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The local fractional Poisson equations in two independent variables that appear in mathematical physics involving the local
fractional derivatives are investigated in this paper.The approximate solutions with the nondifferentiable functions are obtained by
using the local fractional variational iteration method.

1. Introduction

As it is known the Poisson equation plays an important
role in mathematical physics [1, 2]; that is, it describes the
electrodynamics and intersecting interface (see, e.g., [3, 4]
and the cited references therein).The solution of this equation
was discussed by using different methods [5–9]. We notice
that recently fractional Poisson equations based on fractional
derivatives were analyzed in [10] and the existence and
approximations of its solutions can be found in [11]. The Leg-
endre wavelet method was used to find the fractional Poisson
equation with Dirichlet boundary conditions [12]. In [13], the
Dirichlet problem for the fractional Poisson’s equation with
Caputo derivatives was reported. Furthermore, the fractional
Poisson equation based on the shiftedGrünwald estimate was
obtained in [14].

The variational iteration method structured in [15–17]
was applied to deal with the following type of equations:
Helmholtz [18], Burger’s and coupled Burger’s [19], Klein-
Gordon [20], KdV [21], the oscillation [22], Schrodinger [23],
reaction-diffusion [24], diffusion equation [25], Bernoulli

equation [26], and others. The extended variational iteration
method, called the fractional variational iteration method,
was developed and applied to handle some fractional dif-
ferential equations within the modified Riemann-Liouville
derivative [27–31]. More recently, the local fractional varia-
tional iteration method, initiated in [32], was used to find
the nondifferentiable solutions for the heat-conduction [32],
Laplace [33], damped and dissipative wave [34], Helmholtz
[35] and Fokker-Planck [36] equations, the wave equation on
Cantor sets [37], and the fractal heat transfer in silk cocoon
hierarchy [38] with local fractional derivative.

We mention that developing a numerical algorithm for
local fractional differential equations on Cantor set is not
straightforward. Thus, in this paper, we deal with the local
fractional Poisson equation in two independent variables,
namely,

𝜕
2𝛼
𝑢 (𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕
2𝛼
𝑢 (𝑥, 𝑦)

𝜕𝑦2𝛼
= 𝑓 (𝑥, 𝑦) ,

(𝑥, 𝑦) ∈ [0, +∞] × [0, 𝑙] ,

(1)
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where the nondifferentiable functions 𝑢(𝑥, 𝑦) and 𝑓(𝑥, 𝑦)

are adopted the local fractional differential operators and
𝛼 denotes the fractal dimension, subject to the initial and
boundary conditions

𝑢 (𝑥, 0) = 0,

𝑢 (𝑥, 𝑙) = 0,

𝑢 (0, 𝑦) = 𝜑 (𝑦) ,

𝜕
𝛼

𝜕𝑥𝛼
𝑢 (0, 𝑦) = 𝜙 (𝑦) .

(2)

We recall that the local fractional Laplace equation presented
in [33] is a special case of the local fractional Poisson equation
with source term𝑓(𝑥, 𝑦) = 0. Taking all the above thinks into
account, the aim of this paper is to find the nondifferentiable
solutions for (1) with different conditions by utilizing the local
fractional variational iteration algorithm.

The paper has the following organization. In Section 2
the concepts of local fractional complex derivatives and
integrals are briefly reviewed. In Section 3 the local frac-
tional variational iteration method is recalled. In Section 4
the nondifferentiable solutions for local fractional Poisson
equations are presented. Finally, Section 5 outlines the main
conclusions.

2. A Brief Review of the Local
Fractional Calculus

Definition 1 (see [32–38]). Let the function 𝑓(𝑥) ∈ 𝐶
𝛼
(𝑎, 𝑏),

if it satisfies the condition
󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑥

0
)
󵄨󵄨󵄨󵄨 < 𝜀
𝛼
, (3)

where |𝑥 − 𝑥
0
| < 𝛿, for 𝜀 > 0, 0 < 𝛼 < 1, and 𝜀 ∈ 𝑅.

