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The classical Wazewski theorem established that nonpositivity of all nondiagonal elements 𝑝
𝑖𝑗
(𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, . . . , 𝑛) is necessary

and sufficient for nonnegativity of the fundamental (Cauchy) matrix and consequently for applicability of the Chaplygin approach
of approximate integration for system of linear ordinary differential equations 𝑥

𝑖
(𝑡) + ∑

𝑛

𝑗=1
𝑝
𝑖𝑗
(𝑡) 𝑥
𝑗
(𝑡) = 𝑓

𝑖
(𝑡) , 𝑖 = 1, . . . , 𝑛.

Results on nonnegativity of the Cauchy matrix for system of delay differential equations 𝑥
𝑖
(𝑡) +∑

𝑛

𝑗=1
𝑝
𝑖𝑗
(𝑡) 𝑥
𝑗
(ℎ
𝑖𝑗
(𝑡)) = 𝑓

𝑖
(𝑡) , 𝑖 =

1, . . . , 𝑛, which were based on nonpositivity of all diagonal elements, were presented in the previous works. Then examples, which
demonstrated that nonpositivity of nondiagonal coefficients 𝑝

𝑖𝑗
is not necessary for systems of delay equations, were found. In this

paper first sufficient results about nonnegativity of the Cauchy matrix of the delay system without this assumption are proven. A
necessary condition of nonnegativity of the Cauchymatrix is proposed. On the basis of these results on nonnegativity of the Cauchy
matrix, necessary and sufficient conditions of the exponential stability of the delay system are obtained.

1. Introduction

Consider the system

(𝑀
𝑖
𝑥) (𝑡) ≡ 𝑥



𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑝
𝑖𝑗 (𝑡) 𝑥𝑗 (ℎ𝑖𝑗 (𝑡)) = 𝑓𝑖 (𝑡) ,

𝑖 = 1, . . . , 𝑛, 𝑡 ∈ [0,∞) ,

(1)

𝑥
𝑖 (𝜃) = 0 for 𝜃 < 0, 𝑖 = 1, . . . , 𝑛, (2)

where 𝑝
𝑖𝑗
are measurable essentially bounded functions and

ℎ
𝑖𝑗
are measurable functions such that ℎ

𝑖𝑗
(𝑡) ≤ 𝑡 for 𝑖, 𝑗 =

1, . . . , 𝑛, 𝑡 ∈ [0,∞).
Tchaplygin [1] proposed the method of approximate

integration which was based on the following fact: from the
inequalities

(𝑀
𝑖
𝑥) (𝑡) ≥ (𝑀𝑖𝑦) (𝑡) ,

𝑡 ∈ [0,∞) , 𝑥
𝑖 (0) ≥ 𝑦𝑖 (0) , 𝑖 = 1, . . . , 𝑛,

(3)

it follows that
𝑥
𝑖 (𝑡) ≥ 𝑦𝑖 (𝑡) , 𝑡 ∈ [0,∞) , 𝑖 = 1, . . . , 𝑛. (4)

Many works, started with the known paper by Luzin [2],
were devoted to the various aspects of Tchaplygin’s approxi-
mate method of integration. The well-known monograph [3]
opened the series of books developing monotone methods
which were based on this property. Note the monograph
[4], where the monotone technique was used for analysis of
existence, uniqueness, and estimates of solutions to various
boundary value problems for systems of functional differen-
tial equations.

The general solution of system (1) with the initial func-
tions (2) can be represented in the following form:

𝑥 (𝑡) = ∫

𝑡

0

𝐶 (𝑡, 𝑠) 𝑓 (𝑠) 𝑑𝑠 + 𝐶 (𝑡, 0) 𝑥 (0) , (5)

where 𝑓(𝑡) = col {𝑓
1
(𝑡), . . . , 𝑓

𝑛
(𝑡)}, 𝑥(0) =

col {𝑥
1
(0), . . . , 𝑥

𝑛
(0)}, and 𝐶(𝑡, 𝑠) = {𝐶

𝑖𝑗
(𝑡, 𝑠)}
𝑛

𝑖,𝑗=1
is called the

Cauchy matrix of system (1). Note that, for every fixed 𝑠, the
matrix 𝐶(𝑡, 𝑠) is the fundamental matrix of system (1) such
that 𝐶(𝑠, 𝑠) = 𝐼 (𝐼 is the unit 𝑛 × 𝑛 matrix) [5]; that is, the
𝑗th column col {𝐶

1𝑗
(𝑡, 𝑠), . . . , 𝐶

𝑛𝑗
(𝑡, 𝑠)} of the Cauchy matrix
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𝐶(𝑡, 𝑠) for every fixed 𝑠 as a function of 𝑡 is the solution of the
system

𝑥


𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑝
𝑖𝑗 (𝑡) 𝑥𝑗 (ℎ𝑖𝑗 (𝑡)) = 0,

𝑖 = 1, . . . , 𝑛, 𝑡 ∈ [𝑠,∞) ,

𝑥
𝑖 (𝜃) = 0 for 𝜃 < 𝑠, 𝑖 = 1, . . . , 𝑛,

(6)

satisfying the initial condition col {𝐶
1𝑗
(𝑠, 𝑠), . . . , 𝐶

𝑛𝑗
(𝑠, 𝑠)} =

col {𝛿
1𝑗
, . . . , 𝛿

𝑛𝑗
}, where 𝛿

𝑗𝑗
= 1 and 𝛿

𝑖𝑗
= 0 for 𝑖 ̸= 𝑗.

Nonnegativity of all entries 𝐶
𝑖𝑗
(𝑡, 𝑠) of the Cauchy matrix

𝐶(𝑡, 𝑠) is equivalent to the property (3)⇒ (4).
As a particular case of (1), the system of ordinary

differential equations

𝑥


𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑝
𝑖𝑗 (𝑡) 𝑥𝑗 (𝑡) = 𝑓𝑖 (𝑡) , 𝑖 = 1, . . . , 𝑛, 𝑡 ∈ [0,∞) ,

(7)

can be considered.
The classical Wazewski theorem claims [6] that the con-

dition
𝑝
𝑖𝑗
≤ 0 for 𝑗 ̸= 𝑖, 𝑖, 𝑗 = 1, . . . , 𝑛, (8)

is necessary and sufficient for nonnegativity of all elements
𝐶
𝑖𝑗
(𝑡, 𝑠) of the Cauchy matrix and consequently of the prop-

erty (3)⇒(4) for system of ordinary differential equations
(7) with continuous coefficients. Sufficient conditions of
nonnegativity of all elements of the Cauchy matrix 𝐶(𝑡, 𝑠) for
system of delay equations (1) were first obtained and used for
the study of the exponential stability in the paper [7].

It should be noted here that the classical monotone
technique in the theory of boundary value problems for
nonlinear differential systems is based on monotonicity of
corresponding operators acting on spaces of corresponding
vector-functions; that is, the operators act in corresponding
cones. These operators are obtained as a result of regular-
ization procedures reducing the boundary value problems to
equivalent integral equations [3–5, 8, 9].Themonotonicity of
such operators is obtained on the basis of positivity of entries
of Cauchy or Green’s matrices of corresponding boundary
value problems.

The problem of the exponential stability of delay differ-
ential systems is one of the most important applications of
results on positivity of the Cauchy matrix 𝐶(𝑡, 𝑠).

Definition 1. One says that the Cauchy matrix of system (1)
satisfies the exponential estimate if there exist constants 𝑁
and 𝛼 such that


𝐶
𝑖𝑗 (𝑡, 𝑠)


≤ 𝑁 exp (−𝛼 (𝑡 − 𝑠))

for 0 ≤ 𝑠 ≤ 𝑡 < ∞, 𝑖, 𝑗 = 1, . . . , 𝑛.
(9)

It is known [5] that in the case of bounded delays 𝑡 − ℎ
𝑖𝑗
(𝑡)

(𝑖, 𝑗 = 1, . . . , 𝑛) the exponential estimate of the Cauchymatrix
𝐶(𝑡, 𝑠) is equivalent to the uniform exponential stability.

