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Information plays an important role in modern society. In this paper, we presented a mathematical model of information spreading
with isolation. It was found that such a model has rich dynamics including Hopf bifurcation. The results showed that, for a wide
range of parameters, there is a bistable phenomenon in the process of information spreading and thus the information cannot
be well controlled. Moreover, the model has a limit cycle which implies that the information exhibits periodic outbreak which is

consistent with the observations in the real world.

1. Introduction

In recent years, information plays a more and more important
role in the real world. For a decision maker, if he does not have
reasonable information, he will make a wrong decision which
may cause bad consequences. However, long time series of
information are hard to obtain and thus it may provide
useful information by constructing mathematical models. As
a result, modeling the process of information spreading has
been one of the central themes in the field of science [1, 2].

Information can be divided into many types. For some
useful information such as advanced culture and useful
knowledge, it is encouraged to develop both widely and
deeply. However, there is also some bad information and the
typical one is rumor [3-8]. Rumor is a social phenomenon
accompanying the development of society which may bring
some corrosive social effects. For example, in 2007, some
people circulated false news that the bananas from Hainan
were toxic which caused huge economic loss [9]. In this
sense, we need to isolate some information by taking control
measures.

There is some work on information spreading by using
mathematical models. Based on SIS models, Leskovec et al.
presented a cascading information model and found how
blogs behaved and how information propagated through
the blogosphere [10]. Gruhl et al. posed a SIRS model to

calculate the spread rate of information between nodes [11].
Narayanam and Narahari proposed a linear threshold model
to describe information spreading [12]. Moreover, some
scholars used dynamical models [13] and statistical analysis
[14] to investigate the propagation of information.

In this paper, we aim to present a mathematical model
to describe the information spreading with isolation. What
is more, we want to reveal its dynamical behavior by both
mathematical analysis and numerical results. The paper is
organized as follows. In Section 2, we construct an infor-
mation spreading model by using three ordinary differential
equations (ODES). In Section 3, we show that this model
has rich dynamics. Finally, conclusions and discussions are
presented in Section 4.

2. A Mathematical Model

To well describe the model, we firstly give four main assump-
tions, which are as follows.

(i) There are three kinds of individuals: the population
who has no information (X), the population who has
information (Y), and the population who is isolated
(Z) by isolation.

(ii) There are birth and death events and all the newborn
has no information.
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FIGURE 1: Plot of g(Y) as a function of Y witha = 2 and b = 1 (color
online).

(iii) The spread rate of information is

aYy
g¥)= (1+—bY)’ o

which has a saturation effect (cf. Figure 1).

(iv) Since information spreading has stages, isolation term
may have different forms at different stages of infor-
mation spreading. We choose isolation term having
the following form:

q+6Y
I(Y)=——=-Y. 2
Y) 11y (2)

For the small number of Y, I(Y) — ¢YandI(Y) — oY
for large number of Y.

On the basis of the above assumptions, we have the
following model:

dx
E:A—dX—g(Y)X, (3a)
%:g(Y)X—dY—I(Y), (3b)
az
k! (Y)-dz, (30)

where A is the birth rate of the population and d is the natural
death rate of the population. Since the first two equations
in (3a), (3b), and (3c) are independent of the variable Z, it
suffices to consider the following reduced model:

dx aXY

—_— = - - = 4

dt A-dX 1+bY hy (X.Y), (4a)
v _ XV gy ara¥ly oy oxy). @)

dt  1+by 1+Y
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3. Dynamical Behaviors

The first step in analyzing the model (4a) and (4b) is to deter-
mine equilibria points by solving the following equations:

aXY
A-dX - =0, 5a
1+bYy (5)
Y
axXy _gy-ately o (5b)
1+bY 1+Y

System (4a) and (4b) always has an equilibrium E, =
(A/d,0) corresponding to the case that there is no informa-
tion. The Jacobian matrix of the linearization of system (4a)
and (4Db) at this equilibrium is [15]

a4 A
= 4 9 , (6)
0 a— - (d+¢q)

which has negative eigenvalues, implying the asymptotic
stability of this equilibrium if and only if

Aa<d(d+q). (7)
Denote
Aa
Si=——.
1T d(d+q) ®)
If S; < 1, then there is no information; otherwise the

information will spread.

In order to obtain positive solutions of (5a) and (5b), we
eliminate X using the first equation of (5a) and (5b) and
substitute it into the second equation to give an equation of
the form

PY*+PY +P, =0, ©)
where

P, = bd* + bdc, + ad + ac,,
P, = bde, +bd® +ad +d”* + ac, - Aa+dc,,  (10)
P, =d* +dc, - Aa.