Definition 2 (see [32–38]). Let 𝑓(𝑥) ∈ 𝐶
𝛼
(𝑎, 𝑏). The local

fractional derivative of 𝑓(𝑥) of order 𝛼 is defined as

𝑑
𝛼
𝑓 (𝑥
0
)

𝑑𝑥𝛼
=

Δ
𝛼
(𝑓 (𝑥) − 𝑓 (𝑥

0
))

(𝑥 − 𝑥
0
)
𝛼

, (4)

where

Δ
𝛼
(𝑓 (𝑥) − 𝑓 (𝑥

0
)) ≅ Γ (1 + 𝛼) [𝑓 (𝑥) − 𝑓 (𝑥

0
)] . (5)

The formulas of local fractional derivatives of special func-
tions [37] used in the paper are as follows:

𝑑
𝛼

𝑑𝑥𝛼

𝑥
𝑛𝛼

Γ (1 + 𝑛𝛼)
=

𝑥
(𝑛−1)𝛼

Γ (1 + (𝑛 − 1) 𝛼)
, 𝑛 ∈ 𝑁,

𝐷
(𝛼)

𝑥
𝑎𝑔 (𝑥) = 𝑎𝐷

(𝛼)

𝑥
𝑔 (𝑥) ,

𝐷
(𝛼)

𝑥
[𝐷
(𝛼)

𝑥
𝑓 (𝑥)] = 𝐷

(2𝛼)

𝑥
𝑓 (𝑥) ,

(6)

where 𝑔(𝑥) is a local fractional continuous function, 𝑎 is a
constant, and𝑁 is a set of positive integers.

Definition 3 (see [32–38]). Let 𝑓(𝑥) ∈ 𝐶
𝛼
[𝑎, 𝑏]. The local

fractional integral of 𝑓(𝑥) of order 𝛼 in the interval [𝑎, 𝑏] is
defined as

𝑎
𝐼
(𝛼)

𝑏
𝑓 (𝑥) =

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑓 (𝑡) (𝑑𝑡)
𝛼

=
1

Γ (1 + 𝛼)
lim
Δ𝑡→0

𝑗=𝑁−1

∑

𝑗=0

𝑓 (𝑡
𝑗
) (Δ𝑡
𝑗
)
𝛼

,

(7)

where the partitions of the interval [𝑎, 𝑏] are denoted by
(𝑡
𝑗
, 𝑡
𝑗+1

), 𝑗 = 0, . . . , 𝑁 − 1, 𝑡
0

= 𝑎, and 𝑡
𝑁

= 𝑏 with Δ𝑡
𝑗

=

𝑡
𝑗+1

− 𝑡
𝑗
and Δ𝑡 = max{Δ𝑡

0
, Δ𝑡
1
, Δ𝑡
𝑗
, . . .}.

The formulas of local fractional integrals of special func-
tions used in the paper are presented as follows [37]:

0
𝐼
(𝛼)

𝑥
𝑎𝑔 (𝑥) = 𝑎

0
𝐼
(𝛼)

𝑥
𝑔 (𝑥) ,

0
𝐼
(𝛼)

𝑡
(

(𝑡 − 𝑠)
𝛼
𝑡
𝑛𝛼

Γ (1 + 𝛼) Γ (1 + 𝑛𝛼)
) =

𝑡
(𝑛+2)𝛼

Γ (1 + (𝑛 + 2) 𝛼)
,

0
𝐼
(𝛼)

𝑥

𝑥
(𝑛−1)𝛼

Γ (1 + (𝑛 − 1) 𝛼)
=

𝑥
𝑛𝛼

Γ (1 + 𝑛𝛼)
, 𝑛 ∈ 𝑁,

(8)

where 𝑔(𝑥) is a local fractional continuous function, 𝑎 is a
constant, and𝑁 is a set of positive integers.

3. Analysis of the Method

The local fractional variational iterationmethod structured in
[32] was applied to deal with the local fractional differential
equations arising in mathematical physics (see, e.g., [33–38]).
In this section, we introduce the idea of the local fractional
variational iteration method.

