , 𝑁 ≥ 1.

(27)

The solution of the equation is

𝑢
𝑁𝑗𝐼

(𝑡) = 𝐴
𝑁𝑗𝐼

𝑒
−𝑎
2
𝑝
(𝛼/2)(1−𝑁)

𝑡 cos (𝑡𝐴)

+ 𝐵
𝑁𝑗𝐼

𝑒
−𝑎
2
𝑝
(𝛼/2)(1−𝑁)

𝑡 sin (𝑡𝐴) , 𝑁 < 1,

𝑢
𝑁𝑗𝐼

(𝑡) = 𝐶
𝑁𝑗𝐼

𝑒
−𝑎
2
𝑡 cos (𝑡𝐵) + 𝐷

𝑁𝑗𝐼
𝑒
−𝑎
2
𝑡 sin (𝑡𝐵) , 𝑁 ≥ 1,

(28)

where 𝐴 = √(𝑏
2

− 𝑎
4
)𝑝
𝛼(1−𝑁)

+ 𝑐
2, 𝐵 = √(𝑏

2
− 𝑎
4
) + 𝑐
2.
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To determine the coefficients 𝐴
𝑁𝑗𝐼

, 𝐵
𝑁𝑗𝐼

, 𝐶
𝑁𝑗𝐼

, and 𝐷
𝑁𝑗𝐼

,
we assume that𝑓 ∈ 𝐷(𝑇

𝛼
) can be expanded as lacunary series

𝑓 = ∑ 𝑓
𝑁𝑗𝐼

𝜓
𝑁𝑗𝐼

(𝑥), where

𝑓
𝑁𝑗𝐼

= ⟨𝑓 (𝑥) , 𝜓
𝑁𝑗𝐼

(𝑥)⟩ = ∫

Q𝑝

𝑓 (𝑥) 𝜓
𝑁𝑗𝐼

(𝑥)𝑑𝑥,

∑

𝑓
𝑁𝑗𝐼



2

< +∞,

𝑇
𝛼
𝑓 (𝑥) = ∑

𝑁<1

𝑝
𝛼(1−𝑁)

𝑓
𝑁𝑗𝐼

𝜓
𝑁𝑗𝐼

(𝑥) + ∑

𝑁≥1

𝑓
𝑁𝑗𝐼

𝜓
𝑁𝑗𝐼

(𝑥) ,

∑

𝑁<1

𝑝
2𝛼(1−𝑁)

|𝑓
𝑁𝑗𝐼

|
2

+ ∑

𝑁≥1

|𝑓
𝑁𝑗𝐼

|
2

< +∞.

(29)

With the initial condition 𝑢(0, 𝑥) = 𝑓(𝑥) and then 𝑢
𝑁𝑗𝐼

(0) =

𝑓
𝑁𝑗𝐼

, we obtain

𝐴
𝑁𝑗𝐼

= 𝑓
𝑁𝑗𝐼

, 𝑁 < 1,

𝐶
𝑁𝑗𝐼

= 𝑓
𝑁𝑗𝐼

, 𝑁 ≥ 1.

(30)

The same as with 𝑔 ∈ 𝐷(𝑇
𝛼/2

), we get 𝑔 = ∑ 𝑔
𝑁𝑗𝐼

𝜓
𝑁𝑗𝐼

(𝑥),
where

𝑔
𝑁𝑗𝐼

= ⟨𝑔 (𝑥) , 𝜓
𝑁𝑗𝐼

(𝑥)⟩ = ∫

Q𝑝

𝑔 (𝑥) 𝜓
𝑁𝑗𝐼

(𝑥)𝑑𝑥,

∑

𝑔
𝑁𝑗𝐼



2

< +∞,

𝑇
𝛼
𝑔 (𝑥) = ∑

𝑁<1

𝑝
𝛼(1−𝑁)/2

𝑔
𝑁𝑗𝐼

𝜓
𝑁𝑗𝐼

(𝑥) + ∑

𝑁≥1

𝑔
𝑁𝑗𝐼

𝜓
𝑁𝑗𝐼

(𝑥) ,

∑

𝑁<1

𝑝
𝛼(1−𝑁)

𝑔
𝑁𝑗𝐼



2

+ ∑

𝑁≥1


𝑔
𝑁𝑗𝐼



2

< +∞.