The technique of the use of positivity of 𝐶(𝑡, 𝑠) in the
exponential stability was proposed in the papers [7, 10],

where necessary and sufficient conditions of the exponential
stability for systems, possessing positivity of the Cauchy
matrix, were obtained.

Theorem A (see [7]). Let all delays 𝑡 − ℎ
𝑖𝑗
(𝑡) be bounded and

let the coefficients 𝑝
𝑖𝑗
be constants, 𝑝

𝑖𝑗
≤ 0 for 𝑖 ̸= 𝑗, 𝑝

𝑖𝑖
(𝑡 −

ℎ
𝑖𝑖
(𝑡)) ≤ 1/𝑒, for 𝑖, 𝑗 = 1, . . . , 𝑛, 𝑡 ∈ [0,∞). Then the following

two conditions (a) and (b) are equivalent.

(a) The Cauchy matrix of system (1) satisfies the exponen-
tial estimate (9).

(b) All the components of the unique solution 𝑧 =

col {𝑧
1
, . . . , 𝑧

𝑛
} of the linear algebraic system

𝑛

∑

𝑗=1

𝑝
𝑖𝑗
𝑧
𝑗
= 1, 𝑖 = 1, . . . , 𝑛, (10)

are positive.

For the case of variable coefficients 𝑝
𝑖𝑗
(𝑡) and without the

assumption 𝑝
𝑖𝑗
(𝑡) ≤ 0 for 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, . . . , 𝑛, 𝑡 ∈ [0,∞), the

following assertion was obtained.

Theorem B (see [10]). Assume that the following conditions
(1)–(3) are fulfilled.

(1) All the delays 𝑡 − ℎ
𝑖𝑗
(𝑡) are bounded for 𝑡 ∈ [0,∞),

𝑖, 𝑗 = 1, . . . , 𝑛.
(2)The inequalities

∫

𝑡

ℎ𝑖𝑗(𝑡)

𝑝
𝑖𝑖 (𝑠) 𝑑𝑠 ≤

1

𝑒
, 𝑡 ∈ [0,∞) , 𝑖 = 1, . . . , 𝑛, (11)

where 𝑝
𝑖𝑖
(𝑠) ≡ 0 for 𝑠 < 0, are true.

(3)There exist positive 𝑧
1
, . . . , 𝑧

𝑛
and 𝜀 such that

𝑝
𝑖𝑖 (𝑡) 𝑧𝑖 −

𝑛

∑

𝑗=1,𝑗 ̸=𝑖


𝑝
𝑖𝑗 (𝑡)


𝑧
𝑗
≥ 𝜀 > 0, 𝑖 = 1, . . . , 𝑛. (12)

Then the Cauchy matrix of system (1) satisfies the exponen-
tial estimate (9).

Remark 2 (see [10]). If we choose 𝑧
1
= 1, . . . , 𝑧

𝑛
= 1, in

condition (3), we obtain the following simple inequalities:

𝑝
𝑖𝑖 (𝑡) −

𝑛

∑

𝑗=1,𝑗 ̸=𝑖


𝑝
𝑖𝑗 (𝑡)


≥ 𝜀 > 0, 𝑖 = 1, . . . , 𝑛. (13)

In other terminologies reducing a delay system to an
equivalent system of integral equations and estimating its
norm can be found in the paper [11]. Then the idea of a
regularization, leading to analysis of vector integral equations
with positive operators, was proposed in the papers [12, 13]. A
development of this approach can be found in [14, 15]. In all
results of this sort we can find an assumption about dominant
main diagonal.

It seems that condition (8) is necessary also for delay sys-
tem (1).That iswhy the following development of Tchaplygin’s
idea was presented in the paper [16].
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Let 𝑘
𝑖
be either 1 or 2. In [16] the following problem is

formulated: when from the conditions

(−1)
𝑘𝑖 [(𝑀

𝑖
𝑥) (𝑡) − (𝑀𝑖𝑦) (𝑡)] ≥ 0,

𝑡 ∈ [0,∞) , 𝑥
𝑖 (0) = 𝑦𝑖 (0) , 𝑖 = 1, . . . , 𝑛,

(14)

it does follow that for a corresponding fixed 𝑟 the component
𝑥
𝑟
of the solution vector the inequality

𝑥
𝑟 (𝑡) ≥ 𝑦𝑟 (𝑡) , 𝑡 ∈ [0,∞) , (15)

is satisfied. This property is a weakening of property (3) ⇒
(4) and leads to essentially less hard than condition (8) lim-
itations on the given system. From the formula of solution’s
representation it follows that this property is reduced to sign-
constancy of all elements standing only in the 𝑟th row of the
Cauchy matrix. This idea was developed in [14, 17] and used
for the study of the exponential stability in [16, 18] without
assumption about the dominant main diagonal.

Example, where one of the nondiagonal coefficients
𝑝
𝑖0𝑗0
> 0 but all entries of the Cauchymatrix are nonnegative,

was constructed first in [17] on the finite interval and in [19]
on semiaxis. The cases when (8) is a necessary condition
for nonnegativity of all entries of the Cauchy matrix were
discussed in [19].

In the second paragraph of this paper we obtain sufficient
conditions of nonnegativity of all entries of theCauchymatrix
in the case of existence of nondiagonal positive coefficient
𝑝
𝑖0𝑗0

and obtain new necessary condition for this nonneg-
ativity. On this basis, we obtain necessary and sufficient
conditions of the exponential stability in Section 3, which
generalize Theorems A and B in this case. In Section 4, vari-
ous examples are proposed. They demonstrate that obtained
results allow us to make conclusions about nonnegativity of
the Cauchy matrix and the exponential stability in cases for
which the results of [7, 10, 14, 17, 19] cannot be used.

2. Positivity of the Cauchy Matrix in the Case
of One Positive Nondiagonal Coefficient

As usual we say that an operator 𝐴 : 𝑋 → 𝑌 is positive if
for every nonnegative 𝑓 ∈ 𝑋 we get nonnegative 𝐴𝑓 ∈ 𝑌
(𝑋 and 𝑌 are corresponding function spaces). Nonnegativity
of vector functions 𝑓 = col {𝑓

1
, . . . , 𝑓

𝑛
} we understand

as nonnegativity of all the components 𝑓
1
, . . . , 𝑓

𝑛
. Before

formulations of the main assertions of this paragraph, note
that positivity of the Cauchy operator

(𝐶𝑓) (𝑡) = ∫

𝑡

0

𝐶 (𝑡, 𝑠) 𝑓 (𝑠) 𝑑𝑠 (16)

(see formula of solution’s representation (5)) follows from
nonnegativity of all entries of the Cauchy matrix 𝐶(𝑡, 𝑠) =
{𝐶
𝑖𝑗
(𝑡, 𝑠)}
𝑛

𝑖,𝑗=1
. We say that the Cauchy matrix 𝐶(𝑡, 𝑠) is not

positive if there exist a point (𝑡
0
, 𝑠
0
) and an entry 𝐶

𝑖0𝑗0
(𝑡, 𝑠),

such that 𝐶
𝑖0𝑗0
(𝑡
0
, 𝑠
0
) < 0. The Cauchy operator 𝐶 is not

positive, if there exist points (𝑡
0
, 𝑠) such thatmes {𝑠 : 𝐶(𝑡

0
, 𝑠) <

0} > 0.