Let us consider the local fractional operator equation in
the form

𝐿
𝛼
𝑢 + 𝑁

𝛼
𝑢 = 𝑔 (𝑡) , (9)

where 𝐿
𝛼
and 𝑁

𝛼
are linear and nonlinear local fractional

operators, respectively, and 𝑔(𝑡) is the source term within the
nondifferentiable function.

Local fractional variational iteration algorithm reads as

𝑢
𝑛+1

(𝑡) = 𝑢
𝑛
(𝑡) +
0
𝐼
(𝛼)

𝑡
{𝜂 [𝐿
𝛼
𝑢
𝑛
(𝑠) + 𝑁

𝛼
𝑢
𝑛
(𝑠) − 𝑔 (𝑠)]} ,

(10)

where 𝜂 is a fractal Lagrange multiplier and 𝐿
𝛼
= 𝜕
𝑛𝛼
/𝜕𝑢
𝑛𝛼.

Therefore, a local fractional correction functional was
structured as follows:

𝑢
𝑛+1

(𝑡) = 𝑢
𝑛
(𝑡) +
0
𝐼
(𝛼)

𝑡
{𝜉
𝛼
[𝐿
𝛼
𝑢
𝑛
(𝑠) + 𝑁

𝛼
𝑢̃
𝑛
(𝑠) − 𝑔 (𝑠)]} ,

(11)

where 𝑢̃
𝑛
is considered as a restricted local fractional varia-

tion and 𝜂 is a fractal Lagrange multiplier. That is, 𝛿𝛼𝑢̃
𝑛
= 0

[27, 30].
After the fractal Lagrangian multiplier is determined, for

𝑛 ≥ 0, the successive approximations 𝑢
𝑛+1

of the solution 𝑢
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can be readily given by using any selective local fractional
function 𝑢

0
. Consequently, we obtain the solution in the

following form:

𝑢 = lim
𝑛→∞

𝑢
𝑛
. (12)

The local fractional variational method was compared
with the fractional series expansion and decomposition
technologies.

If 𝐿
𝛼

= 𝜕
2𝛼
/𝜕𝑢
2𝛼, then we have the local fractional

variational iteration formula [32–34, 36, 37] as follows:

𝑢
𝑛+1

(𝑡) = 𝑢
𝑛
(𝑡) −
0
𝐼
(𝛼)

𝑡

× {
(𝑠 − 𝑡)

𝛼

Γ (1 + 𝛼)
[𝐿
𝛼
𝑢
𝑛
(𝑠) + 𝑁

𝛼
𝑢
𝑛
(𝑠) − 𝑔 (𝑠)]} .

(13)

The above formula plays an important role in dealing with
the 2𝛼-order local fractional differential equation with either
linearity or nonlinearity.

4. The Nondifferentiable Solutions for Local
Fractional Poisson Equations

In this section we investigate the nondifferentiable solutions
for the local fractional Poisson equations in two independent
variables with different initial-boundary conditions.

Example 1. We analyze the local fractional Poisson equation
in the following form:

𝜕
2𝛼
𝑢 (𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕
2𝛼
𝑢 (𝑥, 𝑦)

𝜕𝑦2𝛼
=

𝑦
𝛼

Γ (1 + 𝛼)
, (14)

subject to the initial and boundary conditions, namely,

𝑢 (𝑥, 0) = 0, (15)

𝑢 (𝑥, 𝑙) = 0, (16)

𝑢 (0, 𝑦) =
𝑦
3𝛼

Γ (1 + 3𝛼)
, (17)

𝜕
𝛼

𝜕𝑥𝛼
𝑢 (0, 𝑦) = sin

𝛼
(𝑦
𝛼
) . (18)

In view of (17) and (18), we take the initial value given by

𝑢
0
(𝑥, 𝑦) =

𝑦
3𝛼

Γ (1 + 3𝛼)
+ sin
𝛼
(𝑦
𝛼
)

𝑥
𝛼

Γ (1 + 𝛼)
. (19)

From (13), the local fractional iteration procedure is given by

𝑢
𝑛+1

(𝑥, 𝑦)

= 𝑢
𝑛
(𝑥, 𝑦) +

0
𝐼
(𝛼)

𝑥

× {
(𝑠 − 𝑥)

𝛼

Γ (1 + 𝛼)
(
𝜕
2𝛼
𝑢
𝑛
(𝑠, 𝑦)

𝜕𝑠2𝛼
+
𝜕
2𝛼
𝑢
𝑛
(𝑠, 𝑥)

𝜕𝑦2𝛼
−

𝑦
𝛼

Γ (1 + 𝛼)
)} .

