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Circulant and skew circulant matrices have become an important tool in networks engineering. In this paper, we consider skew
circulant type matrices with any continuous Fibonacci numbers. We discuss the invertibility of the skew circulant type matrices
and present explicit determinants and inverse matrices of them by constructing the transformation matrices. Furthermore, the
maximum column sum matrix norm, the spectral norm, the Euclidean (or Frobenius) norm, and the maximum row sum matrix
norm and bounds for the spread of these matrices are given, respectively.

1. Introduction

Skew circulant and circulant matrices have important appli-
cations in various networks engineering. Joy and Tavsanoglu
[1] showed that feedback matrices of ring cellular neural
networks, which can be described by the ODE, are block
circulants. A special class of the feedback delay network using
circulant matrices was proposed [2]. Jing and Jafarkhani
[3] proposed distributed differential space-time codes that
work for networks with any number of relays using circulant
matrices. Exploiting the circulant structure of the channel
matrices, Eghbali et al. [4] analysed the realistic near fast
fading scenarios with circulant frequency selective channels.
Rocchesso [5] presented particular choices of the feedback
coefficients, namely, Galois sequences, arranged in a circulant
matrix, to produce a maximum echo density in the time
response. Sardellitti et al. [6] used an analytical expression
for the eigenvalues of a block circulant matrix as a function
of the coverage radius. Li et al. [7] gave a low-complexity
binary frame-wise network coding encoder design based on
circulant matrix. Hirt and Massey [8] introduced discrete
time Fourier transform precoding to the proposed multihop
relay system involving circulant matrix. When considering
a single-input single-output transmission with CFO and
omitting the relay index subscript, Wang et al. [9] proved
that the intercarrier interference matrix is a circulant matrix.

The system model of the OFDM based AF relay networks
as well as the strategy of the superimposed training involves
circulant matrix [10]. Two-way transmission model consid-
ered in [11] ensured the circular convolution between two
frequency selective channels.

The skew circulant matrices as preconditioners for linear
multistep formulae- (LMF-) based ordinary differential equa-
tions (ODEs) codes,Hermitian, and skew-HermitianToeplitz
systems were considered in [12–15]. Lyness and Sørevik
employed a skew circulant matrix to construct s-dimensional
lattice rules in [16]. Compared with cyclic convolution
algorithm, the skew cyclic convolution algorithm [17] was
able to perform filtering procedure in approximately half of
computational cost for real signals. In [18] two new normal-
form realizations were presented which utilize circulant and
skew circulant matrices as their state transition matrices.The
well-known second-order coupled form is a special case of
the skew circulant form. Li et al. [19] gave the style spectral
decomposition of skew circulant matrix firstly and then dealt
with the optimal backward perturbation analysis for the
linear system with skew circulant coefficient matrix. In [20],
a new fast algorithm for optimal design of block digital filters
(BDFs) was proposed based on skew circulant matrix.

Besides, some scholars have given various algorithms
for the determinants and inverses of nonsingular circulant
matrices. Unfortunately, the computational complexity of
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these algorithms is very amazing huge with the order of
matrix increasing. However, some authors gave the explicit
determinants and inverses of circulant and skew circulant
matrices involving some famous numbers. For example, Yao
and Jiang [21] considered the determinants, inverses, norm,
and spread of skew circulant type matrices involving any
continuous Lucas numbers. Shen et al. considered circulant
matrices with Fibonacci and Lucas numbers and presented
their explicit determinants and inverses by constructing the
transformation matrices [22]. Gao et al. [23] gave explicit
determinants and inverses of skew circulant and skew left
circulant matrices with Fibonacci and Lucas numbers. Jiang
et al. [24, 25] considered the skew circulant and skew
left circulant matrices with the 𝑘-Fibonacci numbers and
the 𝑘-Lucas numbers and discussed the invertibility of the
these matrices and presented their determinant and the
inverse matrix by constructing the transformation matrices,
respectively. Jaiswal evaluated some determinants of circulant
whose elements are the generalized Fibonacci numbers [26].
Lind presented the determinants of circulant and skew
circulant involving Fibonacci numbers [27]. Dazheng [28]
gave the determinant of the Fibonacci-Lucas quasi-cyclic
matrices.

Recently, there are several papers on the norms of some
special matrices. Solak [29] established the lower and upper
bounds for the spectral norms of circulant matrices with
classical Fibonacci and Lucas numbers entries. İpek [30]
investigated an improved estimation for spectral norms of
these matrices. Shen and Cen [31] gave upper and lower
bounds for the spectral norms of 𝑟-circulant matrices in the
form of 𝐴 = 𝐶

𝑟
(𝐹
0
, 𝐹
1
, . . . , 𝐹

𝑛−1
), 𝐵 = 𝐶

𝑟
(𝐿
0
, 𝐿
1
, . . . , 𝐿

𝑛−1
),

and they also obtained some bounds for the spectral norms
of Kronecker andHadamard products ofmatrix𝐴 andmatrix
𝐵. Akbulak and Bozkurt [32] found upper and lower bounds
for the spectral norms of Toeplitz matrices such that 𝑎

𝑖𝑗
≡

𝐹
𝑖−𝑗

and 𝑏
𝑖𝑗

≡ 𝐿
𝑖−𝑗
. The convergence in probability and in

distribution of the spectral norm of scaled Toeplitz, circulant,
reverse circulant, symmetric circulant, and a class of 𝑘-
circulant matrices were discussed in [33].