Consider the following auxiliary system:

𝑥


𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑞
𝑖𝑗 (𝑡) 𝑥𝑗 (ℎ𝑖𝑗 (𝑡)) = 𝑧𝑖 (𝑡) ,

𝑖 = 1, . . . , 𝑛, 𝑡 ∈ [0,∞) ,

(17)

𝑥
𝑖 (𝜃) = 0 for 𝜃 < 0, 𝑖 = 1, . . . , 𝑛, (18)

where

𝑞
𝑖𝑗 (𝑡) =

{{

{{

{

𝑝
𝑖𝑗 (𝑡) , 𝑖 ̸= 1, 𝑗 = 1, . . . , 𝑛,

𝑝
𝑖𝑗 (𝑡) , 𝑖 = 1, 𝑗 = 1, . . . , 𝑛 − 2

0, 𝑖 = 1, 𝑗 = 𝑛 − 1, 𝑗 = 𝑛

,

𝑖 = 1, . . . , 𝑛.

(19)

Denote by 𝑊(𝑡, 𝑠) = {𝑊
𝑖𝑗
(𝑡, 𝑠)}
𝑛

𝑖,𝑗=1
the Cauchy matrix of

system (17).

Theorem 3. Let the conditions (1), (2), and (3) be fulfilled:

(1) 𝑝
𝑖𝑗
≤ 0 for 𝑖 ̸= 𝑗, (𝑖, 𝑗) ̸= (1, 𝑛), 𝑖, 𝑗 = 1, . . . , 𝑛,

(2) condition (2) of Theorem B is true,
(3) the inequalities
𝑝
1𝑛 (𝑡)𝑊𝑛𝑗 (ℎ1𝑛 (𝑡) , 𝑠) 𝜒 (ℎ1𝑛 (𝑡) , 𝑠)

+ 𝑝
1𝑛−1 (𝑡)𝑊𝑛−1,𝑗 (ℎ1𝑛−1 (𝑡) , 𝑠) 𝜒 (ℎ1𝑛−1 (𝑡) , 𝑠) ≤ 0,

𝑗 = 1, . . . , 𝑛,

(20)

where 0 ≤ 𝑠 ≤ 𝑡 < ∞ and

𝜒 (ℎ
1𝑘 (𝑡) , 𝑠) = {

1, for ℎ
1𝑘 (𝑡) ≥ 𝑠

0, for ℎ
1𝑘 (𝑡) < 𝑠

, (21)

for every 𝑘 = 1, . . . , 𝑛, are true.

Then the Cauchy matrix𝐶(𝑡, 𝑠) of system (1) is nonnegative
for 0 ≤ 𝑠 ≤ 𝑡 < ∞.

Remark 4. Instead of inequality (11) in condition (2) of
Theorem 3 we can require that the Cauchy functions 𝑐

𝑖
(𝑡, 𝑠)

of 𝑛 scalar first order diagonal equations

𝑥


𝑖
(𝑡) + 𝑝𝑖𝑖 (𝑡) 𝑥𝑗 (ℎ𝑖𝑖 (𝑡)) = 0, 𝑡 ∈ [0,∞) , 𝑖 = 1, . . . , 𝑛,

(22)

with initial functions defined by (18) are positive. Inequalities
(11) imply [20] that 𝑐

𝑖
(𝑡, 𝑠) > 0 for 0 ≤ 𝑠 ≤ 𝑡 < ∞.

Proof. Let us use the transform 𝑥 = 𝑊𝑧, where 𝑊 is the
Cauchy operator of system (17), which is defined by the
equality

(𝑊𝑧) (𝑡) = ∫

𝑡

0

𝑊(𝑡, 𝑠) 𝑧 (𝑠) 𝑑𝑠, (23)

with the Cauchy matrix 𝑊(𝑡, 𝑠) = {𝑊
𝑖𝑗
(𝑡, 𝑠)}
𝑛

𝑖,𝑗=1
of system

(17). We obtain

𝑧 (𝑡) − (𝐾𝑧) (𝑡) = 𝑓 (𝑡) , (24)
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where the operator𝐾 : 𝐿
∞
→ 𝐿
∞
is defined by the equality

(𝐾𝑧) (𝑡)

= −col
{

{

{

𝑝
1𝑛 (𝑡) 𝜒 (ℎ1𝑛 (𝑡) , 0)

×

𝑛

∑

𝑗=1

∫

ℎ1𝑛(𝑡)

0

𝑊
𝑛𝑗
(ℎ
1𝑛 (𝑡) , 𝑠) 𝑧𝑗 (𝑠) 𝑑𝑠

+ 𝑝
1𝑛−1 (𝑡) 𝜒 (ℎ1𝑛−1 (𝑡) , 0)

×

𝑛

∑

𝑗=1

∫

ℎ1𝑛−1(𝑡)

0

𝑊
𝑛−1,𝑗

(ℎ
1𝑛−1 (𝑡) , 𝑠) 𝑧𝑗 (𝑠) 𝑑𝑠, 0, . . . , 0

}

}

}

,

(25)

where𝑊(𝑡, 𝑠) = 0 for 𝑡 < 𝑠.
Condition (3) in Theorem 3 implies that the operator

𝐾 : 𝐿
∞
→ 𝐿

∞
defined by equality (25) is positive. On

every finite interval [0, 𝜔] the spectral radius of this operator
𝐾 is equal to zero [5]. Then the operator (𝐼 − 𝐾)−1 is
positive and all components of the solution-vector 𝑧 = (𝐼 −
𝐾)
−1
𝑓 are nonnegative for every vector 𝑓 with nonnegative

components. We have proven that the Cauchy operator 𝐶 of
system (1) defined by the equalities

(𝐶𝑓) (𝑡) ≡ ∫

𝑡

0

𝐶 (𝑡, 𝑠) 𝑓 (𝑠) 𝑑𝑠 = ∫

𝑡

0

𝑊(𝑡, 𝑠) (𝐼 − 𝐾)
−1
𝑓 (𝑠) 𝑑𝑠,

(26)

where 𝐶(𝑡, 𝑠) = {𝐶
𝑖𝑗
(𝑡, 𝑠)}
𝑛

𝑖,𝑗=1
is the Cauchy matrix of system

(1), is positive. It follows from (26) and nonnegativity of the
Cauchy matrix 𝑊(𝑡, 𝑠) of system (17) that 𝐶(𝑡, 𝑠) ≥ 𝑊(𝑡, 𝑠)
and consequently all entries 𝐶

𝑖𝑗
(𝑡, 𝑠) of the Cauchy matrix

𝐶(𝑡, 𝑠) are nonnegative.

Remark 5. Note that, in the case 𝑝
1𝑛

≥ 0 and
esssup

𝑡≥0
𝑝
1𝑛
(𝑡) > 0, we actually require in Theorem 3 that

ℎ
1𝑛
(𝑡) < ℎ

1𝑛−1
(𝑡) to obtain positivity of the Cauchy matrix

𝐶(𝑡, 𝑠). This inequality on delays is essential. Theorem 6
demonstrates that, in the case of the opposite inequality
ℎ
1𝑛
(𝑡) ≥ ℎ

1𝑛−1
(𝑡), condition (8) is actually a necessary one.

Assume that ℎ
𝑖𝑗
(𝑡) is a nondecreasing function (ℎ

𝑖𝑗
(𝑡) ≤ 𝑡)

and define 𝑡∗
𝑠
as an exact upper limit of the set of such 𝑡 ≥ 𝑠

for which ℎ
𝑖𝑗
(𝑡) ≤ 𝑠.

Theorem 6. Let the following conditions be fulfilled:

(1) the Cauchy functions 𝑐
𝑖
(𝑡, 𝑠) of all diagonal equations

(22) with the initial functions defined by (18) are
positive for 0 ≤ 𝑠 ≤ 𝑡 < ∞;

(2) ℎ
𝑘𝑗
(𝑡) are nondecreasing functions for 𝑘, 𝑗 = 1, . . . , 𝑛;

(3) there exist an interval [𝑡
0
, 𝑡
1
], a coefficient 𝑝

𝑖0𝑗0
with

𝑖
0
̸= 𝑗
0
, and a positive constant 𝛿 such that 𝑡∗

𝑡0
<

𝑡
1
, 𝑝
𝑖0𝑗0
(𝑡) ≥ 𝛿, and ℎ

𝑖0𝑗0
(𝑡) ≥ ℎ

𝑘𝑗
(𝑡), for all 𝑘 ̸= 𝑗,

𝑘, 𝑗 = 1, . . . , 𝑛, in the interval 𝑡 ∈ [𝑡
0
, 𝑡
1
].