(20)

Making use of (19) and (20), we get the first approximation as
follows:

𝑢
1
(𝑥, 𝑦)

= 𝑢
0
(𝑥, 𝑦) +

0
𝐼
(𝛼)

𝑥

× {
(𝑠 − 𝑥)

𝛼

Γ (1 + 𝛼)
(
𝜕
2𝛼
𝑢
0
(𝑠, 𝑦)

𝜕𝑠2𝛼
+

𝜕
2𝛼
𝑢
0
(𝑠, 𝑥)

𝜕𝑦2𝛼
−

𝑦
𝛼

Γ (1 + 𝛼)
)}

=
𝑦
3𝛼

Γ (1 + 3𝛼)
+ sin
𝛼
(𝑦
𝛼
)

1

∑

𝑖=0

(−1)
𝑖 𝑥

(2𝑖+1)𝛼

Γ (1 + (2𝑖 + 1) 𝛼)
.

(21)

The second approximation can be written as

𝑢
2
(𝑥, 𝑦)

= 𝑢
1
(𝑥, 𝑦) +

0
𝐼
(𝛼)

𝑥

× {
(𝑠 − 𝑥)

𝛼

Γ (1 + 𝛼)
(
𝜕
2𝛼
𝑢
1
(𝑠, 𝑦)

𝜕𝑠2𝛼
+

𝜕
2𝛼
𝑢
1
(𝑠, 𝑥)

𝜕𝑦2𝛼
−

𝑦
𝛼

Γ (1 + 𝛼)
)}

=
𝑦
3𝛼

Γ (1 + 3𝛼)
+ sin
𝛼
(𝑦
𝛼
)

2

∑

𝑖=0

(−1)
𝑖 𝑥

(2𝑖+1)𝛼

Γ (1 + (2𝑖 + 1) 𝛼)
.

(22)

The third approximation reads as

𝑢
3
(𝑥, 𝑦)

= 𝑢
2
(𝑥, 𝑦) +

0
𝐼
(𝛼)

𝑥

× {
(𝑠 − 𝑥)

𝛼

Γ (1 + 𝛼)
(
𝜕
2𝛼
𝑢
2
(𝑠, 𝑦)

𝜕𝑠2𝛼
+

𝜕
2𝛼
𝑢
2
(𝑠, 𝑥)

𝜕𝑦2𝛼
−

𝑦
𝛼

Γ (1 + 𝛼)
)}

=
𝑦
3𝛼

Γ (1 + 3𝛼)
+ sin
𝛼
(𝑦
𝛼
)

3

∑

𝑖=0

(−1)
𝑖 𝑥

(2𝑖+1)𝛼

Γ (1 + (2𝑖 + 1) 𝛼)
.

(23)

The fourth approximation is as follows:

𝑢
4
(𝑥, 𝑦)

= 𝑢
3
(𝑥, 𝑦) +

0
𝐼
(𝛼)

𝑥

× {
(𝑠 − 𝑥)

𝛼

Γ (1 + 𝛼)
(
𝜕
2𝛼
𝑢
3
(𝑠, 𝑦)

𝜕𝑠2𝛼
+

𝜕
2𝛼
𝑢
3
(𝑠, 𝑥)

𝜕𝑦2𝛼
−

𝑦
𝛼

Γ (1 + 𝛼)
)}

=
𝑦
3𝛼

Γ (1 + 3𝛼)
+ sin
𝛼
(𝑦
𝛼
)

4

∑

𝑖=0

(−1)
𝑖 𝑥

(2𝑖+1)𝛼

Γ (1 + (2𝑖 + 1) 𝛼)

...
(24)

and so on.
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Figure 1: Plot of the nondifferentiable solution of (14) with the
parameter 𝛼 = ln 2/ ln 3.