(31)

With the initial condition 𝑢

(0, 𝑥) = 𝑔(𝑥) and then 𝑢



𝑁𝑗𝐼
(0) =

𝑔
𝑁𝑗𝐼

, we obtain

𝐵
𝑁𝑗𝐼

=
𝑎
2
𝑝
(𝛼/2)(1−𝑁)

𝐴
𝑓
𝑁𝑗𝐼

+
1

𝐴
𝑔
𝑁𝑗𝐼

, 𝑁 < 1,

𝐷
𝑁𝑗𝐼

=
𝑎
2

𝐵
𝑓
𝑁𝑗𝐼

+
1

𝐵
𝑔
𝑁𝑗𝐼

, 𝑁 ≥ 1.

(32)

Then the exact solution of the equation is

𝑢 (𝑡, 𝑥) = ∑

𝑁<1

𝑒
−𝑎
2
𝑝
(𝛼/2)(1−𝑁)

𝑡

× [𝑓
𝑁𝑗𝐼

cos (𝑡𝐴) + (
𝑎
2
𝑝
(𝛼/2)(1−𝑁)

𝐴
𝑓
𝑁𝑗𝐼

+
1

𝐴
𝑔
𝑁𝑗𝐼

)

× sin (𝑡𝐴)] 𝜓
𝑁𝑗𝐼

(𝑥)

+ ∑

𝑁≥1

𝑒
−𝑎
2
𝑡
[𝑓
𝑁𝑗𝐼

cos (𝑡𝐵) + (
𝑎
2

𝐵
𝑓
𝑁𝑗𝐼

+
1

𝐵
𝑔
𝑁𝑗𝐼

)

× sin (𝑡𝐵)] 𝜓
𝑁𝑗𝐼

(𝑥) .

(33)
Step 2. We will prove that the solution we obtained in Step 1
satisfies the conditions inTheorem 4.

(i) Consider that

0 < 𝑒
−𝑎
2
𝑝
(𝛼/2)(1−𝑁)

𝑡
≤ 1; 0 < 𝑒

−𝑎
2
𝑡

≤ 1;

|cos (𝑡𝑥)| ≤ 1; |sin (𝑡𝑥)| ≤ 1.

(34)

Then the series of 𝑢(𝑡, 𝑥) converges uniformly in 𝐿
2
(Q
𝑝
)

where 𝑡 ∈ [0, 𝑧].
With the assumptions of 𝑓 ∈ 𝐷(𝑇

𝛼
), 𝑔 ∈ 𝐷(𝑇

𝛼/2
), the

series
𝑇
𝛼

𝑥
𝑢 (𝑡, 𝑥)

= ∑

𝑁<1

𝑒
−𝑎
2
𝑝
(𝛼/2)(1−𝑁)

𝑡
𝑝
𝛼(1−𝑁)

× [𝑓
𝑁𝑗𝐼

cos (𝑡𝐴) + (
𝑎
2
𝑝
(𝛼/2)(1−𝑁)

𝐴
𝑓
𝑁𝑗𝐼

+
1

𝐴
𝑔
𝑁𝑗𝐼

) sin (𝑡𝐴)]

× 𝜓
𝑁𝑗𝐼

(𝑥)

+ ∑

𝑁≥1

𝑒
−𝑎
2
𝑡
[𝑓
𝑁𝑗𝐼

cos (𝑡𝐵) + (
𝑎
2

𝐵
𝑓
𝑁𝑗𝐼

+
1

𝐵
𝑔
𝑁𝑗𝐼

) sin (𝑡𝐵)]

× 𝜓
𝑁𝑗𝐼

(𝑥)

(35)

is converging uniformly in 𝐿
2
(Q
𝑝
).

(ii) We obtain
𝜕𝑢 (𝑡, 𝑥)

𝜕𝑡

= ∑

𝑁<1

𝑒
−𝑎
2
𝑝
(𝛼/2)(1−𝑁)

𝑡

× [𝑔
𝑁𝑗𝐼

cos (𝑡𝐴)

−
1

𝐴
(𝑎
4
𝑝
𝛼(1−𝑁)

𝑓
𝑁𝑗𝐼

+ 𝑎
2
𝑝
(𝛼/2)(1−𝑁)

𝑔
𝑁𝑗𝐼

)

× sin (𝑡𝐴) − 𝐴𝑓
𝑁𝑗𝐼

sin (𝑡𝐴) ] 𝜓
𝑁𝑗𝐼

(𝑥)

+ ∑

𝑁≥1

𝑒
−𝑎
2
𝑡

× [𝑔
𝑁𝑗𝐼

cos (𝑡𝐵) −
1

𝐵
(𝑎
4
𝑓
𝑁𝑗𝐼

+ 𝑎
2
𝑔
𝑁𝑗𝐼

) sin (𝑡𝐵)