Then,

(a) the fundamental matrix 𝐶(𝑡, 𝑠) of system (1) cannot be
nonnegative in the triangle 0 ≤ 𝑠 ≤ 𝑡 < ∞;

(b) if mes{𝑠 : 𝑡
0
≤ 𝑠 ≤ 𝑡

∗

𝑠
< 𝑡
1
} > 0, then the Cauchy

operator (𝐶𝑓)(𝑡) ≡ ∫𝑡
0
𝐶(𝑡, 𝑠)𝑓(𝑠) 𝑑𝑠 cannot be positive.

Proof. Without loss of generality we can assume that 𝑖
0
=

𝑛, 𝑗
0
= 1; that is, 𝑝

𝑛1
(𝑡) ≥ 𝛿 > 0 in [𝑡

0
, 𝑡
1
]. Consider

now the first column 𝑋(𝑡) = col {𝐶
𝑖1
(𝑡, 𝑠)}
𝑛

𝑖=1
of the Cauchy

matrix 𝐶(𝑡, 𝑠). This column𝑋(𝑡) is the solution of system (6),
satisfying the condition 𝑋(𝑠) = col {1, 0, . . . , 0}. We assume
that 𝑡

0
≤ 𝑠 < 𝑡

1
such that 𝑡∗

𝑠
< 𝑡
1
. Consider now the

𝑛th component 𝑋
𝑛
(𝑡) of this solution-vector. It satisfies the

following:

𝑋


𝑛
(𝑡) + 𝑝𝑛𝑛 (𝑡) 𝑋𝑛 (ℎ𝑛𝑛 (𝑡)) = −

𝑛

∑

𝑗=1,𝑗 ̸=𝑛

𝑝
𝑛𝑗 (𝑡) 𝑋𝑗 (ℎ𝑛𝑗 (𝑡)) ,

𝑋
𝑛 (𝜃) = 0 for 𝜃 < 𝑠,

(27)

and the condition 𝑋
𝑛
(𝑠) = 0. According to condition (3) in

Theorem 3, we have ℎ
𝑛1
(𝑡) ≥ 𝑠 for 𝑡 ≥ 𝑡∗

𝑠
. It is clear that

𝑋
1
(𝑡) ≡ 1, 𝑋

𝑗
(𝑡) ≡ 0 for 𝑗 = 2, . . . , 𝑛, 𝑡 ∈ [𝑠, 𝑡∗

𝑠
] and there

exists an interval [𝑡∗
𝑠
, 𝑡
∗

𝑠
+ 𝜀] such that

𝜓 (𝑡) ≡ −

𝑛

∑

𝑗=1,𝑗 ̸=𝑛

𝑝
𝑛𝑗 (𝑡) 𝑋𝑗 (ℎ𝑛𝑗 (𝑡)) < 0,

𝑖 = 1, . . . 𝑛, 𝑡 ∈ (𝑡
∗

𝑠
, 𝑡
∗

𝑠
+ 𝜀] .

(28)

The representation of solution of scalar equation (27) with the
initial condition𝑋

𝑛
(𝑠) = 0 leads us to

𝑋
𝑛 (𝑡) = ∫

𝑡

𝑠

𝑐
𝑛 (𝑡, 𝑠) 𝜓 (𝑠) 𝑑𝑠 < 0, 𝑡 ∈ (𝑡

∗

𝑠
, 𝑡
∗

𝑠
+ 𝜀] . (29)

Thus we obtain that𝑋
𝑛
(𝑡) = 𝐶

𝑛1
(𝑡, 𝑠) < 0 for 𝑡 ∈ (𝑡∗

𝑠
, 𝑡
∗

𝑠
+ 𝜀].

This completes the proof of Theorem 6.

Example 7. Consider the following system with one constant
delay:

𝑥


𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑝
𝑖𝑗 (𝑡) 𝑥𝑗 (𝑡 − 𝜏) = 𝑓𝑖 (𝑡) ,

𝑖 = 1, . . . , 𝑛, 𝑡 ∈ [0,∞) ,

𝑥
𝑖 (𝜉) = 0, for 𝜉 < 0, 𝑖 = 1, . . . , 𝑛.

(30)

If 𝑝
𝑖0𝑗0
(𝑡) ≥ 𝛿 > 0 for 𝑖

0
̸= 𝑗
0
, 𝑡 ∈ [𝑡

0
, 𝑡
1
], such that 𝜏 <

𝑡
1
−𝑡
0
, then, under the conditions ofTheorem 6,𝐶(𝑡, 𝑠) cannot

be nonnegative.
In the case of constant coefficients 𝑝

𝑖𝑗
(𝑡) = 𝑝

𝑖𝑗
and under

the condition 𝑝
𝑖𝑖
𝜏 ≤ 1/𝑒 for all 𝑖 = 1, . . . , 𝑛, implying pos-

itivity of the Cauchy functions 𝑐
𝑖
(𝑡, 𝑠) of diagonal equations

(22), and the assumption that ℎ
𝑘𝑗
are nondecreasing for 𝑘, 𝑗 =

1, . . . , 𝑛, the condition 𝑝
𝑖𝑗
≤ 0 for all 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, . . . , 𝑛, is

necessary and sufficient for nonnegativity of 𝐶(𝑡, 𝑠).
Let us demonstrate that the assertion (a) of Theorem 6

can be true, but the assertion (b) is not true.
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Example 8. Consider the following system:

𝑥


𝑖
(𝑡) = 0, 𝑖 = 1, . . . , 𝑛 − 1,

𝑥


𝑛
(𝑡) + 𝑝𝑛1𝑥1 (0) = 0, 𝑡 ∈ [0,∞) .

(31)

For every 𝑠 > 0 we have 𝐶(𝑡, 𝑠) = 𝐼, where 𝐼 is the unit 𝑛 × 𝑛
matrix. For 𝑠 = 0, we have 𝐶

𝑛1
(𝑡, 0) = −𝑝

𝑛1
𝑡 < 0, but the

operator (𝐶𝑓)(𝑡) ≡ ∫𝑡
0
𝐶(𝑡, 𝑠)𝑓(𝑠) 𝑑𝑠 does not “feel” this and is

positive.

3. About Exponential Stability of
Delay Systems

Now let us study the exponential stability of system (1) on the
basis of positivity of its Cauchy matrix 𝐶(𝑡, 𝑠).

Let us assume that 𝑝
1𝑛
(𝑡) ≥ 0, 𝑝

1𝑛−1
(𝑡) ≤ 0 and extend

the coefficients and delays on the interval [−𝐻, 0), where
𝐻 = max

𝑖,𝑗=1,...,𝑛
esssup

𝑡≥0
{𝑡 − ℎ

𝑖𝑗
(𝑡)} as follows: ℎ

𝑖𝑗
(𝑡) ≡ 𝑡

for 𝑡 ∈ [−𝐻, 0], 𝑖, 𝑗 = 1, . . . , 𝑛, 𝑝
11
(𝑡) = esssup

𝑡≥0
{𝑝
11
(𝑡) +

𝑝
1𝑛
(𝑡)}, 𝑝

𝑖𝑖
(𝑡) = esssup

𝑡≥0
𝑝
𝑖𝑖
(𝑡) for 𝑖 = 2, . . . , 𝑛, 𝑝

𝑖𝑗
(𝑡) ≡ 0 for

𝑖 ̸= 𝑗, 𝑡 ∈ −[𝐻, 0].
Consider the following auxiliary system:

𝑥


𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑝
𝑖𝑗 (𝑡) 𝑥𝑗 (ℎ𝑖𝑗 (𝑡)) = 𝑓𝑖 (𝑡) ,

𝑖 = 1, . . . , 𝑛, 𝑡 ∈ [−𝐻,∞) ,

(32)

where 𝑓
𝑖
are measurable essentially bounded functions 𝑓

𝑖
:

[−𝐻,∞) → (−∞, +∞), 𝑖 = 1, . . . , 𝑛.

