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This work investigates traveling waves for a class of delayed cellular neural networks with nonmonotonic output functions on the
one-dimensional integer lattice Z. The dynamics of each given cell depends on itself and its nearest𝑚 left or 𝑙 right neighborhood
cells with distributed delay due to, for example, finite switching speed and finite velocity of signal transmission. Our technique is to
construct two appropriate nondecreasing functions to squeeze the nonmonotonic output functions. Then we construct a suitable
wave profiles set and derive the existence of traveling wave solutions by using Schauder’s fixed point theorem.

1. Introduction

Recently, there have been an increasing activity and interest
in the study of nervous systems, namely, in the study of
equations modeling neural networks, which are applied to
a broad scope of fields such as image and video signal
processing, robotic and biological versions, and higher brain
functions (see [1–6] for more details). The methodology of
cellular neural networks (for short, CNN) was first proposed
by Chua and Yang [7–9] as an achievable alternative to fully
connected neural networks in electric circuit systems. The
dynamic evolution of the network is governed by the assumed
dynamics of the individual processing units and their recip-
rocal interactions.The infinite system of ordinary differential
equations for CNN distributed in a one-dimensional integer
lattice can be described by
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(1)

where 𝑓 is the piecewise-linear output function given by

𝑓 (𝑥) =

{
{

{
{

{

1, if 𝑥 ≥ 1,

𝑥, if |𝑥| ≤ 1,

−1, if 𝑥 ≤ −1.

(2)

The quantity 𝑧 is called a threshold or bias term and is
related to independent voltage sources in electric circuits.
The real constant coefficients 𝑎

𝑖
, 𝛼, and 𝛽

𝑖
of the output

function 𝑓 constitute the so-called space-invariant template
that measures the synaptic weights of self-feedback and
neighborhood interaction. In recent years, when the output
function 𝑓 is defined as (2), some incisive mathematical
analyses have subsequently been done; see [1–3, 7–9] and the
references cited therein.

However, to be more realistic, the neural models should
be incorporated into time delays, since the transmission of
information fromoneneuron to another is not instantaneous.
In models of electronic neural networks, the dynamics of
each given cell depends on itself and its nearest left or right
neighbors where delays exist in left or right neighborhood
interactions due to, for example, finite switching speed
and finite velocity of signal transmission (see [7]). Such
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assumptions can be also found in [1, 10–13]. In the past
decades, there are many mathematical results on the study
of dynamics for neural models. Particularly, the investigation
of traveling wave solutions has attracted much attention due
to its significant nature in biology, chemistry, epidemiology,
and physics, such as reaction-diffusion equations [14–23] and
lattice equations [2, 8, 24, 25]. For delayed CNN models (for
short, DCNN) with the piecewise-linear output function (2),
the existence of travelingwaves has been investigated in [1, 11–
13]. If the output function is nonlinear, for example,

𝑓 (𝑥) =

{
{
{

{
{
{

{

1, if 𝑥 ≥ 1,

sin 𝜋

2

𝑥, if |𝑥| ≤ 1,

−1, if 𝑥 ≤ −1,

(3)

or

𝑓 (𝑥) =

{
{
{
{
{

{
{
{
{
{

{

1, if 𝑥 ≥ 1,

2𝑥 − 𝑥
2

, if 0 ≤ 𝑥 ≤ 1,

2𝑥 + 𝑥
2

, if − 1 ≤ 𝑥 ≤ 0,

−1, if 𝑥 ≤ −1,

(4)

the authors of [10] also derived the existence of traveling wave
solutions. Recently, when the propagation of signal is very
slow, authors of [26] considered CNN models with infinite
time delays. More precisely, Yu et al. [26] investigated the
existence and nonexistence of monotonic traveling waves
for the following more general CNN models with infinite
distributed time delay terms:

𝑥
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𝜏
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𝐽
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𝑛
(𝑡 − 𝑦)) 𝑑𝑦

+

𝑙

∑

𝑗=1

𝛽
𝑗
∫

𝜏

0

𝐽
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(𝑦) 𝑓 (𝑥
𝑛+𝑗

(𝑡 − 𝑦)) 𝑑𝑦,

(5)

for 𝑛 ∈ Z, 𝑚, 𝑙 ∈ N. Here 𝑎
𝑖
(𝑖 = 1, . . . , 𝑚), 𝛼, and

𝛽
𝑗
(𝑗 = 1, . . . , 𝑙) are nonnegative constants; 𝜏 may be a

positive constant or infinity; and the output function 𝑓(𝑢) is
nondecreasing. Here the dynamics of each given cell depends
on itself and its nearest 𝑚 left or 𝑙 right neighborhood cells
with distributed delay due to, for example, finite switching
speed and finite velocity of signal transmission.Moreover, we
point out that theCNNmodelswith discrete timedelays or no
delays case can be included in thismodel by choosing suitable
kernel functions (see [26]).

Note that someknown results on the existence of traveling
waves for (5) can be obtained only when the output functions
are nondecreasing. But the output functions may not be

nondecreasing. For example, let us consider the following two
nonmonotonic output functions:

𝑓 (𝑥) =

{
{
{

{
{
{

{

1, if 𝑥 ≥ 1,

2 sin 5𝜋

6

𝑥, if |𝑥| ≤ 1,

−1, if 𝑥 ≤ −1,

(6)

𝑓 (𝑥) =

{
{
{
{
{

{
{
{
{
{

{

1, if 𝑥 ≥ 1,

3𝑥 − 2𝑥
2

, if 0 ≤ 𝑥 ≤ 1,

3𝑥 + 2𝑥
2

, if − 1 ≤ 𝑥 ≤ 0,

−1, if 𝑥 ≤ −1.

(7)

It is obvious that the previous results in [2, 3, 10, 12, 27] cannot
be applied for CNN or DCNN models with nonmonotonic
output functions like (6) or (7).Therefore, it gives us themoti-
vation to consider the existence of travelingwave solutions for
DCNNmodel (5) with nonmonotonic output functions.

Throughout this paper, we assume that there exists a 𝑏 > 0

such that 𝑓 and 𝐽 satisfy the following assumptions.

(F1) 𝑓 ∈ 𝐶([0, 𝑏], [0, 𝑏/(𝑎 + 𝛼 + 𝛽)]) is an odd function,
𝑓(0) = 0, and there exist 𝐾 > 0 with 𝐾 ≤ 𝑏 and 𝐿 > 0

such that

(𝑎 + 𝛼 + 𝛽)𝑓 (𝐾) = 𝐾,
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑢) − 𝑓 (V)󵄨󵄨󵄨

󵄨
≤ 𝐿 |𝑢 − V| ,

for 𝑢, V ∈ [0, 𝑏] ,
(8)

where 𝑎
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑚, 𝛼 ≥ 0, and 𝛽

𝑗
≥ 0, 𝑗 = 1, . . . , 𝑙,

𝑎 :=

𝑚

∑

𝑖=1

𝑎
𝑖
, 𝛽 :=

𝑙

∑

𝑗=1

𝛽
𝑗
. (9)

(F2) 𝑓󸀠(0)𝑢 ≥ 𝑓(𝑢) > 0, (𝑎+𝛼+𝛽)𝑓(𝑢) > 𝑢 for 𝑢 ∈ (0, 𝐾),
and (𝑎 + 𝛼 + 𝛽)𝑓(𝑢) < 𝑢 for 𝑢 ∈ (𝐾, 𝑏].

(F3) There exists 𝜎 ∈ (0, 1] such that

lim sup
𝑢→0

+

[𝑓
󸀠

(0) −

𝑓 (𝑢)

𝑢

] 𝑢
−𝜎

< +∞. (10)

(F4) (𝑎 + 𝛼 + 𝛽)𝑓(𝑢) < 2𝐾 − 𝑢 for 𝑢 ∈ (0, 𝐾) and (𝑎 + 𝛼 +

𝛽)𝑓(𝑢) > 2𝐾 − 𝑢 for 𝑢 ∈ (𝐾, 𝑏].
(J) 𝐽
𝑖
: [0, 𝜏] → [0, +∞) are piecewise continuous

functions satisfying

∫

𝜏

0

𝐽
𝑖
(𝑦) 𝑑𝑦 = 1, 𝑖 = 1, . . . , 𝑚 + 𝑙 + 1, (11)

where 0 < 𝜏 < ∞. If 𝜏 = ∞, we further assume that

∫

∞

0

𝐽
𝑖
(𝑦) 𝑒
𝜅𝑦

𝑑𝑦 < ∞ for any 𝜅 ∈ [0,∞) ,

𝑖 = 1, . . . , 𝑚 + 𝑙 + 1.