− 𝐵𝑓
𝑁𝑗𝐼

sin (𝑡𝐵)] 𝜓
𝑁𝑗𝐼

(𝑥)

(36)
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which converges uniformly in 𝐿
2
(Q
𝑝
), with 𝑓 ∈ 𝐷(𝑇

𝛼
), 𝑔 ∈

𝐷(𝑇
𝛼/2

), and

0 < 𝑒
−𝑎
2
𝑝
(𝛼/2)(1−𝑁)

𝑡
≤ 1, 0 < 𝑒

−𝑎
2
𝑡

≤ 1. (37)

Furthermore

𝑇
𝛼

𝑥

𝜕𝑢 (𝑡, 𝑥)

𝜕𝑡

= ∑

𝑁<1

𝑒
−𝑎
2
𝑝
(𝛼/2)(1−𝑁)

𝑡
𝑝
(𝛼/2)(1−𝑁)

× [𝑔
𝑁𝑗𝐼

cos (𝑡𝐴) −
1

𝐴
(𝑎
4
𝑝
𝛼(1−𝑁)

𝑓
𝑁𝑗𝐼

+ 𝑎
2
𝑝
(𝛼/2)(1−𝑁)

𝑔
𝑁𝑗𝐼

)

× sin (𝑡𝐴) − 𝐴𝑓
𝑁𝑗𝐼

sin (𝑡𝐴) ] 𝜓
𝑁𝑗𝐼

(𝑥)

+ ∑

𝑁≥1

𝑒
−𝑎
2
𝑡
[𝑔
𝑁𝑗𝐼

cos (𝑡𝐵) −
1

𝐵
(𝑎
4
𝑓
𝑁𝑗𝐼

+ 𝑎
2
𝑔
𝑁𝑗𝐼

)

× sin (𝑡𝐵) − 𝐵𝑓
𝑁𝑗𝐼

sin (𝑡𝐵)] 𝜓
𝑁𝑗𝐼

(𝑥)

(38)

converges uniformly in 𝐿
2
(Q
𝑝
) where 𝑡 ∈ [0, 𝑧]; then 𝑢 ∈

𝐶
1
([0, 𝑧]; 𝐷(𝑇

𝛼/2
)).

(iii) Similarly with the above case, the series

𝜕
2
𝑢 (𝑡, 𝑥)

𝜕
2
𝑡

= − (2𝑎
2
𝑇
𝛼/2 𝜕𝑢 (𝑡, 𝑥)

𝜕𝑡
+ 𝑏
2
𝑇
𝛼
𝑢 (𝑡, 𝑥) + 𝑐

2
𝑢 (𝑡, 𝑥))

(39)

converges uniformly in 𝐿
2
(Q
𝑝
) where 𝑡 ∈ [0, 𝑧].

Combining (i)–(iii) we obtain 𝑢 ∈ 𝑉.

Next, we will consider the case of nonhomogeneous
equation.

Theorem 5. Let

𝜕
2
𝑢 (𝑡, 𝑥)

𝜕𝑡
2

+ 2𝑎
2
𝑇
𝛼/2 𝜕𝑢 (𝑡, 𝑥)

𝜕𝑡
+ 𝑏
2
𝑇
𝛼
𝑢 (𝑡, 𝑥) + 𝑐

2
𝑢 (𝑡, 𝑥)

= 𝑞 (𝑡, 𝑥) ,

𝑢 (0, 𝑥) = 𝑓 (𝑥) ,

𝜕𝑢 (0, 𝑥)

𝜕𝑡
= 𝑔 (𝑥) ,

(40)

where 𝑎, 𝑏, 𝑐 ∈ R, 𝑎4 −𝑏
2

< 0, 𝛼 > 0, 𝑓 ∈ 𝐷(𝑇
𝛼
), 𝑔 ∈ 𝐷(𝑇

𝛼/2
),

𝑞(𝑡, 𝑥) ∈ 𝐶([0, 𝑧], 𝐷(𝑇
𝛼
)).

Then there exists an exact solution 𝑢(𝑡, 𝑥) of equation (40)
with the form

𝑢 (𝑡, 𝑥) = ∑

𝑁,𝑗,𝐼

𝑢
𝑁𝑗𝐼

(𝑡) 𝜓
𝑁𝑗𝐼

(𝑥) , 𝑡 ∈ [0, 𝑧] , 𝑥 ∈ Q
𝑝
,

(41)

and 𝑢(𝑡, 𝑥) ∈ 𝑉.

Proof. Consider the following.