Finally, by direct calculations we obtain

𝑢
𝑛
(𝑥, 𝑦) =

𝑦
3𝛼

Γ (1 + 3𝛼)
+ sin
𝛼
(𝑦
𝛼
)

×

𝑛

∑

𝑖=0

(−1)
𝑖 𝑥

(2𝑖+1)𝛼

Γ (1 + (2𝑖 + 1) 𝛼)
.

(25)

Hence, we report the nondifferentiable solution of (14)

𝑢 (𝑥, 𝑦) = lim
𝑛→∞

𝑢
𝑛
(𝑥, 𝑦)

=
𝑦
3𝛼

Γ (1 + 3𝛼)
+ sin
𝛼
(𝑦
𝛼
) sin
𝛼
(𝑥
𝛼
)

(26)

and its graph is shown in Figure 1.

Example 2. Next we discuss the local fractional Poisson
equations as

𝜕
2𝛼
𝑢 (𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕
2𝛼
𝑢 (𝑥, 𝑦)

𝜕𝑦2𝛼
= 𝐸
𝛼
(𝑦
𝛼
) , (27)

with the initial and boundary conditions given as follows:

𝑢 (𝑥, 0) = 0,

𝑢 (𝑥, 𝑙) = 0,

𝑢 (0, 𝑦) = 𝐸
𝛼
(𝑦
𝛼
) ,

𝜕
𝛼

𝜕𝑥𝛼
𝑢 (0, 𝑦) = cos

𝛼
(𝑦
𝛼
) .

(28)

In view of (13), the local fractional iteration procedure
becomes
𝑢
𝑛+1

(𝑥, 𝑦)

= 𝑢
𝑛
(𝑥, 𝑦) +

0
𝐼
(𝛼)

𝑥

× {
(𝑠 − 𝑥)

𝛼

Γ (1 + 𝛼)
(
𝜕
2𝛼
𝑢 (𝑠, 𝑦)

𝜕𝑠2𝛼
+

𝜕
2𝛼
𝑢 (𝑠, 𝑥)

𝜕𝑦2𝛼
− 𝐸
𝛼
(𝑦
𝛼
))} ,

(29)

where the initial value is given by

𝑢
0
(𝑥, 𝑦) = 𝐸

𝛼
(𝑦
𝛼
) +

𝑥
𝛼

Γ (1 + 𝛼)
cos
𝛼
(𝑦
𝛼
) . (30)

Making use of (29) and (30), the first approximation reads as
follows:

𝑢
1
(𝑥, 𝑦)

= 𝑢
0
(𝑥, 𝑦) +

0
𝐼
(𝛼)

𝑥

× {
(𝑠 − 𝑥)

𝛼

Γ (1 + 𝛼)
(
𝜕
2𝛼
𝑢
0
(𝑠, 𝑦)

𝜕𝑠2𝛼
+

𝜕
2𝛼
𝑢
0
(𝑠, 𝑥)

𝜕𝑦2𝛼
− 𝐸
𝛼
(𝑦
𝛼
))}

= 𝐸
𝛼
(𝑦
𝛼
) + cos

𝛼
(𝑦
𝛼
)

1

∑

𝑖=0

(−1)
𝑖 𝑥

(2𝑖+1)𝛼

Γ (1 + (2𝑖 + 1) 𝛼)
.

(31)

The expression of the second approximation is as follows:

𝑢
2
(𝑥, 𝑦)

= 𝑢
1
(𝑥, 𝑦) +

0
𝐼
(𝛼)

𝑥

× {
(𝑠 − 𝑥)

𝛼

Γ (1 + 𝛼)
(
𝜕
2𝛼
𝑢
1
(𝑠, 𝑦)

𝜕𝑠2𝛼
+

𝜕
2𝛼
𝑢
1
(𝑠, 𝑥)

𝜕𝑦2𝛼
− 𝐸
𝛼
(𝑦
𝛼
))}

= 𝐸
𝛼
(𝑦
𝛼
) + cos

𝛼
(𝑦
𝛼
)

2

∑

𝑖=0

(−1)
𝑖 𝑥

(2𝑖+1)𝛼

Γ (1 + (2𝑖 + 1) 𝛼)
.