(12)
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Remark 1. If 𝑓 satisfies the following hypotheses,

(H1) 𝑓 is a continuous odd function, 𝑓(0) = 0, 𝑓(𝑥) = 1

for 𝑥 ≥ 1,∑𝑚
𝑖=1

𝑎
𝑖
+ ∑
𝑙

𝑗=1
𝛽
𝑗
> 0, 𝛼𝑓󸀠(0) ≥ 1, and there

exists 𝐿 > 0 such that |𝑓(𝑢) − 𝑓(V)| ≤ 𝐿|𝑢 − V| for
𝑢, V ∈ [0, 1],

(H2) 𝑓󸀠(0)𝑢 ≥ 𝑓(𝑢) > 0 for 𝑢 ∈ (0, 1]; in addition, 𝑓󸀠󸀠(0)
exists and (𝛼 + 𝑎 + 𝛽)𝑓(𝑢) > 𝑢 for 𝑢 ∈ (0, 1),

then it is obvious that (F1)–(F3) hold and 0,𝐾 = ∑
𝑚

𝑖=1
𝑎
𝑖
+𝛼+

∑
𝑙

𝑗=1
𝛽
𝑗
, and −𝐾 are three equilibria of (5).

Remark 2. If 𝑎 + 𝛼 + 𝛽 > 1, then the nonmonotonic output
functions (6) and (7) satisfy assumptions (F1)–(F4).

Our purpose is to investigate the existence of traveling
waves for (5) with nonmonotonic output functions. A trav-
eling wave solution of (5) is a special translation invariant
solution of (12) with the form 𝑥

𝑛
(𝑡) = 𝜙(𝑛 − 𝑐𝑡), 𝑖 ∈ Z, and

𝑡 ∈ R for a wave profile 𝜙(𝜉), 𝜉 = 𝑛 − 𝑐𝑡 ∈ R, with a given
wave speed 𝑐 ∈ R. Letting 𝜉 = 𝑛− 𝑐𝑡, it follows that 𝜙must be
a solution of the following wave profile equation:

−𝑐𝜙
󸀠

(𝜉) = −𝜙 (𝜉) +

𝑚

∑

𝑖=1

𝑎
𝑖
∫

𝜏

0

𝐽
𝑖
(𝑦) 𝑓 (𝜙 (𝜉 − 𝑖 + 𝑐𝑦)) 𝑑𝑦

+ 𝛼∫

𝜏

0

𝐽
𝑚+1

(𝑦) 𝑓 (𝜙 (𝜉 + 𝑐𝑦)) 𝑑𝑦

+

𝑙

∑

𝑗=1

𝛽
𝑗
∫

𝜏

0

𝐽
𝑚+1+𝑗

(𝑦) 𝑓 (𝜙 (𝜉 + 𝑗 + 𝑐𝑦)) 𝑑𝑦.

(13)

Under assumptions (F1)-(F2), it is easily seen that 0 and ±𝐾
are three equilibria of (13). We are mainly interested in the
existence of traveling waves satisfying one of the following
asymptotic boundary conditions:

(BC1) lim
𝜉→−∞

𝜙 (𝜉) = 0, lim inf
𝜉→+∞

𝜙 (𝜉) > 0;

(BC2) lim inf
𝜉→−∞

𝜙 (𝜉) > 0, lim
𝜉→+∞

𝜙 (𝜉) = 0;

(BC3) lim
𝜉→−∞

𝜙 (𝜉) = 0, lim sup
𝜉→+∞

𝜙 (𝜉) < 0;

(BC4) lim sup
𝜉→−∞

𝜙 (𝜉) < 0, lim
𝜉→+∞

𝜙 (𝜉) = 0.

(14)

Since the output functions are nonmonotonic, our main
idea is to construct two appropriate nondecreasing functions
to squeeze the nonmonotonic output functions. Then we can
apply the results in [26] and Schauder’s fixed point theorem
to derive the existence of traveling wave solutions. Now we
state our main results.

Theorem 3. Assume (F1)–(F3) and (J) hold. If 𝛽 > 0 and (𝛼 +
𝛽)𝑓
󸀠

(0) > 1, then there exists 𝑐∗
1
< 0 such that the following

statements hold.

(1) For each 𝑐 < 𝑐
∗

1
, (5) has a traveling wave 𝜙(𝑛 − 𝑐𝑡) with

speed 𝑐 such that 𝜙 ∈ 𝐶(R, [0, 𝑏])/{0, 𝐾} and satisfies
(BC1). Moreover,

lim
𝜉→+∞

𝜙 (𝜉) = 𝐾

or 0 < lim inf
𝜉→+∞

𝜙 (𝜉) < 𝐾 < lim sup
𝜉→+∞

𝜙 (𝜉) ≤ 𝑏,

lim
𝜉→−∞

𝜙 (𝜉) 𝑒
−𝜆
1
𝜉

= 1, lim
𝜉→−∞

𝜙
󸀠

(𝜉) 𝑒
−𝜆
1
𝜉

= 𝜆
1
,

(15)

where 𝜆
1
is the smallest positive root of characteristic function

of (13) at 0. If, in addition, (F4) holds, then lim
𝜉→+∞

𝜙(𝜉) = 𝐾.

(2) For each 𝑐 < 𝑐
∗

1
, (5) has a traveling wave 𝜓(𝑛 − 𝑐𝑡)

with speed 𝑐 such that 𝜓 ∈ 𝐶(R, [−𝑏, 0])/{0, −𝐾} and
satisfies (BC3). Moreover,

lim
𝜉→+∞

𝜓 (𝜉) = −𝐾

or − 𝑏 ≤ lim inf
𝜉→+∞

𝜓 (𝜉) < −𝐾 < lim sup
𝜉→+∞

𝜓 (𝜉) < 0,

lim
𝜉→−∞

𝜓 (𝜉) 𝑒
−𝜆
1
𝜉

= −1, lim
𝜉→−∞

𝜓
󸀠

(𝜉) 𝑒
−𝜆
1
𝜉

= −𝜆
1
.

(16)

If, in addition, (F4) holds, then lim
𝜉→+∞

𝜓(𝜉) = −𝐾.

Theorem 4. Assume (F1)–(F3) and (J) hold. If 𝑎 > 0 and (𝑎 +
𝛼)𝑓
󸀠

(0) > 1, then there exists 𝑐∗
2
> 0 such that the following

statements hold.

(1) For each 𝑐 > 𝑐
∗

2
, (5) has a traveling wave 𝜙(𝑛 − 𝑐𝑡) with

speed 𝑐 such that 𝜙 ∈ 𝐶(R, [0, 𝑏]) \ {0, 𝐾} and satisfies
(BC2). Moreover,

lim
𝜉→−∞

𝜙 (𝜉) = 𝐾

or 0 < lim inf
𝜉→−∞

𝜙 (𝜉) < 𝐾 < lim sup
𝜉→−∞

𝜙 (𝜉) ≤ 𝑏,

lim
𝜉→+∞

𝜙 (𝜉) 𝑒
−𝜆
2
𝜉

= 1, lim
𝜉→+∞

𝜙
󸀠

(𝜉) 𝑒
−𝜆
2
𝜉

= 𝜆
2
,

(17)

where 𝜆
2
< 0 is the largest negative root of characteris-

tic function of (13) at 0. If, in addition, (F4) holds, then
lim
𝜉→−∞

𝜙(𝜉) = 𝐾.
(2) For each 𝑐 > 𝑐

∗

2
, (5) has a traveling wave 𝜓(𝑛 − 𝑐𝑡)

with speed 𝑐 such that 𝜓 ∈ 𝐶(R, [−𝑏, 0]) \ {0, −𝐾} and
satisfies (BC4). Moreover,

lim
𝜉→−∞

𝜓 (𝜉) = −𝐾

or − 𝑏 ≤ lim inf
𝜉→−∞

𝜓 (𝜉) < −𝐾 < lim sup
𝜉→−∞

𝜓 (𝜉) < 0,

lim
𝜉→+∞

𝜓 (𝜉) 𝑒
−𝜆
2
𝜉

= −1, lim
𝜉→+∞

𝜓
󸀠

(𝜉) 𝑒
−𝜆
2
𝜉

= −𝜆
2
.

(18)

If, in addition, (F4) holds, then lim
𝜉→−∞

𝜓(𝜉) = −𝐾.
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Theorem 5. Assume (F1)–(F3) and (J) hold. If 𝛽 = 0 and (𝑎 +
𝛼)𝑓
󸀠

(0) > 1, then the following statements hold.