Beginning withMirsky [34], several authors [35–37] have
obtained bounds for the spread of a matrix.

The Fibonacci sequences are defined by the following
recurrence relations [22, 23, 26–32]:

𝐹
𝑛+1

= 𝐹
𝑛
+ 𝐹
𝑛−1

where 𝐹
0
= 0, 𝐹

1
= 1. (1)

The {𝐹
𝑛
} is given by the formula

𝐹
𝑛
=
𝛼
𝑛

− 𝛽
𝑛

𝛼 − 𝛽
, (2)

where 𝛼 and 𝛽 are the roots of the characteristic equation 𝑥2−
𝑥 − 1 = 0.

The Fibonacci sequences were introduced for the first
time by the famous Italian mathematician Leonardo of Pisa
(nicknamed Fibonacci). It is well known that the ratio of
two consecutive classical Fibonacci numbers converges to the
goldenmean, or the golden section, (1+√5)/2, which appears
in modern research in many fields from architecture [38, 39]

to physics of high energy particles [40]. As is shown in [41,
42], the hyperbolic Fibonacci functions can lead to creation of
the Lobachevsky Fibonacci and Minkovsky Fibonacci geom-
etry which are of great importance for theoretical physics. In
the 19th century the Frenchmathematician Francois Edouard
Anatole Lucas (1842–1891) introduced the so-called Lucas
numbers given by the recursive relation 𝐿

𝑛
= 𝐿
𝑛−1

+𝐿
𝑛−2

, 𝑛 ≥

2, with the seeds 𝐿
0
= 2 and 𝐿

1
= 1. The determinants,

inverses, norm, and spread of skew circulant type matrices
involving any continuous Lucas numbers are considered in
[21].

The purpose of this paper is to obtain the explicit
determinants, explicit inverses, norm, and spread of skew
circulant type matrices involving any continuous Fibonacci
numbers. And we generalize the result [23]. In passing, the
norm and spread of skew circulant type matrices have not
been research. It is hoped that this paper will help in changing
this.

In the following, let 𝑟 be a nonnegative integer. We adopt
the following two conventions 00 = 1 and, for any sequence
{𝑎
𝑛
}, ∑𝑛
𝑘=𝑖

𝑎
𝑘
= 0 in case 𝑖 > 𝑛.

Definition 1 (see [21]). A skew circulant matrix with the first
row (𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
) is meant to be a square matrix of the form

(

(

𝑎
1

𝑎
2

. . . 𝑎
𝑛−1

𝑎
𝑛

−𝑎
𝑛

𝑎
1

𝑎
2

. . . 𝑎
𝑛−1

... −𝑎
𝑛

𝑎
1

d
...

−𝑎
3

... d d 𝑎
2

−𝑎
2
−𝑎
3
. . . −𝑎

𝑛
𝑎
1

)

)𝑛×𝑛

, (3)

denoted by SCirc(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
).

Definition 2 (see [21]). A skew left circulant matrix with the
first row (𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
) is meant to be a square matrix of the

form

(

(

𝑎
1

𝑎
2

𝑎
3

. . . 𝑎
𝑛

𝑎
2

𝑎
3

. . . 𝑎
𝑛

−𝑎
1

𝑎
3

c c c
...

... 𝑎
𝑛

−𝑎
1

. . . −𝑎
𝑛−2

𝑎
𝑛
−𝑎
1

. . . −𝑎
𝑛−2

−𝑎
𝑛−1

)

)𝑛×𝑛

, (4)

denoted by SLCirc(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
).

Lemma 3 (see [30, 31]). Let {𝐹
𝑛
} be Fibonacci numbers; then,

(𝑖)

𝑛−1

∑

𝑖=0

𝐹
𝑖
= 𝐹
𝑛+1

− 1, (5)

(𝑖𝑖)

𝑛−1

∑

𝑖=0

𝐹
2

𝑖
= 𝐹
𝑛
𝐹
𝑛−1

, (6)

(𝑖𝑖𝑖)

𝑛−1

∑

𝑖=0

𝑖𝐹
𝑖
= (𝑛 − 1) 𝐹

𝑛+1
− 𝐹
𝑛+2

+ 2. (7)
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2. Determinant and Inverse of Skew Circulant
Matrix with the Fibonacci Numbers

In this section, let 𝐵
𝑟,𝑛

= SCirc(𝐹
𝑟+1

, . . . , 𝐹
𝑟+𝑛

) be a skew
circulant matrix. Firstly, we give a determinant explicit
formula for the matrix 𝐵