Theorem 9. Let 𝑝
1𝑛
(𝑡) ≥ 0, 𝑝

1𝑛−1
(𝑡) ≤ 0, let all conditions

of Theorem 3 be fulfilled on [−𝐻,∞), let all delays 𝑡 −
ℎ
𝑖𝑗
(𝑡) be bounded, and let there exist a constant-vector 𝑧 =

col {𝑧
1
, . . . , 𝑧

𝑛
} with all positive components 𝑧

1
, . . . , 𝑧

𝑛
such

that
𝑛

∑

𝑗=1

𝑝
𝑖𝑗 (𝑡) 𝑧𝑗 ≥ 𝜀 > 0, 𝑖 = 1, . . . , 𝑛. (33)

Then the Cauchy matrix 𝐶(𝑡, 𝑠) of system (1) satisfies the
exponential estimate (9). If 𝜀 ≥ 1, then the following estimate
is true:

∫

𝑡

0

𝑛

∑

𝑗=1

𝐶
𝑖𝑗 (𝑡, 𝑠) 𝑑𝑠 ≤ 𝑧𝑖, 𝑖 = 1, . . . , 𝑛. (34)

Proof. The vector-function 𝑧 = col {𝑧
1
, . . . , 𝑧

𝑛
} satisfies the

following system:

𝑥


𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑝
𝑖𝑗 (𝑡) 𝑥𝑗 (ℎ𝑖𝑗 (𝑡)) ≡ 𝑔𝑖 (𝑡) ≥ 𝜀,

𝑖 = 1, . . . , 𝑛, 𝑡 ∈ − [𝐻,∞) ,

(35)

and the initial conditions 𝑥
𝑖
(−𝐻) = 𝑧

𝑖
, 𝑖 = 1, . . . , 𝑛. The

solution representation formula (5) allows us to write for this
initial value problem

𝑧 = ∫

𝑡

−𝐻

𝐶 (𝑡, 𝑠) 𝑔 (𝑠) 𝑑𝑠 + 𝐶 (𝑡, −𝐻) 𝑧, (36)

where 𝑔(𝑡) = col {𝑔
1
(𝑡), . . . , 𝑔

𝑛
(𝑡)}. Theorem 3 implies non-

negativity of all entries 𝐶
𝑖𝑗
(𝑡, 𝑠) of the Cauchy matrix. From

nonnegativity of all entries of the Cauchy matrix 𝐶(𝑡, 𝑠) and
all components of the vector 𝑧 = col {𝑧

1
, . . . , 𝑧

𝑛
}, it follows

that, for every bounded right hand side 𝑓 = col {𝑓
1
, . . . , 𝑓

𝑛
},

the solution 𝑥 = col {𝑥
1
, . . . , 𝑥

𝑛
} is bounded. From this fact

and Theorem 3.4 of paragraph 5.3 of [5] the exponential
estimate (9) of the Cauchy matrix follows. The Cauchy
matrices of system (1) and (32) coincide for 0 ≤ 𝑠 ≤ 𝑡 < ∞.

The positivity of 𝐶(𝑡, 𝑠) and 𝑧 and (36) imply the inequal-
ity (34).

Theorem 10. Let all coefficients 𝑝
𝑖𝑗
be constants, let all delays

𝑡 − ℎ
𝑖𝑗
(𝑡) be bounded (𝑖, 𝑗 = 1, . . . , 𝑛), and let conditions of

Theorem 3 be fulfilled on [−𝐻,∞). Then the Cauchy matrix
𝐶(𝑡, 𝑠) of system (1) satisfies the exponential estimate if and only
if all components 𝑧

1
, . . . , 𝑧

𝑛
of the solution 𝑧 = col {𝑧

1
, . . . , 𝑧

𝑛
}

of the algebraic system
𝑛

∑

𝑗=1

𝑝
𝑖𝑗
𝑧
𝑗
= 1, 𝑖 = 1, . . . , 𝑛, (37)

are positive.

Proof. The sufficiency follows from Theorem 9. To prove
necessity we note that the constant vector 𝑧 = col {𝑧

1
, . . . , 𝑧

𝑛
}

is the solution of the following system:

𝑥


𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑝
𝑖𝑗 (𝑡) 𝑥𝑗 (ℎ𝑖𝑗 (𝑡)) = 1,

𝑖 = 1, . . . , 𝑛, 𝑡 ∈ − [𝐻,∞) ,

(38)

satisfying the condition 𝑥
𝑖
(−𝐻) = 𝑧

𝑖
, 𝑖 = 1, . . . , 𝑛. Writing

the representation of its solution, we get

𝑧
𝑖
= ∫

𝑡

−𝐻

𝑛

∑

𝑗=1

𝐶
𝑖𝑗 (𝑡, 𝑠) 𝑑𝑠 +

𝑛

∑

𝑗=1

𝐶
𝑖𝑗 (𝑡, −𝐻) 𝑧𝑗, 𝑖 = 1, . . . , 𝑛.

(39)

All entries of the matrix 𝐶(𝑡, 𝑠) are nonnegative, according to
Theorem 3, and 𝐶

𝑖𝑖
(𝑡, 𝑠) > 0 for 0 ≤ 𝑠 ≤ 𝑡 < ∞ according to

the results of paragraph 16 of [14]. Now from the exponential
estimate of the Cauchy matrix, it follows that all components
𝑧
𝑖
are positive for 𝑖 = 1, . . . , 𝑛.

Remark 11. In the case of nonnegativity and the exponential
estimate of the Cauchy matrix 𝐶(𝑡, 𝑠), it follows that

lim
𝑡→∞

∫

𝑡

0

𝑛

∑

𝑗=1

𝐶
𝑖𝑗 (𝑡, 𝑠) 𝑑𝑠 = 𝑧𝑖, 𝑖 = 1, . . . , 𝑛. (40)

Consider the following system:

𝑥


𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑝
𝑖𝑗 (𝑡) 𝑥𝑗 (ℎ𝑖𝑗 (𝑡)) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (𝑡) 𝑥𝑗 (𝑔𝑖𝑗 (𝑡)) ≡ 𝑓𝑖 (𝑡) ,

𝑖 = 1, . . . , 𝑛, 𝑡 ∈ [0,∞) .

(41)
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where 𝑔
𝑖𝑗

are measurable functions, 𝑔
𝑖𝑗
(𝑡) ≤ 𝑡, 𝑏

𝑖𝑗
are

measurable essentially bounded functions for 𝑖, 𝑗 = 1, . . . , 𝑛.

Theorem 12. Let for system (1) all conditions of Theorem 9 be
fulfilled, and let all delays 𝑡 − 𝑔

𝑖𝑗
(𝑡), 𝑡 − ℎ

𝑖𝑗
(𝑡) for 𝑖, 𝑗 = 1, . . . , 𝑛

be bounded and

max {𝑧
1
, . . . , 𝑧

𝑛
} esssup
𝑡≥0

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1


𝑏
𝑖𝑗 (𝑡)


< 1, (42)

Then the Cauchy matrix 𝐶(𝑡, 𝑠) of system (41) satisfies the
exponential estimate (9).