(1) For any 𝑐 < 0, (5) has a traveling wave 𝜙(𝑛 − 𝑐𝑡) with
speed 𝑐 such that 𝜙 ∈ 𝐶(R, [0, 𝑏]) \ {0, 𝐾} and satisfies
(BC3). Moreover,

lim
𝜉→+∞

𝜙 (𝜉) = 𝐾

or 0 < lim inf
𝜉→+∞

𝜙 (𝜉) < 𝐾 < lim sup
𝜉→+∞

𝜙 (𝜉) ≤ 𝑏,

lim
𝜉→−∞

𝜙 (𝜉) 𝑒
−𝜆
3
𝜉

= 1, lim
𝜉→−∞

𝜙
󸀠

(𝜉) 𝑒
−𝜆
3
𝜉

= 𝜆
3
,

(19)

where 𝜆
3
> 0 is a unique real root of characteristic function of

(13) at 0. If, in addition, (F4) holds, then lim
𝜉→+∞

𝜙(𝜉) = 𝐾.

(2) For any 𝑐 < 0, (5) has a traveling wave 𝜓(𝑛 − 𝑐𝑡)

with speed 𝑐 such that 𝜓 ∈ 𝐶(R, [−𝑏, 0]) \ {0, −𝐾} and
satisfies (BC3). Moreover,

lim
𝜉→+∞

𝜓 (𝜉) = −𝐾

or − 𝑏 ≤ lim inf
𝜉→+∞

𝜓 (𝜉) < −𝐾 < lim sup
𝜉→+∞

𝜓 (𝜉) < 0,

lim
𝜉→−∞

𝜓 (𝜉) 𝑒
−𝜆
3
𝜉

= −1, lim
𝜉→−∞

𝜓
󸀠

(𝜉) 𝑒
−𝜆
3
𝜉

= −𝜆
3
.

(20)

If, in addition, (F4) holds, then lim
𝜉→+∞

𝜓(𝜉) = −𝐾.

Theorem 6. Assume (F1)–(F3) and (J) hold. If 𝑎 = 0 and (𝛼 +
𝛽)𝑓
󸀠

(0) > 1, then the following statements hold.

(1) For any 𝑐 > 0, (5) has a traveling wave 𝜙(𝑛 − 𝑐𝑡) with
speed 𝑐 such that 𝜙 ∈ 𝐶(R, [0, 𝑏]) \ {0, 𝐾} and satisfies
(BC2). Moreover,

lim
𝜉→−∞

𝜙 (𝜉) = 𝐾

or 0 < lim inf
𝜉→−∞

𝜙 (𝜉) < 𝐾 < lim sup
𝜉→−∞

𝜙 (𝜉) ≤ 𝑏,

lim
𝜉→+∞

𝜙 (𝜉) 𝑒
−𝜆
4
𝜉

= 1, lim
𝜉→+∞

𝜙
󸀠

(𝜉) 𝑒
−𝜆
4
𝜉

= 𝜆
4
,

(21)

where 𝜆
4
< 0 is a unique real root of characteristic function of

(13) at 0. If, in addition, (F4) holds, then lim
𝜉→−∞

𝜙(𝜉) = 𝐾.

(2) For any 𝑐 > 0, (5) has a traveling wave 𝜓(𝑛 − 𝑐𝑡) with
speed 𝑐 such that 𝜓 ∈ 𝐶(R, [−𝑏, 0]) \ {0, −𝐾} satisfies
(BC4). Moreover,

lim
𝜉→−∞

𝜓 (𝜉) = −𝐾

or − 𝑏 ≤ lim inf
𝜉→−∞

𝜓 (𝜉) < −𝐾 < lim sup
𝜉→−∞

𝜓 (𝜉) < 0,

lim
𝜉→+∞

𝜓 (𝜉) 𝑒
−𝜆
4
𝜉

= −1, lim
𝜉→+∞

𝜓
󸀠

(𝜉) 𝑒
−𝜆
4
𝜉

= −𝜆
4
.

(22)

If, in addition, (F4) holds, then lim
𝜉→−∞

𝜓(𝜉) = −𝐾.

Remark 7. In the above theorems, we obtain that the trav-
eling waves either converge to the nontrivial equilibrium
(𝐾 or −𝐾) or oscillate on the nontrivial equilibrium at
infinity. Furthermore, we give a sufficient condition for the
convergence of traveling waves to the nontrivial equilibrium.
But under what conditions the wave will oscillate on the
nontrivial equilibrium at infinity is an interesting problem.
On the other hand, similarly to the proofs of nonexistence
of traveling waves in [26], we can also obtain the same
conclusions for nonmonotonic DCNNmodels.

Remark 8. The different results can be obtained through the
choice of the signs for 𝑎 and 𝛽 and (5) reduces to kinds of
CNN model with mixed delays by choosing suitable kernel
functions. Please refer to [26].

The remainder of this paper is organized as follows. In
Section 2, we recall some properties of the characteristic
function of (13). Then, in Section 3, we construct two appro-
priate nondecreasing functions to squeeze the nonmono-
tonic output functions. Based on the construction of two
nondecreasing functions, we devote Section 4 to proofs of
the existence of traveling waves for (5). Our approach is to
squeeze the nonmonotonic output functions and Schauder’s
fixed point theorem in a suitable Banach space. Furthermore,
according to the construction of a wave profiles set, we
can obtain the exponential asymptotic behavior of traveling
waves in the infinity.

2. Properties of the Characteristic Function

In this section, we recall some properties of the characteristic
function for (13). The characteristic function arises from the
linearized equation of (13) at the equilibrium solution 0 and
is given by

Δ (𝜆, 𝑐) := −𝑐𝜆 + 1 − 𝑓
󸀠

(0)

𝑚

∑

𝑖=1

𝑎
𝑖
∫

𝜏

0

𝐽
𝑖
(𝑦) 𝑒
𝜆(−𝑖+𝑐𝑦)

𝑑𝑦

− 𝑓
󸀠

(0) 𝛼∫

𝜏

0

𝐽
𝑚+1

(𝑦) 𝑒
𝜆𝑐𝑦

𝑑𝑦

− 𝑓
󸀠

(0)

𝑙

∑

𝑗=1

𝛽
𝑗
∫

𝜏

0

𝐽
𝑚+1+𝑗

(𝑦) 𝑒
𝜆(𝑗+𝑐𝑦)

𝑑𝑦.

(23)

The main properties of the characteristic function are stated
in the following lemmas, and all the proofs can be found in
our recent work [26].

Lemma 9. Assume that 𝛽 > 0 and (𝛼 + 𝛽)𝑓
󸀠

(0) > 1. Then
there exists a unique 𝑐∗

1
< 0 such that

(1) if 𝑐 ≤ 𝑐
∗

1
, then there exist two positive numbers 𝜆

1
(𝑐)

and ̂
𝜆
1
(𝑐) with 𝜆

1
:= 𝜆
1
(𝑐) ≤

̂
𝜆
1
:=

̂
𝜆
1
(𝑐) such that

Δ(𝜆
1
, 𝑐) = Δ(

̂
𝜆
1
, 𝑐) = 0;
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(2) if 𝑐 = 𝑐
∗

1
, then 𝜆

1
=

̂
𝜆
1
= 𝜆
∗

1
, and if 𝑐 < 𝑐

∗

1
, then

𝜆
1
< 𝜆
∗

1
<
̂
𝜆
1
,

Δ (⋅, 𝑐) > in (𝜆
1
,
̂
𝜆
1
) ,

Δ (⋅, 𝑐) < in R \ [𝜆
1
,
̂
𝜆
1
] ;

(24)

(3) if 𝑐 > 𝑐
∗

1
, then Δ(𝜆, 𝑐) < 0 for all 𝜆 ≥ 0.

Lemma 10. Assume that 𝑎 > 0 and (𝑎 + 𝛼)𝑓
󸀠

(0) > 1. Then
there exists a unique 𝑐∗

2
> 0 such that

(1) if 𝑐 ≥ 𝑐
∗

2
, then there exist 𝜆

2
< 0 and ̂

𝜆
2
< 0 with

Δ(𝜆
2
, 𝑐) = Δ(

̂
𝜆
2
, 𝑐) = 0;

(2) if 𝑐 = 𝑐
∗

2
, then 𝜆

2
=

̂
𝜆
2
= 𝜆
∗

2
, and if 𝑐 > 𝑐

∗

2
, then

̂
𝜆
2
< 𝜆
∗

2
< 𝜆
2
,

Δ (⋅, 𝑐) > in (
̂
𝜆
2
, 𝜆
2
) ,

Δ (⋅, 𝑐) < in R \ [
̂
𝜆
2
, 𝜆
2
] ;

(25)

(3) if 𝑐 < 𝑐
∗

2
, then Δ(𝜆, 𝑐) < 0 for all 𝜆 ≤ 0.