𝑟,𝑛
. Afterwards, we prove that 𝐵

𝑟,𝑛
is

an invertible matrix for 𝑛 ≥ 2, and then we find the inverse of
the matrix 𝐵

𝑟,𝑛
. In the following, let

𝑥 = −
𝐹
𝑟
+ 𝐹
𝑟+𝑛

𝐹
𝑟+1

+ 𝐹
𝑟+𝑛+1

, 𝑠 =
𝐹
𝑟+2

𝐹
𝑟+1

,

𝑏 = 𝐹
𝑟+1

+ 𝐹
𝑟+𝑛+1

, 𝑎 = 𝐹
𝑟
+ 𝐹
𝑟+𝑛

,

𝑓
𝑛
= 𝐹
𝑟+1

+ 𝑠𝐹
𝑟+𝑛

+

𝑛−2

∑

𝑘=1

(𝑠𝐹
𝑟+𝑘+1

− 𝐹
𝑟+𝑘+2

) ⋅ 𝑥
𝑛−(𝑘+1)

,

𝑓
𝑛
󸀠 =

𝑛−1

∑

𝑘=1

𝐹
𝑟+𝑘+1

⋅ 𝑥
𝑛−(𝑘+1)

.

(8)

Theorem 4. Let 𝐵
𝑟,𝑛

= 𝑆𝐶𝑖𝑟𝑐(𝐹
𝑟+1

, . . . , 𝐹
𝑟+𝑛

) be a skew
circulant matrix; then,

det𝐵
𝑟,𝑛

= 𝐹
𝑟+1

⋅ 𝑓
𝑛
⋅ 𝑏
𝑛−2

, (9)

where 𝐹
𝑟+𝑛

is the (𝑟 + 𝑛)th Fibonacci number. In particular,
when 𝑟 = 0, we get the result of [23].

Proof. Obviously, det𝐵
𝑟,2

= 𝐹
2

𝑟+1
+𝐹
2

𝑟+2
satisfies the equation.

In case 𝑛 > 2, let

Γ =

(
(
(
(
(
(

(

1

𝑠 1

1 1 −1

0 0 1 −1 −1

... c c c
0 1 c c
0 1 −1 c 0

0 1 −1 −1

)
)
)
)
)
)

)

,

Π
1
=
(
(

(

1 0 0 ⋅ ⋅ ⋅ 0 0

0 𝑥
𝑛−2

0 ⋅ ⋅ ⋅ 0 1

0 𝑥
𝑛−3

0 ⋅ ⋅ ⋅ 1 0

...
...

... d
...

...
0 𝑥 1 ⋅ ⋅ ⋅ 0 0

0 1 0 ⋅ ⋅ ⋅ 0 0

)
)

)

(10)

be two 𝑛 × 𝑛matrices; then, we have

Γ𝐵
𝑟,𝑛
Π
1
=
(
(

(

𝐹
𝑟+1

𝑓
󸀠

𝑛
𝑏
13

⋅ ⋅ ⋅ 𝑏
1(𝑛−1)

𝑏
1𝑛

0 𝑓
𝑛

𝑏
23

⋅ ⋅ ⋅ 𝑏
2(𝑛−1)

𝑏
2𝑛

0 0 𝑏

0 0 𝑎 d
...

... d 𝑏

0 0 𝑎 𝑏

)
)

)

, (11)

where

𝑏
1𝑗
= 𝐹
𝑟+𝑛+2−𝑗

,

𝑏
2𝑗
= 𝑠𝐹
𝑟+𝑛+2−𝑗

− 𝐹
𝑟+𝑛+3−𝑗

, (𝑗 = 3, 4, . . . , 𝑛) .

(12)

So it holds that

det Γ det𝐵
𝑟,𝑛

detΠ
1

= 𝐹
𝑟+1

⋅ 𝑓
𝑛
⋅ 𝑏
𝑛−2

= 𝐹
𝑟+1

[𝐹
𝑟+1

+ 𝑠𝐹
𝑟+𝑛

+

𝑛−2

∑

𝑘=1

(𝑠𝐹
𝑟+1+𝑘

− 𝐹
𝑟+2+𝑘

) ⋅ 𝑥
𝑛−(𝑘+1)

]

× (𝐹
𝑟+1

+ 𝐹
𝑟+𝑛+1

)
𝑛−2

,

(13)

while taking det Γ = detΠ
1
= (−1)

(𝑛−1)(𝑛−2)/2, we can get

det𝐵
𝑟,𝑛

= 𝐹
𝑟+1

[
𝐹
𝑟+2

𝐹
𝑟+1

⋅ 𝐹
𝑟+𝑛

+ 𝐹
𝑟+1

+

𝑛−2

∑

𝑘=1

(
𝐹
𝑟+2

𝐹
𝑟+1

⋅ 𝐹
𝑟+1+𝑘

− 𝐹
𝑟+2+𝑘

) ⋅ 𝑥
𝑛−(𝑘+1)

]

× (𝐹
𝑟+1

+ 𝐹
𝑟+𝑛+1

)
𝑛−2

.