Step 1. Similarly to the proof ofTheorem 4, we expand 𝑞(𝑡, 𝑥)

as lacunary series

𝑞 (𝑡, 𝑥) = ∑ 𝑞
𝑁𝑗𝐼

(𝑡) 𝜓
𝑁𝑗𝐼

(𝑥) , (42)

where

𝑞
𝑁𝑗𝐼

(𝑡) = ⟨𝑞 (𝑡, 𝑥) , 𝜓
𝑁𝑗𝐼

(𝑥)⟩ = ∫

Q𝑝

𝑞 (𝑡, 𝑥) 𝜓
𝑁𝑗𝐼

(𝑥)𝑑𝑥,

(43)

and we obtain

∑

𝑁<1

{𝑢


𝑁𝑗𝐼
(𝑡) + 2𝑎

2
𝑝
(𝛼/2)(1−𝑁)

𝑢


𝑁𝑗𝐼
(𝑡)

+ 𝑏
2
𝑝
𝛼(1−𝑁)

𝑢
𝑁𝑗𝐼

(𝑡) + 𝑐
2
𝑢
𝑁𝑗𝐼

(𝑡)} 𝜓
𝑁𝑗𝐼

(𝑥)

+ ∑

𝑁≥1

{𝑢


𝑁𝑗𝐼
(𝑡) + 2𝑎

2
𝑢


𝑁𝑗𝐼
(𝑡)

+ (𝑏
2

+ 𝑐
2
) 𝑢
𝑁𝑗𝐼

(𝑡)} 𝜓
𝑁𝑗𝐼

(𝑥)

= ∑ 𝑞
𝑁𝑗𝐼

(𝑡) 𝜓
𝑁𝑗𝐼

(𝑥) .

(44)

Due to the orthogonality of {𝜓
𝑁𝑗𝐼

(𝑥)}, we get

𝑢


𝑁𝑗𝐼
(𝑡) + 2𝑎

2
𝑝
(𝛼/2)(1−𝑁)

𝑢


𝑁𝑗𝐼
(𝑡) + 𝑏

2
𝑝
𝛼(1−𝑁)

𝑢
𝑁𝑗𝐼

(𝑡)

+ 𝑐
2
𝑢
𝑁𝑗𝐼

(𝑡) = 𝑞
𝑁𝑗𝐼

(𝑡) , 𝑁 < 1,

𝑢


𝑁𝑗𝐼
(𝑡) + 2𝑎

2
𝑢


𝑁𝑗𝐼
(𝑡) + (𝑏

2
+ 𝑐
2
) 𝑢
𝑁𝑗𝐼

(𝑡)

= 𝑞
𝑁𝑗𝐼

(𝑡) , 𝑁 ≥ 1.

(45)

It is clear that the exact solution of the equation is

𝑢 (𝑡, 𝑥) = ∑

𝑁,𝑗,𝐼

𝑢
𝑁𝑗𝐼

(𝑡) 𝜓
𝑁𝑗𝐼

(𝑥) , (46)

with

𝑢
𝑁𝑗𝐼

(𝑡)

= 𝑒
−𝑎
2
𝑝
(𝛼/2)(1−𝑁)

𝑡

× [𝑓
𝑁𝑗𝐼

cos (𝑡𝐴) +

+ (
𝑎
2
𝑝
(𝛼/2)(1−𝑁)

𝐴
𝑓
𝑁𝑗𝐼

+
1

𝐴
𝑔
𝑁𝑗𝐼

) sin (𝑡𝐴)]

+
1

𝐴
∫

𝑡

0

𝑒
−𝑎
2
𝑝
(𝛼/2)(1−𝑁)

(𝑡−𝜏)
𝑞
𝑁𝑗𝐼

(𝜏) sin ((𝑡 − 𝜏) 𝐴) 𝑑𝜏,

𝑁 < 1,
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𝑢
𝑁𝑗𝐼

(𝑡) = 𝑒
−𝑎
2
𝑡

× [𝑓
𝑁𝑗𝐼

cos (𝑡𝐵) + (
𝑎
2

𝐵
𝑓
𝑁𝑗𝐼

+
1

𝐵
𝑔
𝑁𝑗𝐼

) sin (𝑡𝐵)]

+
1

𝐵
∫

𝑡

0

𝑒
−𝑎
2
(𝑡−𝜏)

𝑞
𝑁𝑗𝐼

(𝜏) sin ((𝑡 − 𝜏) 𝐵) 𝑑𝜏, 𝑁 ≥ 1.

(47)

Step 2. It will be proved that the solution satisfies the
conditions of Theorem 5.