Lemma 11. Assume that 𝛽 = 0 and (𝑎 + 𝛼)𝑓󸀠(0) > 1. Then we
have the following:

(1) for any 𝑐 < 0, there exists a unique real root 𝜆
3
:=

𝜆
3
(𝑐) > 0 such that Δ(𝜆

3
, 𝑐) = 0. Moreover, for 𝑐 < 0,

there exists 𝜖 > 0 such thatΔ(𝜆
3
+𝜖, 𝑐) > 0 for 𝜖 ∈ (0, 𝜖)

and Δ(𝜆, 𝑐) > 0 for 𝜆 ∈ (𝜆
3
, 𝜆
3
+ 𝜖);

(2) for 𝑐 ≥ 0, Δ(𝜆, 𝑐) < 0 for all 𝜆 > 0.

Lemma 12. Assume that 𝑎 = 0 and (𝛼+𝛽)𝑓󸀠(0) > 1. Then we
have the following:

(1) for any 𝑐 > 0, there exists a unique real root 𝜆
4
:=

𝜆
4
(𝑐) < 0 such that Δ(𝜆

4
, 𝑐) = 0. Moreover, for any

𝑐 > 0, there exists 𝜖 > 0 such that Δ(𝜆
4
− 𝜖, 𝑐) > 0 for

𝜖 ∈ (0, 𝜖) and Δ(𝜆, 𝑐) > 0 for 𝜆 ∈ (𝜆
4
− 𝜖, 𝜆
4
);

(2) for 𝑐 ≤ 0, Δ(𝜆, 𝑐) < 0 for all 𝜆 < 0.

According to the results of the above lemmas, in
Section 4, we can see that the roots of characteristic equation
play crucial roles in studying the behavior solutions of (13)
near the equilibrium 0.

3. Construction of Nondecreasing Functions

In this section, we will construct two nondecreasing func-
tions such that𝑓 lies between the two functions. Based on the
construction of the nondecreasing functions, we can apply
the results in [26] to derive the existence results.

Let us define functions 𝑓−(𝑢) and 𝑓+(𝑢) by

𝑓
−

(𝑢) = inf
𝑢≤V≤𝑏

{𝑓 (V)} ,

𝑓
+

(𝑢) = min{𝑓󸀠 (0) 𝑢, 𝑏

𝑎 + 𝛼 + 𝛽

}

for 𝑢 ∈ [0, 𝑏] .

(26)

Then 𝑓−(𝑢) and 𝑓+(𝑢) satisfy the following properties.

Lemma 13. Assume that (F1)–(F3) hold.

(1) 𝑓−(𝑢) and 𝑓
+

(𝑢) are nondecreasing and Lipschitz
continuous on [0, 𝑏].

(2) 𝑓−(𝑢) ≤ 𝑓(𝑢) ≤ 𝑓
+

(𝑢) for all 𝑢 ∈ [0, 𝑏].
(3) 𝑓󸀠(0)𝑢 ≥ 𝑓

−

(𝑢) > 0 and 𝑓󸀠(0)𝑢 ≥ 𝑓
+

(𝑢) > 0 for all
𝑢 ∈ (0, 𝑏].

(4) 𝑓+(0) = (𝑎+𝛼+𝛽)𝑓
+

(𝑏)−𝑏 = 0 and there exists an 𝑢∗
−

with 0 < 𝑢
∗

−
≤ 𝐾 such that𝑓−(0) = (𝑎+𝛼+𝛽)𝑓

−

(𝑢
∗

−
)−

𝑢
∗

−
= 0. Moreover, we have (𝑎+𝛼+𝛽)𝑓−(𝑢) > 𝑢 for any

𝑢 ∈ (0, 𝑢
∗

−
) and (𝑎+𝛼+𝛽)𝑓+(𝑢) > 𝑢 for any 𝑢 ∈ (0, 𝑏).

(5) There exists 𝜎 ∈ (0, 1] such that

lim sup
𝑢→0

+

[𝑓
󸀠

(0) −

𝑓
−

(𝑢)

𝑢

] 𝑢
−𝜎

< ∞. (27)

Proof. It is obvious that the assertions of (1), (3), and (5) hold.
Therefore, we only prove the assertions of parts (2) and (4).

(2) By the definition of 𝑓−(𝑢) and (F2), we have 𝑓−(𝑢) ≤
𝑓(𝑢) for 𝑢 ∈ [0, 𝑏]. According to (F1)-(F2), it is obvious that
𝑓(𝑢) ≤ 𝑓

󸀠

(0)𝑢 and 𝑓(𝑢) ≤ 𝑏/(𝑎 + 𝛼 + 𝛽) for 𝑢 ∈ [0, 𝑏]. Thus,
𝑓(𝑢) ≤ 𝑓

+

(𝑢) for 𝑢 ∈ [0, 𝑏].
(4) Obviously,𝑓−(0) = 𝑓

+

(0) = 0. Since (𝑎+𝛼+𝛽)𝑓󸀠(0) >
1, it follows that (𝑎 + 𝛼 + 𝛽)𝑓

+

(𝑏) = 𝑏 and there exists 𝜅 > 0

such that (𝑎 + 𝛼 + 𝛽)𝑓
−

(𝜅) > 𝜅. By the assertion of part (2),
we have

(𝑎 + 𝛼 + 𝛽)𝑓
−

(𝐾) ≤ (𝑎 + 𝛼 + 𝛽)𝑓 (𝐾) = 𝐾. (28)

Thus, there exists an 𝑢∗
−
∈ (𝜅, 𝐾] such that

(𝑎 + 𝛼 + 𝛽)𝑓
−

(𝑢
∗

−
) = 𝑢
∗

−
, (𝑎 + 𝛼 + 𝛽)𝑓

−

(𝑢) > 𝑢

for any 𝑢 ∈ (0, 𝑢
∗

−
) .

(29)

On the other hand, since (𝑎 + 𝛼 + 𝛽)𝑓
󸀠

(0)𝑢 > 𝑢 and 𝑏 > 𝑢

for any 𝑢 ∈ (0, 𝑏), by the definition of 𝑓+(𝑢), we have (𝑎 + 𝛼 +
𝛽)𝑓
+

(𝑢) > 𝑢 for any 𝑢 ∈ (0, 𝑏). This completes the proof.

4. Existence of Traveling Wave Solutions

Now, applying the techniques developed in [26] to the
functions 𝑓−(𝑢) and 𝑓

+

(𝑢), we prove the main theorems in
the sequel.

4.1. TravelingWaves with (BC1) and (BC3). First, we consider
the existence of traveling wave solutions satisfying condition
(BC1). Once there exist traveling waves with (BC1), then we
can easily obtain that (5) admits traveling wave solutions
satisfying condition (BC3).

Let us define the operator 𝑇 : 𝐶(R, [0, 𝑏]) → 𝐶(R, [0, 𝑏])

by

𝑇 (𝜙) (𝜉) = 𝑒
−𝛾𝜉

∫

𝜉

−∞

𝑒
𝛾𝑦

𝐹 (𝜙) (𝑦) 𝑑𝑦, (30)
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where 𝛾 > −1/𝑐 > 0 is a constant and

𝐹 (𝜙) (𝜉) = (𝛾 +

1

𝑐

) 𝜙 (𝜉)

−

1

𝑐

𝑚

∑

𝑖=1

𝑎
𝑖
∫

𝜏

0

𝐽
𝑖
(𝑦) 𝑓 (𝜙 (𝜉 − 𝑖 + 𝑐𝑦)) 𝑑𝑦

−

𝛼

𝑐

∫

𝜏

0

𝐽
𝑚+1

(𝑦) 𝑓 (𝜙 (𝜉 + 𝑐𝑦)) 𝑑𝑦

−

1

𝑐

𝑙

∑

𝑗=1

𝛽
𝑗
∫

𝜏

0

𝐽
𝑚+1+𝑗

(𝑦) 𝑓 (𝜙 (𝜉 + 𝑗 + 𝑐𝑦)) 𝑑𝑦.