(32)

The third approximation becomes

𝑢
3
(𝑥, 𝑦)

= 𝑢
2
(𝑥, 𝑦) +

0
𝐼
(𝛼)

𝑥

× {
(𝑠 − 𝑥)

𝛼

Γ (1 + 𝛼)
(
𝜕
2𝛼
𝑢
2
(𝑠, 𝑦)

𝜕𝑠2𝛼
+

𝜕
2𝛼
𝑢
2
(𝑠, 𝑥)

𝜕𝑦2𝛼
− 𝐸
𝛼
(𝑦
𝛼
))}

= 𝐸
𝛼
(𝑦
𝛼
) + cos

𝛼
(𝑦
𝛼
)

3

∑

𝑖=0

(−1)
𝑖 𝑥

(2𝑖+1)𝛼

Γ (1 + (2𝑖 + 1) 𝛼)
.

(33)

The fourth approximation is given by

𝑢
4
(𝑥, 𝑦)

= 𝑢
3
(𝑥, 𝑦) +

0
𝐼
(𝛼)

𝑥

× {
(𝑠 − 𝑥)

𝛼

Γ (1 + 𝛼)
(
𝜕
2𝛼
𝑢
3
(𝑠, 𝑦)

𝜕𝑠2𝛼
+

𝜕
2𝛼
𝑢
3
(𝑠, 𝑥)

𝜕𝑦2𝛼
− 𝐸
𝛼
(𝑦
𝛼
))}

= 𝐸
𝛼
(𝑦
𝛼
) + cos

𝛼
(𝑦
𝛼
)

4

∑

𝑖=0

(−1)
𝑖 𝑥

(2𝑖+1)𝛼

Γ (1 + (2𝑖 + 1) 𝛼)

...
(34)
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Figure 2: Plot of the nondifferentiable solution of (27) with the
parameter 𝛼 = ln 2/ ln 3.

Therefore, we get the nondifferentiable solution of (27)

𝑢 (𝑥, 𝑦) = lim
𝑛→∞

𝑢
𝑛
(𝑥, 𝑦) = 𝐸

𝛼
(𝑦
𝛼
) + cos

𝛼
(𝑦
𝛼
) sin
𝛼
(𝑥
𝛼
) ,

(35)

and the corresponding graph is depicted in Figure 2.

Example 3. The next particular case is the local fractional
Poisson equations as follows:

𝜕
2𝛼
𝑢 (𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕
2𝛼
𝑢 (𝑥, 𝑦)

𝜕𝑦2𝛼
= sin
𝛼
(𝑥
𝛼
) , (36)

subject to the initial and boundary conditions

𝑢 (𝑥, 0) = 0,

𝑢 (𝑥, 𝑙) = 0,

𝑢 (0, 𝑦) = sin
𝛼
(𝑦
𝛼
) ,

𝜕
𝛼

𝜕𝑥𝛼
𝑢 (0, 𝑦) = 𝐸

𝛼
(−𝑦
𝛼
) .

(37)

We start with the initial value as follows:

𝑢
0
(𝑥, 𝑡) = sin

𝛼
(𝑦
𝛼
) +

𝑥
𝛼

Γ (1 + 𝛼)
𝐸
𝛼
(−𝑦
𝛼
) . (38)

The local fractional iteration procedure leads us to

𝑢
𝑛+1

(𝑥, 𝑦)

= 𝑢
𝑛
(𝑥, 𝑦)

+
0
𝐼
(𝛼)

𝑥
{

(𝑠 − 𝑥)
𝛼

Γ (1 + 𝛼)

× (
𝜕
2𝛼
𝑢 (𝑠, 𝑦)

𝜕𝑠2𝛼
+

𝜕
2𝛼
𝑢 (𝑠, 𝑥)

𝜕𝑦2𝛼
− sin
𝛼
(𝑦
𝛼
))} .