(14)

This completes the proof.

Theorem 5. Let 𝐵
𝑟,𝑛

= 𝑆𝐶𝑖𝑟𝑐(𝐹r+1, . . . , 𝐹𝑟+𝑛) be a skew
circulant matrix; then, 𝐵

𝑟,𝑛
is an invertible matrix. Specially,

when 𝑟 = 0, we get the result of [23].

Proof. Taking 𝑛 = 2 in Theorem 4, we have det𝐵
𝑟,2

= 𝐹
2

𝑟+1
+

𝐹
2

𝑟+2
̸= 0. Hence 𝐵

𝑟,2
is invertible. In case 𝑛 > 2, since 𝐹

𝑟+𝑛
=

(𝛼
𝑟+𝑛

− 𝛽
𝑟+𝑛

)/(𝛼 − 𝛽), where 𝛼 + 𝛽 = 1, 𝛼𝛽 = −1, we obtain

𝑓 (𝜔
𝑘

𝜂)

=

𝑛

∑

𝑗=1

𝐹
𝑟+𝑗

(𝜔
𝑘

𝜂)
𝑗−1

=
1

𝛼 − 𝛽

𝑛

∑

𝑗=1

(𝛼
𝑟+𝑗

− 𝛽
𝑟+𝑗

) (𝜔
𝑘

𝜂)
𝑗−1

=
1

𝛼 − 𝛽
[
𝛼
𝑟+1

(1 + 𝛼
𝑛

)

1 − 𝛼𝜔𝑘𝜂
−
𝛽
𝑟+1

(1 + 𝛽
𝑛

)

1 − 𝛽𝜔𝑘𝜂
]



4 Abstract and Applied Analysis

=
1

𝛼 − 𝛽

[

[

(𝛼
𝑟+1

− 𝛽
𝑟+1

) + (𝛼
𝑟+𝑛+1

− 𝛽
𝑟+𝑛+1

)

1 − (𝛼 + 𝛽) 𝜔𝑘𝜂 + 𝛼𝛽𝜔2𝑘𝜂2

−
𝛼𝛽 (𝛼
𝑟

− 𝛽
𝑟

+ 𝛼
𝑟+𝑛

− 𝛽
𝑟+𝑛

) 𝜔
𝑘

𝜂

1 − (𝛼 + 𝛽)𝜔𝑘𝜂 + 𝛼𝛽𝜔2𝑘𝜂2
]

]

=
𝐹
𝑟+1

+ 𝐹
𝑟+𝑛+1

+ (𝐹
𝑟
+ 𝐹
𝑟+𝑛

) 𝜔
𝑘

𝜂

1 − 𝜔𝑘𝜂 − 𝜔2𝑘𝜂2

(𝑘 = 1, 2, . . . , 𝑛 − 1) ,

(15)

where 𝜔 = exp(2𝜋i/𝑛), 𝜂 = exp(𝜋i/𝑛). If there exists 𝜔𝑙𝜂(𝑙 =
1, 2, . . . , 𝑛 − 1) such that 𝑓(𝜔𝑙𝜂) = 0, we obtain 𝐹

𝑟+1
+𝐹
𝑟+𝑛+1

+

(𝐹
𝑟
+𝐹
𝑟+𝑛

)𝜔
𝑘

𝜂 = 0 for 1−𝜔𝑙𝜂−𝜔2𝑙𝜂2 ̸= 0, and hence it follows
that 𝜔𝑙𝜂 = −(𝐹

𝑟+1
+𝐹
𝑟+𝑛+1

)/(𝐹
𝑟
+𝐹
𝑟+𝑛

) is a real number. Since

𝜔
𝑙

𝜂 = exp((2𝑙 + 1) 𝜋i
𝑛

)

= cos (2𝑙 + 1) 𝜋

𝑛
+ 𝑖 sin (2𝑙 + 1) 𝜋

𝑛
,

(16)

it yields that sin((2𝑙 + 1)𝜋/𝑛) = 0, so we have 𝜔𝑙𝜂 = −1 for
0 < (2𝑙 + 1)𝜋/𝑛 < 2𝜋. Since 𝑥 = −1 is not the root of the
equation,

𝐹
𝑟+1

+ 𝐹
𝑟+𝑛+1

+ (𝐹
𝑟
+ 𝐹
𝑟+𝑛

) 𝑥 = 0, (𝑛 > 2) . (17)

We obtain 𝑓(𝜔
𝑘

𝜂) ̸= 0 for any 𝜔𝑘𝜂(𝑘 = 1, 2, . . . , 𝑛 − 1), while

𝑓 (𝜂) =

𝑛

∑

𝑗=1

𝐹
𝑟+𝑗

𝜂
𝑗−1

=
𝐹
𝑟+1

+ 𝐹
𝑟+𝑛+1

+ (𝐹
𝑟
+ 𝐹
𝑟+𝑛

) 𝜂

1 − 𝜂 − 𝜂2
̸= 0.