(31)

According to (F1) and 𝑐 < 0, 𝑇 is well defined. It is easy to see
that a fixed point 𝜙 of 𝑇 or a solution of the equation

𝜙 (𝜉) = 𝑇 (𝜙) (𝜉) , 𝜉 ∈ R, (32)

is a traveling wave solution of (5).
Let𝑇± be defined as in (30) with𝑓 replaced by𝑓±; that is,

𝑇
±

(𝜙) (𝜉) = 𝑒
−𝛾𝜉

∫

𝜉

−∞

𝑒
𝛾𝑦

𝐹
±

(𝜙) (𝑦) 𝑑𝑦, (33)

where

𝐹
±

(𝜙) (𝜉) = (𝛾 +

1

𝑐

) 𝜙 (𝜉)

−

1

𝑐

𝑚

∑

𝑖=1

𝑎
𝑖
∫

𝜏

0

𝐽
𝑖
(𝑦) 𝑓
±

(𝜙 (𝜉 − 𝑖 + 𝑐𝑦)) 𝑑𝑦

−

𝛼

𝑐

∫

𝜏

0

𝐽
𝑚+1

(𝑦) 𝑓
±

(𝜙 (𝜉 + 𝑐𝑦)) 𝑑𝑦

−

1

𝑐

𝑙

∑

𝑗=1

𝛽
𝑗
∫

𝜏

0

𝐽
𝑚+1+𝑗

(𝑦) 𝑓
±

(𝜙 (𝜉 + 𝑗 + 𝑐𝑦)) 𝑑𝑦.

(34)

According to Lemma 13, it is easily seen that 𝐹± and 𝑇
± are

nondecreasing on 𝐶(R, [0, 𝑏]) and

𝑇
−

(𝜙) ≤ 𝑇 (𝜙) ≤ 𝑇
+

(𝜙) , for 𝜙 ∈ 𝐶 (R, [0, 𝑏]) . (35)

Now we define the functions 𝜙+(𝜉) and 𝜙−(𝜉) by

𝜙
+

(𝜉) =: min {𝑏, 𝑒𝜆1𝜉} , 𝜙
−

(𝜉) =: min {𝑢∗
−
, 𝑒
𝜆
1
𝜉

}

for 𝜉 ∈ R.

(36)

Since 𝑢∗
−
≤ 𝑏, it is obvious that 𝜙−(𝜉) ≤ 𝜙

+

(𝜉). Similar to the
proof of Lemma 3.1 in [26], it is easily seen that the following
lemma holds.

Lemma 14. Assume that (F1)–(F3) hold. Then, for any 𝑐 < 𝑐
∗

1
,

𝑇
+

(𝜙
+

) (𝜉) ≤ 𝜙
+

(𝜉) , 𝑇
−

(𝜙
−

) (𝜉) ≤ 𝜙
−

(𝜉) , ∀𝜉 ∈ R.

(37)

Since 𝑓− is nondecreasing and satisfies the assumptions
illustrated in [26], then we obtain the following result.

Lemma 15. Assume that (F1)–(F3) hold. Then, for any 𝑐 < 𝑐
∗

1
,

there exists a fixed point 𝜙− of 𝑇− such that 𝑇−(𝜙−)(𝜉) = 𝜙
−

(𝜉)

and 𝜙−(𝜉) ≤ 𝜙
−

(𝜉) for all 𝜉 ∈ R. Moreover,

lim
𝜉→−∞

𝜙
−

(𝜉) 𝑒
−𝜆
1
𝜉

= 1, lim
𝜉→+∞

𝜙
−

(𝜉) = 𝑢
∗

−
. (38)

Proof. The proof is the same as that of Theorem 1.1 of [26],
and it is omitted.

By Lemmas 13–15 and (33), we easily verify that

𝜙
−

(𝜉) = 𝑇
−

(𝜙
−

) (𝜉) ≤ 𝑇
−

(𝜙
−

) (𝜉) ≤ 𝑇
+

(𝜙
−

) (𝜉)

≤ 𝑇
+

(𝜙
+

) (𝜉) ≤ 𝜙
+

(𝜉) .

(39)

For a given number 𝜆 > 0, let

𝑋
𝜆
:= {𝜙 ∈ 𝐶 (R,R) | sup

𝜉∈R

󵄨
󵄨
󵄨
󵄨
𝜙 (𝜉)

󵄨
󵄨
󵄨
󵄨
𝑒
−𝜆𝜉

< ∞} ,

󵄩
󵄩
󵄩
󵄩
𝜙
󵄩
󵄩
󵄩
󵄩𝑋
𝜆

= sup
𝜉∈R

󵄨
󵄨
󵄨
󵄨
𝜙 (𝜉)

󵄨
󵄨
󵄨
󵄨
𝑒
−𝜆𝜉

.

(40)

It is easy to see that (𝑋
𝜆
, ‖ ⋅ ‖
𝑋
𝜆

) is a Banach space. Then we
define the following set:

Γ := {𝜙 ∈ 𝑋
𝜆
| 𝜙
−

(𝜉) ≤ 𝜙 (𝜉) ≤ 𝜙
+

(𝜉) , for 𝜉 ∈ R} , (41)

where 𝜆 ∈ (0, 𝜆
1
). By (39) and the definitions of 𝜙−, 𝜙+, we

easily check that Γ is a nonempty closed convex subset of𝑋
𝜆
.

Thus, we have the following assertion.

Lemma 16. Assume that (F1)-(F2) hold. Then we have

(1) 𝑇(Γ) ⊂ Γ;

(2) 𝑇 : Γ → Γ is completely continuous with respect to the
norm ‖ ⋅ ‖

𝑋
𝜆

in𝑋
𝜆
.

Proof. (1) For 𝜙 ∈ Γ, by (39) and Lemmas 14–15, it follows that

𝜙
−

(𝜉) = 𝑇
−

(𝜙
−

) (𝜉) ≤ 𝑇
−

(𝜙) (𝜉) ≤ 𝑇 (𝜙) (𝜉)

≤ 𝑇
+

(𝜙) (𝜉) ≤ 𝑇
+

(𝜙
+

) (𝜉) ≤ 𝜙
+

(𝜉) ,

(42)

which implies that 𝑇(Γ) ⊂ Γ.
(2) For any 𝜙, 𝜓 ∈ Γ, it follows from (F1) that

󵄨
󵄨
󵄨
󵄨
𝐹 (𝜙) (𝜉) − 𝐹 (𝜓) (𝜉)

󵄨
󵄨
󵄨
󵄨

≤ (𝛾 +

1

𝑐

)
󵄨
󵄨
󵄨
󵄨
𝜙 (𝜉) − 𝜓 (𝜉)

󵄨
󵄨
󵄨
󵄨



Abstract and Applied Analysis 7

−

𝛼

𝑐

∫

𝜏

0

𝐽
𝑚+1

(𝑦)
󵄨
󵄨
󵄨
󵄨
𝑓 (𝜙 (𝜉 + 𝑐𝑦)) − 𝑓 (𝜓 (𝜉 + 𝑐𝑦))

󵄨
󵄨
󵄨
󵄨
𝑑𝑦

−

1

𝑐

𝑚

∑

𝑖=1

𝑎
𝑖
∫

𝜏

0

𝐽
𝑖
(𝑦)

×
󵄨
󵄨
󵄨
󵄨
𝑓 (𝜙 (𝜉 − 𝑖 + 𝑐𝑦)) − 𝑓 (𝜓 (𝜉 − 𝑖 + 𝑐𝑦))

󵄨
󵄨
󵄨
󵄨
𝑑𝑦

−

1

𝑐

𝑙

∑

𝑗=1

𝛽
𝑗
∫

𝜏

0

𝐽
𝑚+1+𝑗

(𝑦)

×
󵄨
󵄨
󵄨
󵄨
𝑓 (𝜙 (𝜉 + 𝑗 + 𝑐𝑦)) − 𝑓 (𝜓 (𝜉 + 𝑗 + 𝑐𝑦))

󵄨
󵄨
󵄨
󵄨
𝑑𝑦

≤ (𝛾 +

1

𝑐

)
󵄨
󵄨
󵄨
󵄨
𝜙 (𝜉) − 𝜓 (𝜉)

󵄨
󵄨
󵄨
󵄨

−

𝐿𝛼

𝑐

∫

𝜏

0

𝐽
𝑚+1

(𝑦)
󵄨
󵄨
󵄨
󵄨
𝜙 (𝜉 + 𝑐𝑦) − 𝜓 (𝜉 + 𝑐𝑦)

󵄨
󵄨
󵄨
󵄨
𝑑𝑦

−

𝐿

𝑐

𝑚

∑

𝑖=1

𝑎
𝑖
∫

𝜏

0

𝐽
𝑖
(𝑦)

󵄨
󵄨
󵄨
󵄨
𝜙 (𝜉 − 𝑖 + 𝑐𝑦) − 𝜓 (𝜉 − 𝑖 + 𝑐𝑦)

󵄨
󵄨
󵄨
󵄨
𝑑𝑦

−

𝐿

𝑐

𝑙

∑

𝑗=1

𝛽
𝑗
∫

𝜏

0

𝐽
𝑚+1+𝑗

(𝑦)

×
󵄨
󵄨
󵄨
󵄨
𝜙 (𝜉 + 𝑗 + 𝑐𝑦) − 𝜓 (𝜉 + 𝑗 + 𝑐𝑦)

󵄨
󵄨
󵄨
󵄨
𝑑𝑦.