It should be noted that P; > 0 (< 0 or = 0) if and only
if S, > 1 (< 1or = 1). That is to say, there is a unique
nonzero solution of (9) denoted as Y = —P,/P, if §; = 1
and it is positive if and only if P, < 0. Since equilibria depend
continuously on S;, there is an interval to the left of S; = 1 on
which there are two positive equilibria and

— 2 _
P, + [P 4 "

Y =
1.2 2P,

As aresult, we can conclude that system (4a) and (4b) has
a backward bifurcation at §; = 1 if and only if P, < 0 [16, 17].

We can also give an explicit criterion of ¢, in terms of
other parameters for the existence of a backward bifurcation
at S, = 1 equals d* + dc, = Aa. P, < 0 implies that

bdc, + bd* +ad + d* + ac, +dc, < Aa, (12)
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and thus
bde, +bd”* +ad + d* + ac, +dc, < d* +dc;,,  (13)
which equals

2
6 < de, — bde —l:ld —-ad - ac, s, (14)

If (14) is satisfied, there is a backward bifurcation at §; =
1. Then, there are two positive equilibria for an interval of
values of S from a value S, to S; = 1. To calculate S,, we use
P22 — 4P, P; = 0 to get a quadratic equation of parameter A,
which has the following form:

a’A’
+2Aa (bd2 +2bdc, + ad + 2ac, - bdc, - d* - ac, - doz)

+ (—dcz +bdc, — d* +ad + ac, + bd2)2 =0.
(15)
Note that P, < 0 and S; < 1, which equals

bdc, + bd* + ad + d* + ac, + dc, e d(d+c1).
a a

(16)

In that case, we have that

A, = <d2 —ad - 2ac, + ac, — bd” + dc, — 2bdc,

+bde, +24/(a—d +bd) (a+bd) (d + ;) e, - cl))

-1

X a
17)
As a result, the expression of S,
A
S =——7——.
2T d(d+q) (18)

We fixd = 0.1, a = 0.001, b = 0.0l,¢ = 1, and
¢, = 0.5 and show that system (4a) and (4b) has a backward
bifurcation in Figure 2.

In the following, we discuss the case when §; < 1. If
system (4a) and (4b) has a positive solution, the following
condition must be satisfied:

P,<0, Ax0. (19)

Note that P, < 0 equals bdc, + bd* + ad + d* + ac, + dc, <
Aa. And S, < 1equals Aa < d(d + ¢;). As a result, we have
bdc, + bd* + ad + d* + ac, + dc, < d(d + ¢;) which leads to
a+bd<d.

The discussions above yield the following results.

(I) For the case ¢; < ¢, E is always a boundary equilib-
rium of system (4a) and (4b) and E* is the unique positive
equilibria of system (4a) and (4b) if and only if §; > 1.

(II) For the case ¢, > ¢, E is always a boundary equi-
librium of system (4a) and (4b) and system (4a) and (4b)

FIGURE 2: The sizes of population Y at equilibria versus S; with d =
0.1,a =0.001,b =0.01,¢ =1,and ¢, = 0.5 (color online).

has a unique positive equilibrium if §; > 1. Furthermore,
system (4a) and (4b) has two positive equilibria E; and E,
itS, <§, <landa+bd <d.

In the following, we aim to investigate the global stability
of the equilibrium by considering two cases: (i) ¢, < ¢, and
(ii) ¢ > ¢,

For the first case, we can obtain the Jacobian matrix of
system (4a) and (4b) at equilibrium (X, Y) is

q- X
. 1+bY (1+bY)?
B aYy aX . aq+2Y+ oY?
1+bY  (1+bY) (1+Y)?

(20)

By direct calculations, we can easily obtain det J(E;) = —Aa+
dd+c¢) > 0,trJ(E;) = aA/d —2d — ¢, < 0if S, < 1. And
hence all the eigenvalues of characteristic equation of E, have
negative real parts, which means that the equilibrium E is
locally asymptotically stable.

Let

Q={(X,Y)|X,Y20,X+Ys§}. (21)

By (4a) and (4b), we have

dx dy
- o 22
-5, =A4>0, s, =0 (22)

Denote N, (t) = X(t) + Y(t); then

dN
—dtl INy=asa < A= ANy |yaza = 0. (23)

Hence, Q is a positively invariant set of (4a) and (4b)
and attracts all the positive orbits of (4a) and (4b) state
in R;, which means that the equilibrium E; is globally
asymptotically stable if §; < 1.