Proof. Theorem 3 implies that the Cauchy matrix 𝑊(𝑡, 𝑠) of
system (1) is nonnegative. Theorem 9 implies that 𝑊(𝑡, 𝑠)
satisfies the exponential estimate and its entries 𝑊

𝑖𝑗
(𝑡, 𝑠)

satisfy the following inequalities:

∫

𝑡

0

𝑛

∑

𝑗=1

𝑊
𝑖𝑗 (𝑡, 𝑠) 𝑑𝑠 ≤ 𝑧𝑖, 𝑖 = 1, . . . , 𝑛. (43)

We can write system (41) in the following equivalent form:

𝑥 (𝑡) = (𝐾𝑥) (𝑡) + 𝑊 (𝑡, 0) 𝑥 (0) + 𝜓 (𝑡) , (44)

where the operator𝐾 : 𝐶 → 𝐶 (𝐶 is the space of continuous
𝑛-vector-functions) is defined by the following equality:

(𝐾𝑥) (𝑡)

= −∫

𝑡

0

𝑊(𝑡, 𝑠) col
{

{

{

𝑛

∑

𝑗=1

𝑏
1𝑗 (𝑠) 𝑥𝑗 (𝑔1𝑗 (𝑠)) 𝑑𝑠, . . . ,

𝑛

∑

𝑗=1

𝑏
𝑛𝑗 (𝑠) 𝑥𝑗 (𝑔𝑛𝑗 (𝑠)) 𝑑𝑠

}

}

}

,

𝜓 (𝑡) = ∫

𝑡

0

𝑊(𝑡, 𝑠) col {𝑓1 (𝑠) , . . . , 𝑓𝑛 (𝑠)} 𝑑𝑠.

(45)

The exponential estimate of the Cauchy matrix 𝑊(𝑡, 𝑠)
implies that 𝑊(𝑡, 0) 𝑥(0) + 𝜓(𝑡) is bounded. Condition (42)
implies the estimate of the norm ‖𝐾‖ < 1. Thus for every
bounded right hand side the solution 𝑥 of system (41) is
bounded. This, according to Theorem 3.4 [5], implies the
exponential estimate (9) of the Cauchy matrix 𝐶(𝑡, 𝑠) of
system (41).

4. Examples

Example 13. Let us consider the following delay system:

𝑥


1
(𝑡) + 𝑥1 (𝑡) − 𝑥2 (𝑡) + 𝑥3 (𝑡 − 10) = 𝑓1 (𝑡) ,

𝑥


2
(𝑡) − 𝑥1 (𝑡) + 3𝑥2 (𝑡) − 𝑥3 (𝑡) = 𝑓2 (𝑡)

𝑥


3
(𝑡) − 𝑥1 (𝑡) − 𝑥2 (𝑡) + 3𝑥3 (𝑡) = 𝑓3 (𝑡) .

(46)

The Wazewski condition (8) about nonpositivity of 𝑝
𝑖𝑗

for 𝑖 ̸= 𝑗 is not fulfilled since 𝑝
13
(𝑡) ≡ 1 for 𝑡 ∈ [0,∞).

Consequently Theorem A does not work here. Conditions
(1) and (2) of Theorem B are fulfilled, but (3) is not true.
Of course, condition (13) is not fulfilled. We cannot make
conclusions about nonnegativity of the Cauchy matrix 𝐶(𝑡, 𝑠)
and its exponential estimate based onTheorems A and B and
all other previous results. Let us use the results obtained in
our paper.

Consider the following auxiliary system:

𝑥


1
(𝑡) + 𝑥1 (𝑡) = 𝑧1 (𝑡) ,

𝑥


2
(𝑡) − 𝑥1 (𝑡) + 3𝑥2 (𝑡) − 𝑥3 (𝑡) = 𝑧2 (𝑡) ,

𝑥


3
(𝑡) − 𝑥1 (𝑡) − 𝑥2 (𝑡) + 3𝑥3 (𝑡) = 𝑧3 (𝑡) .

(47)

The Cauchy matrix of this auxiliary system is denoted by
𝑊(𝑡, 𝑠) = {𝑊

𝑖𝑗
(𝑡, 𝑠)}
𝑖,𝑗=1,2,3

. It can be found that

𝑊(𝑡, 𝑠) =

[
[
[
[
[
[

[

𝑒
(𝑠−𝑡)

0 0

𝑒
(𝑠−𝑡)

− 𝑒
2(𝑠−𝑡) 𝑒

2(𝑠−𝑡)
+ 𝑒
4(𝑠−𝑡)

2

𝑒
2(𝑠−𝑡)

− 𝑒
4(𝑠−𝑡)

2

𝑒
(𝑠−𝑡)

− 𝑒
2(𝑠−𝑡) 𝑒

2(𝑠−𝑡)
− 𝑒
4(𝑠−𝑡)

2

𝑒
2(𝑠−𝑡)

+ 𝑒
4(𝑠−𝑡)

2

]
]
]
]
]
]

]

.

(48)

We see that condition (20) is,

𝑝
13
𝑊
31 (𝑡 − 10, 𝑠) − 𝑝12𝑊21 (𝑡, 𝑠)

= (𝑒
(𝑠−𝑡+10)

− 𝑒
2(𝑠−𝑡+10)

) − (𝑒
(𝑠−𝑡)

− 𝑒
2(𝑠−𝑡)

) < 0,

𝑝
13
𝑊
32 (𝑡 − 10, 𝑠) − 𝑝12𝑊22 (𝑡, 𝑠)

= (
𝑒
2(𝑠−𝑡+10)

− 𝑒
4(𝑠−𝑡+10)

2
) − (

𝑒
2(𝑠−𝑡)

+ 𝑒
4(𝑠−𝑡)

2
) < 0,

(49)

true. According to Theorem 3, all elements of the Cauchy
matrix 𝐶(𝑡, 𝑠) = {𝐶

𝑖𝑗
(𝑡, 𝑠)}
𝑖,𝑗=1,2,3

are nonnegative for 0 ≤ 𝑠 ≤
𝑡 < ∞. System (37) in this case is of the following form:

𝑧
1
− 𝑧
2
+ 𝑧
3
= 1,

−𝑧
1
+ 3𝑧
2
− 𝑧
3
= 1,

−𝑧
1
− 𝑧
2
+ 3𝑧
3
= 1.

(50)

Positivity of all components of its solution is necessary
and sufficient for the exponential estimate (9) of the
Cauchy matrix 𝐶(𝑡, 𝑠) of the delay system (46) according to
Theorem 10. The solution of the algebraic system (50) is the
following: 𝑧

1
= 1, 𝑧

2
= 1, and 𝑧

3
= 1. This implies the
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exponential estimate of the Cauchymatrix𝐶(𝑡, 𝑠) of the delay
system. We get also (see Remark 11) that

𝑧
1
= 1 = lim

𝑡→∞

𝑛

∑

𝑗=1

∫

𝑡

0

𝐶
1𝑗 (𝑡, 𝑠) 𝑑𝑠,

𝑧
2
= 1 = lim

𝑡→∞

𝑛

∑

𝑗=1

∫

𝑡

0

𝐶
2𝑗 (𝑡, 𝑠) 𝑑𝑠,

𝑧
3
= 1 = lim

𝑡→∞

𝑛

∑

𝑗=1

∫

𝑡

0

𝐶
3𝑗 (𝑡, 𝑠) 𝑑𝑠.

(51)

Example 14. The same comments can be done also for the
delay system of 4 equations:

𝑥


1
(𝑡) + 2𝑥1 (𝑡) − 𝑥2 (𝑡) − 𝑥3 (𝑡) + 𝑥4 (𝑡 − 10) = 𝑓1 (𝑡) ,

𝑥


2
(𝑡) − 𝑥1 (𝑡) + 4𝑥2 (𝑡) − 𝑥3 (𝑡) − 𝑥4 (𝑡) = 𝑓2 (𝑡) ,

𝑥


3
(𝑡) − 𝑥1 (𝑡) − 𝑥2 (𝑡) + 4𝑥3 (𝑡) − 𝑥4 (𝑡) = 𝑓3 (𝑡) ,

𝑥


4
(𝑡) − 𝑥1 (𝑡) − 𝑥2 (𝑡) − 𝑥3 (𝑡) + 4𝑥4 (𝑡) = 𝑓4 (𝑡) .