(18)

It follows from Lemma 3 in [21] that the conclusion holds.

Lemma 6. Let the matrixG = [𝑔
𝑖,𝑗
]
𝑛−2

𝑖,𝑗=1

be of the form

𝑔
𝑖𝑗
=

{{

{{

{

𝐹
𝑟+1

+ 𝐹
𝑟+𝑛+1

, 𝑖 = 𝑗,

𝐹
𝑟
+ 𝐹
𝑟+𝑛

, 𝑖 = 𝑗 + 1,

0, otherwise.
(19)

Then the inverseG−1 = [𝑔
󸀠

𝑖,𝑗
]
𝑛−2

𝑖,𝑗=1

ofG is equal to

𝑔
󸀠

𝑖,𝑗
=

{{

{{

{

[−(𝐹
𝑟
+ 𝐹
𝑟+𝑛

)]
𝑖−𝑗

(𝐹
𝑟+1

+ 𝐹
𝑟+𝑛+1

)
𝑖−𝑗+1

, 𝑖 ≥ 𝑗,

0, 𝑖 < 𝑗.

(20)

In particular, when 𝑟 = 0, we get the result of [23].

Proof. Let 𝑐
𝑖𝑗
= ∑
𝑛−2

𝑘=1
𝑔
𝑖𝑘
𝑔
󸀠

𝑘𝑗
.

Then 𝑐
𝑖,𝑗

= 0, for 𝑖 < 𝑗, 𝑐
𝑖𝑖
= 𝑔
𝑖𝑖
𝑔
󸀠

𝑖𝑖
= (𝐹
𝑟+1

+ 𝐹
𝑟+𝑛+1

) ⋅

1/(𝐹
𝑟+1

+ 𝐹
𝑟+𝑛+1

) = 1, for 𝑖 = 𝑗, and

𝑐
𝑖𝑗
=

𝑛−2

∑

𝑘=1

𝑔
𝑖𝑘
𝑔
󸀠

𝑘𝑗
= 𝑔
𝑖,𝑖−1

𝑔
󸀠

𝑖−1,𝑗
+ 𝑔
𝑖,𝑖
𝑔
󸀠

𝑖,𝑗

= (𝐹
𝑟
+ 𝐹
𝑟+𝑛

) ⋅
[−(𝐹
𝑟
+ 𝐹
𝑟+𝑛

)]
𝑖−𝑗−1

(𝐹
𝑟+1

+ 𝐹
𝑟+𝑛+1

)
𝑖−𝑗

+ (𝐹
𝑟+1

+ 𝐹
𝑟+𝑛+1

) ⋅
[−(𝐹
𝑟
+ 𝐹
𝑟+𝑛

)]
𝑖−𝑗

(𝐹
𝑟+1

+ 𝐹
𝑟+𝑛+1

)
𝑖−𝑗+1

= 0,

(21)

for 𝑖 ≥ 𝑗 + 1.
Hence, we getGG−1 = 𝐼

𝑛−2
, where 𝐼

𝑛−2
is an (𝑛−2)×(𝑛−2)

identity matrix. Similarly, we can verify G−1G = 𝐼
𝑛−2

. Thus,
the proof is completed.

Theorem 7. Let 𝐵
𝑟,𝑛

= 𝑆𝐶𝑖𝑟𝑐(𝐹
𝑟+1

, . . . , 𝐹
𝑟+𝑛

) be a skew
circulant matrix; then,

𝐵
−1

𝑟,𝑛
=

1

𝑓
𝑛

⋅ 𝑆𝐶𝑖𝑟𝑐 (𝑥
󸀠

1
, 𝑥
󸀠

2
, . . . , 𝑥

󸀠

𝑛
) , (22)

where

𝑥
󸀠

1
= 1 − (𝐹

𝑟+3
− 𝑠𝐹
𝑟+2

) ⋅
(−𝑎)
𝑛−3

𝑏𝑛−1

−

𝑛−3

∑

𝑖=1

(𝐹
𝑟+𝑛+2−𝑖

− 𝑠𝐹
𝑟+𝑛+1−𝑖

) ⋅
(−𝑎)
𝑖−1

𝑏𝑖
,

𝑥
󸀠

2
= −𝑠 −

𝑛−2

∑

𝑖=1

(𝐹
𝑟+𝑛+1−𝑖

− 𝑠𝐹
𝑟+𝑛−𝑖

) ⋅
(−𝑎)
𝑖−1

𝑏𝑖
,

𝑥
󸀠

3
= − (𝐹

𝑟+3
− 𝑠𝐹
𝑟+2

) ⋅
1

𝑏
,

𝑥
󸀠

4
= −

2

∑

𝑖=1

(𝐹
𝑟+1+𝑖

− 𝑠𝐹
𝑟+𝑖
) ⋅

(−𝑎)
𝑖−1

𝑏𝑖
,

𝑥
󸀠

𝑘
= −

1

𝑓
𝑛

2

∑

𝑖=1

(𝐹
𝑟+1+𝑖

− 𝑠𝐹
𝑟+𝑖
) ⋅

(−𝑎)
𝑘−5+𝑖

𝑏𝑘−4+𝑖
,

(𝑘 = 5, 6, . . . , 𝑛) .