It is easy to obtain that E* is locally stable when S; > 1.
Then, we use Dulac theorem to exclude the limit cycle [18].

Take the Dulac function

1
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FIGURE 3: Phase plane of X — Y with A = 9,d = 0.1,a = 0.001,
b =0.01,¢ =0.1,and ¢, = 0.5 (color online).

Then, we have

d(h,D) . o(hD) A ab
0X o

_ -9 <0
XY (1+Y)? X1A+Y)?
(25)

which means that system (4a) and (4b) has no limit cycles and
the positive equilibrium is globally asymptotically stable.
As a result, we have the following conclusions.

(i) The equilibrium E,, is globally asymptotically stable if
S; < 1 and unstable if §; > 1.

(ii) When S; > 1, the unique endemic equilibrium is
globally asymptotically stable.

In Figure 3, we fixed A = 9,d = 0.1, a = 0.001, b = 0.01,
¢ = 0.1, and ¢, = 0.5 which satisfies S; < 1. It can be found
from this figure that E,, is globally asymptotically stable.

In Figure 4, we fixed A = 90,d = 0.1, a = 0.001, b =
0.01, ¢, = 0.1, and ¢, = 0.5 which satisfies S; > 1. It can be
found from this figure that E, is not stable and the unique
endemic equilibrium is globally asymptotically stable.

For the second case ¢; > ¢,, we need to discuss three
situations:

@S, <S8y
(I S, =8y
(I S, < § < 1
v) s, > 1.
Since dynamical behaviors of system (4a) and (4b) in
situation (I) are simple, we will investigate the later three
cases.

If S, = S,, system (4a) and (4b) has a unique positive
equilibrium E (X, Y,), where

_ El C1+(2Yc
X, = [a+—a(1+YC)](l+bYc),
(26)

Y __bdcl+bd2+ad+d2+acl—Aa+dc2
< 2 (bd? + bdc, + ad + ac,) '

Abstract and Applied Analysis

W

=,

700 750 800 850 900 950
X

FIGURE 4: Phase plane of X — Y with A = 90,d = 0.1, a = 0.001,
b =0.01,¢ =0.1,and ¢, = 0.5 (color online).
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FIGURE 5: Phase plane of X — Y with A = 80,d = 0.1, a = 0.001,
b =0.01,¢ =1,and ¢, = 0.5 (color online).

By calculations, one can find that det ]EC = tr ]Ec =0,
which means that Jacobian matrix has a zero eigenvalue with
multiplicity 2. In other words, the positive equilibrium E_ of
system (4a) and (4b) is a cusp of codimension 2 [19].

IfS, < §; < 1,then system (4a) and (4b) exhibits multiple
positive equilibria. In such a case, it has been shown that a
stable positive equilibrium coexists with the stable boundary
equilibrium (E,), which is named as bistable phenomenon.

In Figure 5, we fixed A = 80,d = 0.1,a = 0.001, b = 0.01,
¢, = 1,and ¢, = 0.5 which satisfies S, < S; < 1. We can
see from this figure that E, and E, are stable. In this case, the
information cannot be well controlled.

We assume that §; > 1. If tr(J) < 0, then the positive
equilibrium E, of system (4a) and (4b) is a stable node or
focus; if tr(J) > 0, then E, is unstable and system (4a) and
(4b) has at least one limit cycle; if tr(J) = 0, then E, is a center.

In Figure 6, we fixed A = 150,d = 0.1,a = 0.001, b =
0.01, ¢; = 1, and ¢, = 0.5 which satisfies S; > 1. We can see
from this figure that E, is unstable and system (4a) and (4b)
has a stable limit cycle in which Hopf bifurcation occurs in
system (4a) and (4b). These results show that the information
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FIGURE 6: Phase plane of X — Y with A = 150,d = 0.1, a = 0.001,
b =0.01,¢ =1,and ¢, = 0.5 (color online).

exhibits periodic outbreak which is consistent with the real
data [20].

4. Discussion and Conclusion

Information has a great effect on social network, which is a
double-edged sword. In this paper, we investigated an infor-
mation spreading model with isolation. For the dynamical
model, we obtained the global stability of the equilibria and
bifurcation behaviors, based on both mathematical analysis
and numerical results. In a word, information spreading
model can have rich dynamics which may provide some new
insights for policy decisions on information.

It should be noted that our results are based on the
assumption of a homogeneously mixing population. That is
to say, we assume that contacts between different individuals
are in the same form. This assumption ignores individual
differences and thus is not reasonable [21-24]. As a result, we
need to investigate the information spreading model in social
network in further research.
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