(52)

In this case the auxiliary system can be written as follows:

𝑥


1
(𝑡) + 2𝑥1 (𝑡) − 𝑥2 (𝑡) = 𝑧1 (𝑡) ,

𝑥


2
(𝑡) − 𝑥1 (𝑡) + 4𝑥2 (𝑡) − 𝑥3 (𝑡) − 𝑥4 (𝑡) = 𝑧2 (𝑡) ,

𝑥


3
(𝑡) − 𝑥1 (𝑡) − 𝑥2 (𝑡) + 4𝑥3 (𝑡) − 𝑥4 (𝑡) = 𝑧3 (𝑡) ,

𝑥


4
(𝑡) − 𝑥1 (𝑡) − 𝑥2 (𝑡) − 𝑥3 (𝑡) + 4𝑥4 (𝑡) = 𝑧4 (𝑡) .

(53)

We denote by 𝑊(𝑡, 𝑠) = {𝑊
𝑖𝑗
(𝑡, 𝑠)}
𝑖,𝑗=1,2,3,4

the Cauchy
matrix of this auxiliary system. It can be found that

𝑊(𝑡, 𝑠) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑒
𝑠−𝑡
+ 𝑒
3(𝑠−𝑡)

2

𝑒
𝑠−𝑡
− 𝑒
5(𝑠−𝑡)

4

𝑒
𝑠−𝑡
− 2𝑒
3(𝑠−𝑡)

+ 𝑒
5(𝑠−𝑡)

8

𝑒
𝑠−𝑡
− 2𝑒
3(𝑠−𝑡)

+ 𝑒
5(𝑠−𝑡)

8

𝑒
𝑠−𝑡
− 𝑒
3(𝑠−𝑡)

2

𝑒
𝑠−𝑡
+ 𝑒
5(𝑠−𝑡)

4

𝑒
𝑠−𝑡
+ 2𝑒
3(𝑠−𝑡)

− 3𝑒
5(𝑠−𝑡)

8

𝑒
𝑠−𝑡
+ 2𝑒
3(𝑠−𝑡)

− 3𝑒
5(𝑠−𝑡)

8

𝑒
𝑠−𝑡
− 𝑒
3(𝑠−𝑡)

2

𝑒
𝑠−𝑡
− 𝑒
5(𝑠−𝑡)

4

𝑒
𝑠−𝑡
+ 2𝑒
3(𝑠−𝑡)

+ 5𝑒
5(𝑠−𝑡)

8

𝑒
𝑠−𝑡
+ 2𝑒
3(𝑠−𝑡)

− 3𝑒
5(𝑠−𝑡)

8

𝑒
𝑠−𝑡
− 𝑒
3(𝑠−𝑡)

2

𝑒
𝑠−𝑡
− 𝑒
5(𝑠−𝑡)

4

𝑒
𝑠−𝑡
+ 2𝑒
3(𝑠−𝑡)

− 3𝑒
5(𝑠−𝑡)

8

𝑒
𝑠−𝑡
+ 2𝑒
3(𝑠−𝑡)

+ 5𝑒
5(𝑠−𝑡)

8

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (54)

Condition (20),

𝑝
14
𝑊
41 (𝑡 − 10, 𝑠) − 𝑝13𝑊31 (𝑡, 𝑠)

=
𝑒
𝑠−𝑡+10

− 𝑒
3(𝑠−𝑡+10)

− 𝑒
𝑠−𝑡
+ 𝑒
3(𝑠−𝑡)

2
< 0,

𝑝
14
𝑊
42 (𝑡 − 10, 𝑠) − 𝑝13𝑊32 (𝑡, 𝑠)

=
𝑒
𝑠−𝑡+10

− 𝑒
5(𝑠−𝑡+10)

− 𝑒
𝑠−𝑡
+ 𝑒
5(𝑠−𝑡)

4
< 0,

𝑝
14
𝑊
43 (𝑡 − 10, 𝑠) − 𝑝13𝑊33 (𝑡, 𝑠)

=
𝑒
𝑠−𝑡+10

+ 2𝑒
3(𝑠−𝑡+10)

− 3𝑒
5(𝑠−𝑡+10)

− 𝑒
𝑠−𝑡
− 2𝑒
3(𝑠−𝑡)

+ 3𝑒
5(𝑠−𝑡)

8

< 0,

(55)

is fulfilled. According to Theorem 3, all elements of the
Cauchymatrix𝐶(𝑡, 𝑠) = {𝐶

𝑖𝑗
(𝑡, 𝑠)}
𝑖,𝑗=1,2,3,4

are nonnegative for
0 ≤ 𝑠 ≤ 𝑡 < ∞. System (37) in this case is of the following
form:

2𝑧
1
− 𝑧
2
− 𝑧
3
+ 𝑧
4
= 1,

−𝑧
1
+ 4𝑧
2
− 𝑧
3
− 𝑧
4
= 1

−𝑧
1
− 𝑧
2
+ 4𝑧
3
− 𝑧
4
= 1

−𝑧
1
− 𝑧
2
− 𝑧
3
+ 4𝑧
4
= 1.

(56)

Its solution is 𝑧
1
= 1, 𝑧

2
= 1, 𝑧

3
= 1, and 𝑧

4
= 1, and we get

the exponential estimate of the Cauchy matrix 𝐶(𝑡, 𝑠) of the
delay system (52) and the following equalities:

𝑧
1
= 1 = lim

𝑡→∞

𝑛

∑

𝑗=1

∫

𝑡

0

𝐶
1𝑗 (𝑡, 𝑠) 𝑑𝑠,

𝑧
2
= 1 = lim

𝑡→∞

𝑛

∑

𝑗=1

∫

𝑡

0

𝐶
2𝑗 (𝑡, 𝑠) 𝑑𝑠,

𝑧
3
= 1 = lim

𝑡→∞

𝑛

∑

𝑗=1

∫

𝑡

0

𝐶
3𝑗 (𝑡, 𝑠) 𝑑𝑠,

𝑧
4
= 1 = lim

𝑡→∞

𝑛

∑

𝑗=1

∫

𝑡

0

𝐶
4𝑗 (𝑡, 𝑠) 𝑑𝑠.

(57)
Example 15. The same comments can be noted for the delay
system of 5 equations:

𝑥


1
(𝑡) + 3𝑥1 (𝑡) − 𝑥2 (𝑡) − 𝑥3 (𝑡) − 𝑥4 (𝑡) + 𝑥5 (𝑡 − 10)

= 𝑓
1 (𝑡) ,

𝑥


2
(𝑡) − 𝑥1 (𝑡) + 5𝑥2 (𝑡) − 𝑥3 (𝑡) − 𝑥4 (𝑡) − 𝑥5 (𝑡) = 𝑓2 (𝑡) ,

𝑥


3
(𝑡) − 𝑥1 (𝑡) − 𝑥2 (𝑡) + 5𝑥3 (𝑡) − 𝑥4 (𝑡) − 𝑥5 (𝑡) = 𝑓3 (𝑡) ,
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𝑥


4
(𝑡) − 𝑥1 (𝑡) − 𝑥2 (𝑡) − 𝑥3 (𝑡) + 5𝑥4 (𝑡) − 𝑥3 (𝑡) = 𝑓4 (𝑡) ,

𝑥


5
(𝑡) − 𝑥1 (𝑡) − 𝑥2 (𝑡) − 𝑥3 (𝑡) − 𝑥4 (𝑡) + 5𝑥5 (𝑡) = 𝑓5 (𝑡) .