(23)

In particular, when 𝑟 = 0, we get the result of [23].

Proof. Let

Π
2
=

(
(
(
(

(

1 −
𝑓
󸀠

𝑛

𝐹
𝑟+1

𝜋
13

𝜋
14

⋅ ⋅ ⋅ 𝜋
1𝑛

0 1 𝜋
23

𝜋
24

⋅ ⋅ ⋅ 𝜋
2𝑛

0 0 1 0 ⋅ ⋅ ⋅ 0

0 0 0 1 ⋅ ⋅ ⋅ 0

...
...

...
... d

...
0 0 0 0 ⋅ ⋅ ⋅ 1

)
)
)
)

)

, (24)
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where

𝜋
1𝑗
=

1

𝐹
𝑟+1

[
𝑓
󸀠

𝑛

𝑓
𝑛

(𝑠𝐹
𝑟+𝑛+2−𝑗

− 𝐹
𝑟+𝑛+3−𝑗

)

−𝐹
𝑟+𝑛+2−𝑗

] , (𝑗 = 3, 4, . . . , 𝑛) ,

𝜋
2𝑗
= −

𝑠𝐹
𝑟+𝑛+2−𝑗

− 𝐹
𝑟+𝑛+3−𝑗

𝑓
𝑛

, (𝑗 = 3, 4, . . . , 𝑛) .

(25)

Then we have

Γ𝐵
𝑟,𝑛
Π
1
Π
2
=
(
(

(

𝐹
𝑟+1

0 0 0 ⋅ ⋅ ⋅ 0

0 𝑓
𝑛

0 0 ⋅ ⋅ ⋅ 0

0 0 𝑏 0 ⋅ ⋅ ⋅ 0

0 0 𝑎 𝑏 ⋅ ⋅ ⋅ 0

...
...

...
... d

...
0 0 0 0 ⋅ ⋅ ⋅ 𝑏

)
)

)

. (26)

Γ𝐵
𝑟,𝑛
Π
1
Π
2
= 𝐷
1
⊕G, 𝐷

1
= diag(𝐹

𝑟+1
, 𝑓
𝑛
) is a diagonalmatrix,

andD
1
⊕G is the direct sum ofD

1
andG. If we denote Π =

Π
1
Π
2
, then we obtain 𝐵

−1

𝑟,𝑛
= Π(D−1

1
⊕G−1)Γ.

Since the last row elements of the matrix Π are
(0, 1, 𝜋

23
, 𝜋
24
, . . . , 𝜋

2(𝑛−1)
, 𝜋
2𝑛
), then the last row elements of

the matrix Π(D−1
1

⊕ G−1) are (0, 1/𝑓
𝑛
, 𝑈
23
, 𝑈
24
, . . . , 𝑈

2𝑛
),

where

𝑈
23
=

𝑛−2

∑

𝑖=1

𝜋
2(2+𝑖)

⋅
(−𝑎)
𝑖−1

𝑏𝑖
,

𝑈
2𝑘

=

𝑛+1−𝑘

∑

𝑖=1

𝜋
2(𝑘−1+𝑖)

⋅
(−𝑎)
𝑖−1

𝑏𝑖
,

(𝑘 = 3, 4, . . . , 𝑛) .

(27)

Hence it follows from Lemma 6 that letting 𝐵
−1

𝑟,𝑛
=

SCirc(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) then its last row elements are

(−𝑥
2
, −𝑥
3
, . . . , −𝑥

𝑛
, 𝑥
1
) which are given by the following

equations:

− 𝑥
2
=

𝑠

𝑓
𝑛

+ 𝑈
23
=

𝑠

𝑓
𝑛

+

𝑛−2

∑

𝑖=1

𝜋
2(2+𝑖)

⋅
(−𝑎)
𝑖−1

𝑏𝑖

=
𝑠

𝑓
𝑛

+
1

𝑓
𝑛

⋅

𝑛−2

∑

𝑖=1

(𝐹
𝑟+𝑛+1−𝑖

− 𝑠𝐹
𝑟+𝑛−𝑖

) ⋅
(−𝑎)
𝑖−1

𝑏𝑖
,

− 𝑥
3
= 𝑈
2𝑛

=
1

𝑓
𝑛

⋅
𝐹
𝑟+3

− 𝑠𝐹
𝑟+2

𝑏
,

− 𝑥
4
= 𝑈
2(𝑛−1)

− 𝑈
2𝑛

=
1

𝑓
𝑛

[ (𝐹
𝑟+2

− 𝑠𝐹
𝑟+1

) ⋅
1

𝑏

+ (𝐹
𝑟+3

− 𝑠𝐹
𝑟+2

) ⋅
−𝑎

𝑏2
]