(i) With 𝑞(𝑡, 𝑥) ∈ 𝐶([0, 𝑇], 𝐷(𝑇
𝛼
)) we obtain

𝑞 (𝑡, 𝑥) = ∑ 𝑞
𝑁𝑗𝐼

(𝑡) 𝜓
𝑁𝑗𝐼

(𝑥) , (48)

where ∑ |𝑞
𝑁𝑗𝐼

(𝑡)|
2 converges in 𝑡 ∈ [0, 𝑧] uniformly.Then the

series is bounded on [0, 𝑧].
Furthermore we get

𝑇
𝛼

𝑥
𝑞 (𝑡, 𝑥) = ∑

𝑁<1

𝑝
𝛼(1−𝑁)

𝑞
𝑁𝑗𝐼

(𝑡) 𝜓
𝑁𝑗𝐼

(𝑥)

+ ∑

𝑁≥1

𝑞
𝑁𝑗𝐼

(𝑡) 𝜓
𝑁𝑗𝐼

(𝑥) ,

(49)

where

∑

𝑁<1

𝑝
2𝛼(1−𝑁)

𝑞
𝑁𝑗𝐼

(𝑡)


2

+ ∑

𝑁≥1


𝑞
𝑁𝑗𝐼

(𝑡)


2

(50)

converges in 𝑡 ∈ [0, 𝑧] uniformly.

(ii) By using 𝑆𝑤𝑎𝑟𝑡𝑧 inequality, we obtain


∫

𝑡

0

𝑒
−𝑎
2
𝑝
(𝛼/2)(1−𝑁)

(𝑡−𝜏)
𝑞
𝑁𝑗𝐼

(𝜏) sin ((𝑡 − 𝜏) 𝐴) 𝑑𝜏



2

≤ 𝑇
3
𝐴
2

∫

𝑇

0


𝑞
𝑁𝑗𝐼

(𝜏)


2

𝑑𝜏,



∫

𝑡

0

𝑒
−𝑎
2
(𝑡−𝜏)

𝑞
𝑁𝑗𝐼

(𝜏) sin ((𝑡 − 𝜏) 𝐵) 𝑑𝜏



2

≤ 𝑇
3
𝐵
2

∫

𝑇

0


𝑞
𝑁𝑗𝐼

(𝜏)


2

𝑑𝜏,

(51)

and we get

∑

𝑁<1



1

𝐴
∫

𝑡

0

𝑒
−𝑎
2
𝑝
(𝛼/2)(1−𝑁)

(𝑡−𝜏)
𝑞
𝑁𝑗𝐼

(𝜏) sin ((𝑡 − 𝜏) 𝐴) 𝑑𝜏



2

≤ 𝑇
3

∫

𝑡

0

∑

𝑁<1

|𝑞
𝑁𝑗𝐼

(𝜏)|
2
𝑑𝜏 ≤ 𝑇

3
∫

𝑡

0

𝑀𝑑𝜏 < ∞,

(52)

∑

𝑁≥1



1

𝐵
∫

𝑡

0

𝑒
−𝑎
2
(𝑡−𝜏)

𝑞
𝑁𝑗𝐼

(𝜏) sin ((𝑡 − 𝜏) 𝐵) 𝑑𝜏



2

leq𝑇
3

× ∫

𝑡

0

∑

𝑁≥1


𝑞
𝑁𝑗𝐼

(𝜏)


2

𝑑𝜏 ≤ 𝑇
3

∫

𝑡

0

𝑀𝑑𝜏 < ∞,

(53)

with ∑ |𝑞
𝑁𝑗𝐼

(𝜏)|
2

≤ 𝑀.

(iii) Consider

∑

𝑁<1



𝑝
𝛼(1−𝑁)

𝐴
∫

𝑡

0

𝑒
−𝑎
2
𝑝
(𝛼/2)(1−𝑁)

(𝑡−𝜏)
𝑞
𝑁𝑗𝐼

(𝜏) sin ((𝑡 − 𝜏) 𝐴) 𝑑𝜏



2

≤ 𝑇
3

∫

𝑡

0

∑

𝑁<1

(𝑝
2𝛼(1−𝑁)

𝑞
𝑁𝑗𝐼

(𝜏)


2

) 𝑑𝜏 < ∞.

(54)

Combining (i)–(iii), we obtain 𝑢(𝑡, 𝑥) ∈ 𝑉.

4. Conclusion

In this work, a class of evolutionary pseudodifferential
equations of the second order in 𝑡 over 𝑝-adic field Q

𝑝
was

investigated where 𝑇
𝛼 is a 𝑝-adic pseudodifferential operator

defined by Su Weiyi. The exact solution to the equation was
obtained and the uniform convergence of the series of the
formal solution was constructed.
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