(43)

Thus, we have

󵄩
󵄩
󵄩
󵄩
𝑇(𝜙) − 𝑇(𝜓)

󵄩
󵄩
󵄩
󵄩𝑋
𝜆

= sup
𝜉∈R

󵄨
󵄨
󵄨
󵄨
𝑇 (𝜙) (𝜉) − 𝑇 (𝜓) (𝜉)

󵄨
󵄨
󵄨
󵄨
𝑒
−𝜆𝜉

≤ sup
𝜉∈R

𝑒
−(𝛾+𝜆)𝜉

∫

𝜉

−∞

󵄨
󵄨
󵄨
󵄨
𝐹 (𝜙) (𝑠) − 𝐹 (𝜓) (𝑠)

󵄨
󵄨
󵄨
󵄨
𝑒
𝛾𝑠

𝑑𝑠

≤

1

𝜆 + 𝛾

[

[

𝛾 +

1

𝑐

−

𝐿

𝑐

𝑚

∑

𝑖=1

𝑎
𝑖
∫

𝜏

0

𝐽
𝑖
(𝑦) 𝑒
𝜆(𝑐𝑦−𝑖)

𝑑𝑦

−

𝐿𝛼

𝑐

∫

𝜏

0

𝐽
𝑚+1

(𝑦) 𝑒
𝑐𝜆𝑦

𝑑𝑦

−

𝐿

𝑐

𝑙

∑

𝑗=1

𝛽
𝑗
∫

𝜏

0

𝐽
𝑚+1+𝑗

(𝑦) 𝑒
𝜆(𝑐𝑦+𝑗)

𝑑𝑦
]

]

×
󵄩
󵄩
󵄩
󵄩
𝜙 − 𝜓

󵄩
󵄩
󵄩
󵄩𝑋
𝜆

,

(44)

which implies that 𝑇 : Γ → Γ is continuous. On the other
hand, for any 𝜙 ∈ Γ, 𝜉 ∈ R, we have 𝐹(𝜙)(𝜉) ≤ 𝛾𝑏, and

󵄨
󵄨
󵄨
󵄨
𝑇 (𝜙) (𝜉

1
) − 𝑇 (𝜙) (𝜉

2
)
󵄨
󵄨
󵄨
󵄨

≤ 𝛾𝑏 [𝑒
−𝛾𝜉
1
∫

𝜉
1

−∞

𝑒
𝛾𝑠

𝑑𝑠 − 𝑒
−𝛾𝜉
2
∫

𝜉
2

−∞

𝑒
𝛾𝑠

𝑑𝑠]

≤ 𝛾𝑏 [𝑒
−𝛾𝜉
1
∫

𝜉
1

𝜉
2

𝑒
𝛾𝑠

𝑑𝑠 +

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
−𝛾𝜉
2
− 𝑒
−𝛾𝜉
1

󵄨
󵄨
󵄨
󵄨
󵄨
∫

𝜉
2

−∞

𝑒
𝛾𝑠

𝑑𝑠]

= 2𝑏 [1 − 𝑒
−𝛾(𝜉
1
−𝜉
2
)

]

(45)

for 𝜉
1
≥ 𝜉
2
, 𝜉
1
, 𝜉
2
∈ R. Since lim

𝜉→0
(1 − 𝑒

−𝛾𝜉

) = 0, it
follows that the family of functions {𝑇(𝜙)(𝜉) : 𝜙 ∈ Γ} is
uniformly bounded and equicontinuous in 𝜉 ∈ R. Thus,
by Arzela-Ascoli theorem, for any given sequence {𝜓

𝑛
}
𝑛∈N+

in 𝑇(Γ), there exist 𝑛
𝑘

→ ∞ and 𝜓 ∈ 𝐶(R,R) such that
lim
𝑘→∞

𝜓
𝑛
𝑘

(𝜉) = 𝜓(𝜉) uniformly for 𝜉 in any compact subset
of R. Since 𝜙−(𝜉) ≤ 𝜓

𝑛
𝑘

(𝜉) ≤ 𝜙
+

(𝜉) for any 𝜉 ∈ R, we have
𝜙
−

(𝜉) ≤ 𝜓(𝜉) ≤ 𝜙
+

(𝜉) for any 𝜉 ∈ R, and therefore 𝜓(𝜉) ∈ Γ.
Next, we claim that

lim
𝜉→±∞

(𝜙
+

(𝜉) − 𝜙
−

(𝜉)) 𝑒
−𝜆𝜉

= 0. (46)

In fact, since lim
𝜉→+∞

𝜙
+

(𝜉) = 𝑏 and lim
𝜉→+∞

𝜙
−

(𝜉) = 𝑢
−

∗
,

we have

lim
𝜉→+∞

(𝜙
+

(𝜉) − 𝜙
−

(𝜉)) 𝑒
−𝜆𝜉

= lim
𝜉→+∞

𝜙
+

(𝜉) 𝑒
−𝜆𝜉

− lim
𝜉→+∞

𝜙
−

(𝜉) 𝑒
−𝜆𝜉

= 0.

(47)

Since lim
𝜉→−∞

𝜙
−

(𝜉)𝑒
−𝜆
1
𝜉

= 1 and 0 < 𝜆 < 𝜆
1
, it follows that

lim
𝜉→−∞

(𝜙
+

(𝜉) − 𝜙
−

(𝜉)) 𝑒
−𝜆𝜉

= lim
𝜉→−∞

𝑒
(𝜆
1
−𝜆)𝜉

− lim
𝜉→−∞

𝜙
−

(𝜉) 𝑒
−𝜆
1
𝜉

𝑒
(𝜆
1
−𝜆)𝜉

= 0.

(48)

Thus, it is easy to see that 𝑇 : Γ → Γ is compact with respect
to the norm ‖ ⋅ ‖

𝑋
𝜆

in𝑋
𝜆
. The proof is complete.

Now we start the proofs of Theorems 3 and 5.

Proof of Theorem 3. (1) By Lemma 3.4, Schauder’s fixed point
theorem implies that there exists 𝜙 ∈ Γ such that 𝜙 = 𝑇(𝜙).
Since

0 ≤ 𝜙
−

(𝜉) ≤ 𝜙 (𝜉) ≤ 𝜙
+

(𝜉) ≤ 𝑏 for 𝜉 ∈ R, (49)

we can easily obtain that, for 𝑐 < 𝑐
∗

1
,

lim
𝜉→−∞

𝜙 (𝜉) = 0,

lim
𝜉→−∞

𝜙 (𝜉) 𝑒
−𝜆
1
𝜉

= 1,

lim
𝜉→−∞

𝜙
󸀠

(𝜉) 𝑒
−𝜆
1
𝜉

= 𝜆
1
.

(50)

Moreover, we have

𝑢
∗

−
= lim
𝜉→+∞

𝜙
−

(𝜉) ≤ lim inf
𝜉→+∞

𝜙 (𝜉) := 𝑙
1
≤ lim sup
𝜉→+∞

𝜙 (𝜉)

:= 𝑙
2
≤ lim
𝜉→+∞

𝜙
+

(𝜉) = 𝑏.

(51)



8 Abstract and Applied Analysis

Next, we prove that

𝑙
1
= 𝑙
2
= 𝐾 or 𝑢

∗

−
≤ 𝑙
1
< 𝐾 < 𝑙

2
≤ 𝑏. (52)

In fact, if 𝑙
1
= 𝑙
2
, then lim

𝜉→+∞
𝜙(𝜉) = 𝑙

1
exists. Taking 𝜉 →

+∞ and applying L’Hospital’s rule to (32), we can obtain (𝑎 +
𝛼 + 𝛽)𝑓(𝑙

1
) = 𝑙
1
which yields 𝑙

1
= 𝑙
2
= 𝐾.

Now let us consider 𝑙
1
< 𝑙
2
. Since it is impossible that 𝜙(𝜉)

is eventually monotone, 𝜙(𝜉) is oscillating on positive infinity
and then there exist two sequences {𝜁

𝑛
}
𝑛∈N with 𝜁

𝑛
→ ∞ as

𝑛 → ∞ and {𝜉
𝑘
}
𝑘∈N with 𝜉

𝑘
→ ∞ as 𝑘 → ∞ such that

𝜙 (𝜁
𝑛
) 󳨀→ 𝑙

1
, 𝜙
󸀠

(𝜁
𝑛
) 󳨀→ 0 as 𝑛 󳨀→ ∞,

𝜙 (𝜉
𝑘
) 󳨀→ 𝑙

2
, 𝜙
󸀠

(𝜉
𝑘
) 󳨀→ 0 as 𝑘 󳨀→ ∞.