=
1

𝑓
𝑛

2

∑

𝑖=1

(𝐹
𝑟+1+𝑖

− 𝑠𝐹
𝑟+𝑖
) ⋅

(−𝑎)
𝑖−1

𝑏𝑖
,

− 𝑥
𝑘
= 𝑈
2(𝑘−1)

− 𝑈
2𝑘
− 𝑈
2(𝑘+1)

=
1

𝑓
𝑛

[(𝐹
𝑟+2

− 𝑠𝐹
𝑟+1

) ⋅
(−𝑎)
𝑘−4

𝑏𝑘−3

+ (𝐹
𝑟+3

− 𝑠𝐹
𝑟+2

) ⋅
(−𝑎)
𝑘−3

𝑏𝑘−2
]

=
1

𝑓
𝑛

2

∑

𝑖=1

(𝐹
𝑟+1+𝑖

− 𝑠𝐹
𝑟+𝑖
) ⋅

(−𝑎)
𝑘−5+𝑖

𝑏𝑘−4+𝑖
,

...

− 𝑥
𝑛
= 𝑈
23
− 𝑈
24
− 𝑈
25

=
1

𝑓
𝑛

𝑛−2

∑

𝑖=1

(𝐹
𝑟+𝑛+1−𝑖

− 𝑠𝐹
𝑟+𝑛−𝑖

) ⋅
(−𝑎)
𝑖−1

𝑏𝑖

−
1

𝑓
𝑛

𝑛−3

∑

𝑖=1

(𝐹
𝑟+𝑛−𝑖

− 𝑠𝐹
𝑟+𝑛−1−𝑖

) ⋅
(−𝑎)
𝑖−1

𝑏𝑖

−
1

𝑓
𝑛

𝑛−1

∑

𝑖=1

(𝐹
𝑟+𝑛−1−𝑖

− 𝑠𝐹
𝑟+𝑛−2−𝑖

) ⋅
(−𝑎)
𝑖−1

𝑏𝑖

=
1

𝑓
𝑛

[(𝐹
𝑟+2

− 𝑠𝐹
𝑟+1

) ⋅
(−𝑎)
𝑛−4

𝑏𝑛−3

+ (𝐹
𝑟+3

− 𝑠𝐹
𝑟+2

) ⋅
(−𝑎)
𝑛−3

𝑏𝑛−2
]

=
1

𝑓
𝑛

2

∑

𝑖=1

(𝐹
𝑟+1+𝑖

− 𝑠𝐹
𝑟+𝑖
) ⋅

(−𝑎)
𝑛−5+𝑖

𝑏𝑛−4+𝑖
,

𝑥
1
=

1

𝑓
𝑛

− 𝑈
23
− 𝑈
24

=
1

𝑓
𝑛

−
1

𝑓
𝑛

𝑛−2

∑

𝑖=1

(𝐹
𝑟+𝑛+1−𝑖

− 𝑠𝐹
𝑟+𝑛−𝑖

) ⋅
(−𝑎)
𝑖−1

𝑏𝑖

−
1

𝑓
𝑛

𝑛−3

∑

𝑖=1

(𝐹
𝑟+𝑛+2−𝑖

− 𝑠𝐹
𝑟+𝑛+1−𝑖

) ⋅
(−𝑎)
𝑖−1

𝑏𝑖

=
1

𝑓
𝑛

[1 − (𝐹
𝑟+3

− 𝑠𝐹
𝑟+2

) ⋅
(−𝑎)
𝑛−3

𝑏𝑛−2

−

𝑛−3

∑

𝑖=1

(𝐹
𝑟+𝑛+2−𝑖

− 𝑠𝐹
𝑟+𝑛+1−𝑖

) ⋅
(−𝑎)
𝑖−1

𝑏𝑖
] .

(28)
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Hence, we obtain

𝑥
1
=

1

𝑓
𝑛

[1 − (𝐹
𝑟+3

− 𝑠𝐹
𝑟+2

) ⋅
(−𝑎)
𝑛−3

𝑏𝑛−1

−

𝑛−3

∑

𝑖=1

(𝐹
𝑟+𝑛+2−𝑖

− 𝑠𝐹
𝑟+𝑛+1−𝑖

) ⋅
(−𝑎)
𝑖−1

𝑏𝑖
] ,

𝑥
2
= −

𝑠

𝑓
𝑛

−
1

𝑓
𝑛

𝑛−2

∑

𝑖=1

(𝐹
𝑟+𝑛+1−𝑖

− 𝑠𝐹
𝑟+𝑛−𝑖

) ⋅
(−𝑎)
𝑖−1

𝑏𝑖
,

𝑥
3
= −

1

𝑓
𝑛

⋅
𝐹
𝑟+3

− 𝑠𝐹
𝑟+2

𝑏
,

𝑥
4
= −

1

𝑓
𝑛

2

∑

𝑖=1

(𝐹
𝑟+1+𝑖

− 𝑠𝐹
𝑟+𝑖
) ⋅

(−𝑎)
𝑖−1

𝑏𝑖
,

𝑥
𝑘
= −

1

𝑓
𝑛

2

∑

𝑖=1

(𝐹
𝑟+1+𝑖

− 𝑠𝐹
𝑟+𝑖
) ⋅

(−𝑎)
𝑘−5+𝑖

𝑏𝑘−4+𝑖
,

...