(58)

Auxiliary system (17) can be written as follows:

𝑥


1
(𝑡) + 3𝑥1 (𝑡) − 𝑥2 (𝑡) − 𝑥3 (𝑡) = 𝑧1 (𝑡) ,

𝑥


2
(𝑡) − 𝑥1 (𝑡) + 5𝑥2 (𝑡) − 𝑥3 (𝑡) − 𝑥4 (𝑡) − 𝑥5 (𝑡) = 𝑧2 (𝑡) ,

𝑥


3
(𝑡) − 𝑥1 (𝑡) − 𝑥2 (𝑡) + 5𝑥3 (𝑡) − 𝑥4 (𝑡) − 𝑥5 (𝑡) = 𝑧3 (𝑡) ,

𝑥


4
(𝑡) − 𝑥1 (𝑡) − 𝑥2 (𝑡) − 𝑥3 (𝑡) + 5𝑥4 (𝑡) − 𝑥3 (𝑡) = 𝑧4 (𝑡) ,

𝑥


5
(𝑡) − 𝑥1 (𝑡) − 𝑥2 (𝑡) − 𝑥3 (𝑡) − 𝑥4 (𝑡) + 5𝑥5 (𝑡) = 𝑧5 (𝑡) .

(59)

The Cauchy matrix of this auxiliary system is denoted
by 𝑊(𝑡, 𝑠) = {𝑊

𝑖𝑗
(𝑡, 𝑠)}
𝑖,𝑗=1,2,3,4,5

. It can be found that

𝑊(𝑡, 𝑠) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑒
𝑠−𝑡
+ 2𝑒
4(𝑠−𝑡)

3

𝑒
𝑠−𝑡
− 𝑒
6(𝑠−𝑡)

5

𝑒
𝑠−𝑡
− 𝑒
6(𝑠−𝑡)

5

2𝑒
𝑠−𝑡
− 5𝑒
4(𝑠−𝑡)

+ 3𝑒
6(𝑠−𝑡)

15

2𝑒
𝑠−𝑡
− 5𝑒
4(𝑠−𝑡)

+ 3𝑒
6(𝑠−𝑡)

15

𝑒
𝑠−𝑡
− 𝑒
4(𝑠−𝑡)

3

𝑒
𝑠−𝑡
+ 4𝑒
6(𝑠−𝑡)

5

𝑒
𝑠−𝑡
− 𝑒
6(𝑠−𝑡)

5

4𝑒
𝑠−𝑡
+ 5𝑒
4(𝑠−𝑡)

− 9𝑒
6(𝑠−𝑡)

30

4𝑒
𝑠−𝑡
+ 5𝑒
4(𝑠−𝑡)

− 9𝑒
6(𝑠−𝑡)

30

𝑒
𝑠−𝑡
− 𝑒
4(𝑠−𝑡)

3

𝑒
𝑠−𝑡
− 𝑒
6(𝑠−𝑡)

5

𝑒
𝑠−𝑡
+ 4𝑒
6(𝑠−𝑡)

5

4𝑒
𝑠−𝑡
+ 5𝑒
4(𝑠−𝑡)

− 9𝑒
6(𝑠−𝑡)

30

4𝑒
𝑠−𝑡
+ 5𝑒
4(𝑠−𝑡)

− 9𝑒
6(𝑠−𝑡)

30

𝑒
𝑠−𝑡
− 𝑒
4(𝑠−𝑡)

3

𝑒
𝑠−𝑡
− 𝑒
6(𝑠−𝑡)

5

𝑒
𝑠−𝑡
− 𝑒
6(𝑠−𝑡)

5

4𝑒
𝑠−𝑡
+ 5𝑒
4(𝑠−𝑡)

+ 21𝑒
6(𝑠−𝑡)

30

4𝑒
𝑠−𝑡
+ 5𝑒
4(𝑠−𝑡)

− 9𝑒
6(𝑠−𝑡)

30

𝑒
𝑠−𝑡
− 𝑒
4(𝑠−𝑡)

3

𝑒
𝑠−𝑡
− 𝑒
6(𝑠−𝑡)

5

𝑒
𝑠−𝑡
− 𝑒
6(𝑠−𝑡)

5

4𝑒
𝑠−𝑡
+ 5𝑒
4(𝑠−𝑡)

− 9𝑒
6(𝑠−𝑡)

30

4𝑒
𝑠−𝑡
+ 5𝑒
4(𝑠−𝑡)

+ 21𝑒
6(𝑠−𝑡)

30

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (60)

Verifying condition (20), we get

𝑝
15
𝑊
51 (𝑡 − 10, 𝑠) − 𝑝14𝑊41 (𝑡, 𝑠)

=
𝑒
𝑠−𝑡+10

− 𝑒
4(𝑠−𝑡+10)

− 𝑒
𝑠−𝑡
+ 𝑒
4(𝑠−𝑡)

3
< 0,

𝑝
15
𝑊
52 (𝑡 − 10, 𝑠) − 𝑝14𝑊42 (𝑡, 𝑠)

=
𝑒
𝑠−𝑡+10

− 𝑒
6(𝑠−𝑡+10)

− 𝑒
𝑠−𝑡
+ 𝑒
6(𝑠−𝑡)

5
< 0,

𝑝
15
𝑊
53 (𝑡 − 10, 𝑠) − 𝑝14𝑊43 (𝑡, 𝑠)

=
𝑒
𝑠−𝑡+10

− 𝑒
6(𝑠−𝑡+10)

− 𝑒
𝑠−𝑡
+ 𝑒
6(𝑠−𝑡)

5
< 0,

𝑝
15
𝑊
54 (𝑡 − 10, 𝑠) − 𝑝14𝑊44 (𝑡, 𝑠)

= (4𝑒
𝑠−𝑡+10

+ 5𝑒
4(𝑠−𝑡+10)

− 9𝑒
6(𝑠−𝑡+10)

− 4𝑒
𝑠−𝑡

−5𝑒
4(𝑠−𝑡)

− 21𝑒
6(𝑠−𝑡)

) (30)
−1
< 0.

(61)

According to Theorem 3, all elements of the Cauchy
matrix 𝐶(𝑡, 𝑠) = {𝐶

𝑖𝑗
(𝑡, 𝑠)}
𝑖,𝑗=1,2,3,4,5

are nonnegative for 0 ≤
𝑠 ≤ 𝑡 < ∞. System (37) in this case is of the following form:

3𝑧
1
− 𝑧
2
− 𝑧
3
− 𝑧
4
+ 𝑧
5
= 1,

−𝑧
1
+ 5𝑧
2
− 𝑧
3
− 𝑧
4
− 𝑧
5
= 1,

−𝑧
1
− 𝑧
2
+ 5𝑧
3
− 𝑧
4
− 𝑧
5
= 1,

−𝑧
1
− 𝑧
2
− 𝑧
3
+ 5𝑧
4
− 𝑧
5
= 1,

−𝑧
1
− 𝑧
2
− 𝑧
3
− 𝑧
4
+ 5𝑧
5
= 1.

(62)

Its solution is 𝑧
1
= 1, 𝑧

2
= 1, 𝑧

3
= 1, 𝑧

4
= 1, and 𝑧

5
= 1, and

we get the exponential estimate of the Cauchy matrix 𝐶(𝑡, 𝑠)
of the delay system and also the following equalities:

𝑧
1
= 1 = lim

𝑡→∞

𝑛

∑

𝑗=1

∫

𝑡

0

𝐶
1𝑗 (𝑡, 𝑠) 𝑑𝑠,

𝑧
2
= 1 = lim

𝑡→∞

𝑛

∑

𝑗=1

∫

𝑡

0

𝐶
2𝑗 (𝑡, 𝑠) 𝑑𝑠,

𝑧
3
= 1 = lim

𝑡→∞

𝑛

∑

𝑗=1

∫

𝑡

0

𝐶
3𝑗 (𝑡, 𝑠) 𝑑𝑠,

𝑧
4
= 1 = lim

𝑡→∞

𝑛

∑

𝑗=1

∫

𝑡

0

𝐶
4𝑗 (𝑡, 𝑠) 𝑑𝑠,

𝑧
5
= 1 = lim

𝑡→∞

𝑛

∑

𝑗=1

∫

𝑡

0

𝐶
5𝑗 (𝑡, 𝑠) 𝑑𝑠.

(63)
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