(53)

Since 𝑓 is continuous, for 𝜖 > 0, there exists a 𝛿 > 0 such that

max {𝑓 (𝑢) | 𝑢 ∈ [𝑙
1
− 𝛿, 𝑙
2
+ 𝛿]}

< max {𝑓 (𝑢) | 𝑢 ∈ [𝑙
1
, 𝑙
2
]} + 𝜖.

(54)

For such a 𝛿 > 0, there exists a large enough number𝑀 > 0

such that

𝜙 (𝜉) ∈ [𝑙
1
− 𝛿, 𝑙
2
+ 𝛿] , ∀𝜉 ≥ 𝑀. (55)

If 𝜏 < +∞, we choose a large enough integer𝑁
1
> 0 such that

𝜉
𝑘
> 𝑀 + 𝑚 − 𝑐𝜏 for all 𝑘 > 𝑁

1
. Thus, for 𝜉

𝑘
> 𝑀 + 𝑚 − 𝑐𝜏,

we have

−𝑐𝜙
󸀠

(𝜉
𝑘
) + 𝜙 (𝜉

𝑘
) =

𝑚

∑

𝑖=1

𝑎
𝑖
∫

𝜏

0

𝐽
𝑖
(𝑦) 𝑓 (𝜙 (𝜉

𝑘
− 𝑖 + 𝑐𝑦)) 𝑑𝑦

+ 𝛼∫

𝜏

0

𝐽
𝑚+1

(𝑦) 𝑓 (𝜙 (𝜉
𝑘
+ 𝑐𝑦)) 𝑑𝑦

+

𝑙

∑

𝑗=1

𝛽
𝑗
∫

𝜏

0

𝐽
𝑚+1+𝑗

(𝑦)

× 𝑓 (𝜙 (𝜉
𝑘
+ 𝑗 + 𝑐𝑦)) 𝑑𝑦

≤ (

𝑚

∑

𝑖=1

𝑎
𝑖
+ 𝛼 +

𝑙

∑

𝑗=1

𝛽
𝑗
)

×max {𝑓 (𝑢) | 𝑢 ∈ [𝑙
1
− 𝛿, 𝑙
2
+ 𝛿]}

< (𝑎 + 𝛼 + 𝛽)

×max {𝑓 (𝑢) | 𝑢 ∈ [𝑙
1
, 𝑙
2
]} + 𝜖.

(56)

If 𝜏 = +∞, for the above 𝜖 > 0, there exists a sufficiently large
number𝑀

1
> 0 such that

𝑚

∑

𝑖=1

𝑎
𝑖
∫

+∞

𝑀
1

𝐽
𝑖
(𝑦) 𝑓 (𝜙 (𝜉

𝑘
− 𝑖 + 𝑐𝑦)) 𝑑𝑦 < 𝜖,

𝛼∫

+∞

𝑀
1

𝐽
𝑚+1

(𝑦) 𝑓 (𝜙 (𝜉
𝑘
+ 𝑐𝑦)) 𝑑𝑦 < 𝜖,

𝑙

∑

𝑗=1

𝛽
𝑗
∫

+∞

𝑀
1

𝐽
𝑚+1+𝑗

(𝑦) 𝑓 (𝜙 (𝜉
𝑘
+ 𝑗 + 𝑐𝑦)) 𝑑𝑦 < 𝜖.

(57)

Now let us choose a large enough integer 𝑁
2
> 0 such that

𝜉
𝑘
> 𝑀 + 𝑚 − 𝑐𝑀

1
for all 𝑘 > 𝑁

2
. Therefore, for 𝜉

𝑘
> 𝑀 +

𝑚 − 𝑐𝑀
1
, we have

−𝑐𝜙
󸀠

(𝜉
𝑘
) + 𝜙 (𝜉

𝑘
) =

𝑚

∑

𝑖=1

𝑎
𝑖
∫

𝜏

0

𝐽
𝑖
(𝑦) 𝑓 (𝜙 (𝜉

𝑘
− 𝑖 + 𝑐𝑦)) 𝑑𝑦

+ 𝛼∫

𝜏

0

𝐽
𝑚+1

(𝑦) 𝑓 (𝜙 (𝜉
𝑘
+ 𝑐𝑦)) 𝑑𝑦

+

𝑙

∑

𝑗=1

𝛽
𝑗
∫

𝜏

0

𝐽
𝑚+1+𝑗

(𝑦)

× 𝑓 (𝜙 (𝜉
𝑘
+ 𝑗 + 𝑐𝑦)) 𝑑𝑦

< 3𝜖 + (

𝑚

∑

𝑖=1

𝑎
𝑖
+ 𝛼 +

𝑙

∑

𝑗=1

𝛽
𝑗
)

×max {𝑓 (𝑢) | 𝑢 ∈ [𝑙
1
− 𝛿, 𝑙
2
+ 𝛿]}

< (𝑎 + 𝛼 + 𝛽)

×max {𝑓 (𝑢) | 𝑢 ∈ [𝑙
1
, 𝑙
2
]} + 4𝜖.

(58)

According to the above argument and taking the limit as
𝑘 → +∞, we obtain

𝑙
2
≤ (𝑎 + 𝛼 + 𝛽)max {𝑓 (𝑢) | 𝑢 ∈ [𝑙

1
, 𝑙
2
]} + 𝜖. (59)

Since 𝜖 is arbitrary, it follows that

𝑙
2
≤ (𝑎 + 𝛼 + 𝛽)max {𝑓 (𝑢) | 𝑢 ∈ [𝑙

1
, 𝑙
2
]} . (60)

Similarly, we can obtain

𝑙
1
≥ (𝑎 + 𝛼 + 𝛽)min {𝑓 (𝑢) | 𝑢 ∈ [𝑙

1
, 𝑙
2
]} . (61)

If 𝑙
1
< 𝑙
2
≤ 𝐾, then (61) and (F2) imply that

𝑙
1
≥ (𝑎 + 𝛼 + 𝛽)min {𝑓 (𝑢) | 𝑙

1
≤ 𝑢 ≤ 𝑙

2
} > 𝑙
1
, (62)

which leads to a contradiction. On the other hand, if𝐾 ≤ 𝑙
1
<

𝑙
2
, then (60) and (F2) also imply that

𝑙
2
≤ (𝑎 + 𝛼 + 𝛽)max {𝑓 (𝑢) | 𝑙

1
≤ 𝑢 ≤ 𝑙

2
} < 𝑙
2
, (63)

which also gives a contradiction. Hence we conclude that 𝑙
1
<

𝐾 < 𝑙
2
.

If, in addition, (F4) holds, then we claim that
lim
𝜉→+∞

𝜙(𝜉) = 𝐾. Suppose the claim is false; that is,
𝑙
1
< 𝑙
2
. Let 𝑘

1
, 𝑘
2
∈ [𝑙
1
, 𝑙
2
] such that

𝑓 (𝑘
1
) = max {𝑓 (𝑢) | 𝑙

1
≤ 𝑢 ≤ 𝑙

2
} ,

𝑓 (𝑘
2
) = min {𝑓 (𝑢) | 𝑙

1
≤ 𝑢 ≤ 𝑙

2
} .

(64)

Then we consider the following three cases.

Case 1.𝐾 ≤ 𝑘
1
≤ 𝑙
2
.

If 𝑘
1
= 𝑙
2
, according to (60), we have 𝑙

2
≤ (𝑎 + 𝛼 + 𝛽)𝑓(𝑙

2
)

since 𝑙
2
> 𝐾. Therefore 𝑘

1
< 𝑙
2
. Then, according to (60) and
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𝑘
1
≥ 𝐾, we have 𝑙

2
≤ (𝑎 + 𝛼 + 𝛽)𝑓(𝑘

1
) ≤ 𝑘
1
< 𝑙
2
, which leads

to a contradiction.

Case 2. 𝑙
1
≤ 𝑘
2
≤ 𝐾.

Similar to the discussion of Case 1, the case cannot
happen.

Case 3. 𝑘
1
< 𝐾 < 𝑘

2
.