(39)

In view of (38) and (39), we obtain the following successive
approximations:

𝑢
1
(𝑥, 𝑦)

= 𝑢
0
(𝑥, 𝑦) +

0
𝐼
(𝛼)

𝑥

× {
(𝑠 − 𝑥)

𝛼

Γ (1 + 𝛼)
(
𝜕
2𝛼
𝑢
0
(𝑠, 𝑦)

𝜕𝑠2𝛼
+

𝜕
2𝛼
𝑢
0
(𝑠, 𝑥)

𝜕𝑦2𝛼
− sin
𝛼
(𝑦
𝛼
))}

= sin
𝛼
(𝑦
𝛼
) + 𝐸
𝛼
(−𝑦
𝛼
)

1

∑

𝑖=0

(−1)
𝑖 𝑥

(2𝑖+1)𝛼

Γ (1 + (2𝑖 + 1) 𝛼)
,

𝑢
2
(𝑥, 𝑦)

= 𝑢
1
(𝑥, 𝑦) +

0
𝐼
(𝛼)

𝑥

× {
(𝑠 − 𝑥)

𝛼

Γ (1 + 𝛼)
(
𝜕
2𝛼
𝑢
1
(𝑠, 𝑦)

𝜕𝑠2𝛼
+
𝜕
2𝛼
𝑢
1
(𝑠, 𝑥)

𝜕𝑦2𝛼
−sin
𝛼
(𝑦
𝛼
))}

= sin
𝛼
(𝑦
𝛼
) + 𝐸
𝛼
(−𝑦
𝛼
)

2

∑

𝑖=0

(−1)
𝑖 𝑥

(2𝑖+1)𝛼

Γ (1 + (2𝑖 + 1) 𝛼)
,

𝑢
3
(𝑥, 𝑦)

= 𝑢
2
(𝑥, 𝑦) +

0
𝐼
(𝛼)

𝑥

× {
(𝑠 − 𝑥)

𝛼

Γ (1 + 𝛼)
(
𝜕
2𝛼
𝑢
2
(𝑠, 𝑦)

𝜕𝑠2𝛼
+

𝜕
2𝛼
𝑢
2
(𝑠, 𝑥)

𝜕𝑦2𝛼
−sin
𝛼
(𝑦
𝛼
))}

= sin
𝛼
(𝑦
𝛼
) + 𝐸
𝛼
(−𝑦
𝛼
)

3

∑

𝑖=0

(−1)
𝑖 𝑥

(2𝑖+1)𝛼

Γ (1 + (2𝑖 + 1) 𝛼)
,

𝑢
4
(𝑥, 𝑦)

= 𝑢
3
(𝑥, 𝑦) +

0
𝐼
(𝛼)

𝑥

× {
(𝑠 − 𝑥)

𝛼

Γ (1 + 𝛼)
(
𝜕
2𝛼
𝑢
3
(𝑠, 𝑦)

𝜕𝑠2𝛼
+

𝜕
2𝛼
𝑢
3
(𝑠, 𝑥)

𝜕𝑦2𝛼
−sin
𝛼
(𝑦
𝛼
))}

= sin
𝛼
(𝑦
𝛼
) + 𝐸
𝛼
(−𝑦
𝛼
)

4

∑

𝑖=0

(−1)
𝑖 𝑥

(2𝑖+1)𝛼

Γ (1 + (2𝑖 + 1) 𝛼)

...
(40)

and so on.
Thus, the nondifferentiable solution of (36) has the form

𝑢 (𝑥, 𝑦) = lim
𝑛→∞

𝑢
𝑛
(𝑥, 𝑦) = sin

𝛼
(𝑦
𝛼
) + 𝐸
𝛼
(−𝑦
𝛼
) sin
𝛼
(𝑥
𝛼
) ,

(41)

and its graph is shown in Figure 3.

5. Conclusions

The local fractional operators started to be deeply investigated
during the last few years. One of the major problems is
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Figure 3: Plot of the nondifferentiable solution of (36) with the
parameter 𝛼 = ln 2/ ln 3.

to find new methods and techniques to solve some given
important local fractional partial differential equations on
Cantor set. In this line of thought we consider that three
local fractional Poisson equations with differential initial and
boundary values were solved by using the local fractional
variational iteration method. The graphs of the nondifferen-
tiable solutions were also obtained.
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