By (60)-(61) and (F4), it follows that

𝑙
2
− 𝑙
1
≤ (𝑎 + 𝛼 + 𝛽)𝑓 (𝑘

1
) − (𝑎 + 𝛼 + 𝛽)𝑓 (𝑘

2
)

< (2𝐾 − 𝑘
1
) − (2𝐾 − 𝑘

2
) = 𝑘
2
− 𝑘
1
,

(65)

which is impossible.
Thus, 𝑙

1
= 𝑙
2
; that is, the limit lim

𝜉→+∞
𝜙(𝜉) = 𝑙

1
∈ [𝑢
∗

−
, 𝑏]

exists. Taking 𝜉 → +∞ and applying L’Hospital’s rule to (32),
we obtain that 𝑙

1
= 𝑙
2
= 𝐾. Hence, the assertion of part (i)

follows.
(2) Since 𝑓 is an odd function, letting 𝜓 = −𝜙, then (13)

reduces to

−𝑐𝜓
󸀠

(𝜉) = −𝜓 (𝜉) +

𝑚

∑

𝑖=1

𝑎
𝑖
∫

𝜏

0

𝐽
𝑖
(𝑦) 𝑓 (𝜓 (𝜉 − 𝑖 + 𝑐𝑦)) 𝑑𝑦

+ 𝛼∫

𝜏

0

𝐽
𝑚+1

(𝑦) 𝑓 (𝜓 (𝜉 + 𝑐𝑦)) 𝑑𝑦

+

𝑙

∑

𝑗=1

𝛽
𝑗
∫

𝜏

0

𝐽
𝑚+1+𝑗

(𝑦) 𝑓 (𝜓 (𝜉 + 𝑗 + 𝑐𝑦)) 𝑑𝑦.

(66)

It is easy to check that (66) has the same form as (13) and
hence we can obtain the result of part (ii). The proof is
complete.

Proof of Theorem 5. Let us assume that 𝛽 = 0 and (𝑎 +

𝛼)𝑓
󸀠

(0) > 1. Similar to the definitions of (36), for any 𝑐 < 0,
we define the continuous functions as follows:

𝜙
+

(𝜉) =: min {𝑏, 𝑒𝜆3𝜉} , 𝜙
−

(𝜉) =: min {𝑢∗
−
, 𝑒
𝜆
3
𝜉

}

for 𝜉 ∈ R,

(67)

where 𝜆
3
is defined in Lemma 11. Similar to the proofs of

Lemmas 14–16, it is easily seen that 𝑇(Γ) ⊂ Γ and 𝑇 : Γ → Γ

is compact with respect to the norm ‖ ⋅ ‖
𝑋
𝜆

in 𝑋
𝜆
, where 𝜆 ∈

(0, 𝜆
3
). Hence, by the same arguments as those of the proof of

Theorem 3, we can obtain the assertions of the theorem.This
completes the proof.

4.2. Traveling Waves with (BC2) and (BC4). By arguments
similar to those of the proof of Theorem 3, in this section
we show the existence of traveling wave solutions satisfying
conditions (BC2) and (BC4).

For 𝛾 > 1/𝑐 > 0, we define the operator 𝑇 :

𝐶(R, [0, 𝑏]) → 𝐶(R, [0, 𝑏]) by

𝑇 (𝜙) (𝜉) = −𝑒
𝛾𝜉

∫

∞

𝜉

𝑒
−𝛾𝑦

𝐻(𝜙) (𝑦) 𝑑𝑦, (68)

where

𝐻(𝜙) (𝜉) = (

1

𝑐

− 𝛾) 𝜙 (𝜉)

−

1

𝑐

𝑚

∑

𝑖=1

𝑎
𝑖
∫

𝜏

0

𝐽
𝑖
(𝑦) 𝑓 (𝜙 (𝜉 − 𝑖 + 𝑐𝑦)) 𝑑𝑦

−

𝛼

𝑐

∫

𝜏

0

𝐽
𝑚+1

(𝑦) 𝑓 (𝜙 (𝜉 + 𝑐𝑦)) 𝑑𝑦

−

1

𝑐

𝑙

∑

𝑗=1

∫

𝜏

0

𝐽
𝑚+1+𝑗

(𝑦) 𝑓 (𝜙 (𝜉 + 𝑗 + 𝑐𝑦)) 𝑑𝑦.

(69)

According to (F1) and (J), 𝑇 is well defined. It is obvious that
a fixed point 𝜙 of 𝑇 is a traveling wave solution of (5). Similar
to (33), we may define 𝑇

±

through 𝑓± in the same way.
First, we consider 𝑎 > 0 and (𝑎+𝛼)𝑓󸀠(0) > 1. Let us define

the continuous functions 𝑤±(𝜉) by

𝑤
+

(𝜉) := min {𝑏, 𝑒𝜆2𝜉} , 𝑤
−

(𝜉) := min {𝑢∗
−
, 𝑒
𝜆
2
𝜉

} ,

𝜉 ∈ R.

(70)

Since 𝑓
− is nondecreasing and satisfies the assumptions

illustrated in [26], similar to Theorem 1.2 of [26], we can
obtain the following results.

Lemma 17. Assume that (F1)–(F3) hold. Then, for any 𝑐 > 𝑐
∗

2
,

one has

𝑇

+

(𝑤
+

) (𝜉) ≤ 𝑤
+

(𝜉) , 𝑇

−

(𝑤
−

) (𝜉) ≤ 𝑤
−

(𝜉) ∀𝜉 ∈ R.

(71)

Lemma 18. Assume that (F1)–(F3) hold. Then, for any 𝑐 > 𝑐
∗

2
,

there exists a fixed point𝑤− of𝑇
−

such that𝑇
−

(𝑤
−

)(𝜉) = 𝑤
−

(𝜉)

and 𝑤−(𝜉) ≤ 𝑤
−

(𝜉) for all 𝜉 ∈ R. Moreover,

lim
𝜉→+∞

𝑤
−

(𝜉) 𝑒
−𝜆
2
𝜉

= 1, lim
𝜉→−∞

𝑤
−

(𝜉) = 𝑢
∗

−
. (72)

Now, fixing a number 𝜆 ∈ (𝜆
2
, 0), we define the set Γ by

Γ := {𝜙 ∈ 𝑋
𝜆
| 𝑤
−

(𝜉) ≤ 𝜙 (𝜉) ≤ 𝑤
+

(𝜉) , for 𝜉 ∈ R} . (73)

It is easy to see that Γ is a nonempty, closed, and convex
subset of 𝑋

𝜆
. Similar to the proof of Lemma 16, we have the

following lemma.

Lemma 19. Assume 𝑎 > 0 and (𝑎+𝛼)𝑓󸀠(0) > 1. The following
assertions hold.

(1) 𝑇(Γ) ⊂ Γ;
(2) 𝑇 : Γ → Γ is compact with respect to the norm ‖ ⋅ ‖

𝑋
𝜆

in𝑋
𝜆
.

Now we start the proofs of Theorems 4 and 6.
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Proof of Theorem 4. According to Lemma 19 and Schauder’s
fixed point theorem, there exists 𝜙 ∈ Γ such that 𝜙 = 𝑇(𝜙).
Since 0 ≤ 𝑤

−

(𝜉) ≤ 𝜙(𝜉) ≤ 𝑤
+

(𝜉) ≤ 𝑏 for 𝜉 ∈ R and 𝜆
2
< 0,

we can easily obtain that, for 𝑐 > 𝑐
∗

2
,

lim
𝜉→+∞

𝜙 (𝜉) = 0,

lim
𝜉→+∞

𝜙 (𝜉) 𝑒
−𝜆
2
𝜉

= 1,

lim
𝜉→+∞

𝜙
󸀠

(𝜉) 𝑒
−𝜆
2
𝜉

= 𝜆
2
.

(74)

By the same arguments as those of the proof of Theorem 3,
we obtain the assertions of the theorem. This completes the
proof.

Next, we consider the case 𝑎 = 0 and (𝛼 + 𝛽)𝑓
󸀠

(0) > 1.
For any 𝑐 > 0, let us redefine the continuous functions 𝑤±(𝜉)
by

𝑤
+

(𝜉) := min {𝑏, 𝑒𝜆4𝜉} , 𝑤
−

(𝜉) := min {𝑢∗
−
, 𝑒
𝜆
4
𝜉

} ,

𝜉 ∈ R.

(75)

Then, similar to that of Theorem 5, we obtain the conclusion
of Theorem 6.

5. Conclusion

In this paper, the motivation of our work is to consider
the existence of traveling wave solutions for DCNN model
with nonmonotonic output functions. We have developed
a technique to construct two appropriate nondecreasing
functions to squeeze the nonmonotonic output functions.
By adopting Schauder’s fixed point theorem, the existence of
traveling wave solutions has been derived.
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