𝑥
𝑛
= −

1

𝑓
𝑛

2

∑

𝑖=1

(𝐹
𝑟+1+𝑖

− 𝑠𝐹
𝑟+𝑖
) ⋅

(−𝑎)
𝑛−5+𝑖

𝑏𝑛−4+𝑖
,

𝐵
−1

𝑟,𝑛
=

1

𝑓
𝑛

⋅ SCirc (𝑥󸀠
1
, 𝑥
󸀠

2
, . . . , 𝑥

󸀠

𝑛
) ,

(29)

where

𝑥
󸀠

1
= 1 − (𝐹

𝑟+3
− 𝑠𝐹
𝑟+2

) ⋅
(−𝑎)
𝑛−3

𝑏𝑛−1

−

𝑛−3

∑

𝑖=1

(𝐹
𝑟+𝑛+2−𝑖

− 𝑠𝐹
𝑟+𝑛+1−𝑖

) ⋅
(−𝑎)
𝑖−1

𝑏𝑖
,

𝑥
󸀠

2
= −𝑠 −

𝑛−2

∑

𝑖=1

(𝐹
𝑟+𝑛+1−𝑖

− 𝑠𝐹
𝑟+𝑛−𝑖

) ⋅
(−𝑎)
𝑖−1

𝑏𝑖
,

𝑥
󸀠

3
= − (𝐹

𝑟+3
− 𝑠𝐹
𝑟+2

) ⋅
1

𝑏
,

𝑥
󸀠

4
= −

2

∑

𝑖=1

(𝐹
𝑟+1+𝑖

− 𝑠𝐹
𝑟+𝑖
) ⋅

(−𝑎)
𝑖−1

𝑏𝑖
,

𝑥
󸀠

𝑘
= −

2

∑

𝑖=1

(𝐹
𝑟+1+𝑖

− 𝑠𝐹
𝑟+𝑖
) ⋅

(−𝑎)
𝑘−5+𝑖

𝑏𝑘−4+𝑖
,

(𝑘 = 5, 6, . . . , 𝑛) .

(30)

This completes the proof.

3. Norm and Spread of Skew Circulant Matrix
with the Fibonacci Numbers

Theorem 8. Let 𝐵
𝑟,𝑛

= 𝑆𝐶𝑖𝑟𝑐(𝐹
𝑟+1

, . . . , 𝐹
𝑟+𝑛

) be a skew
circulant matrix; then three kinds of norms of 𝐵

𝑟,𝑛
are given

by
󵄩󵄩󵄩󵄩𝐵𝑟,𝑛

󵄩󵄩󵄩󵄩1
=
󵄩󵄩󵄩󵄩𝐵𝑟,𝑛

󵄩󵄩󵄩󵄩∞
= 𝐹
𝑟+𝑛+2

− 𝐹
𝑟+2

, (31)

󵄩󵄩󵄩󵄩𝐵𝑟,𝑛
󵄩󵄩󵄩󵄩𝐹

= √𝑛 (𝐹
𝑟+𝑛

𝐹
𝑟+𝑛+1

− 𝐹
𝑟
𝐹
𝑟+1

). (32)

Proof. By Definition 8 in [21] and (5), we have

󵄩󵄩󵄩󵄩𝐵𝑟,𝑛
󵄩󵄩󵄩󵄩1

=
󵄩󵄩󵄩󵄩𝐵𝑟,𝑛

󵄩󵄩󵄩󵄩∞
=

𝑛

∑

𝑖=1

𝐹
𝑟+𝑖

= 𝐹
𝑟+𝑛+2

− 𝐹
𝑟+2

. (33)

According to Definition 8 in [21] and (6), we know

(‖𝐵
𝑟,𝑛
‖
𝐹
)
2

=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

2

= 𝑛

𝑛

∑

𝑖=1

𝐹
2

𝑟+𝑖

= 𝑛(

𝑟+𝑛

∑

𝑖=0

𝐹
2

𝑖
−

𝑟

∑

𝑖=0

𝐹
2

𝑖
)

= 𝑛 (𝐹
𝑟+𝑛

𝐹
𝑟+𝑛+1

− 𝐹
𝑟
𝐹
𝑟+1

) .

(34)

Thus

󵄩󵄩󵄩󵄩𝐵𝑟,𝑛
󵄩󵄩󵄩󵄩𝐹

= √𝑛 (𝐹
𝑟+𝑛

𝐹
𝑟+𝑛+1

− 𝐹
𝑟
𝐹
𝑟+1

). (35)

Theorem 9. Let

𝐵
󸀠

𝑟,𝑛
= 𝑆𝐶𝑖𝑟𝑐 (𝐹

𝑟+1
, −𝐹
𝑟+2

, . . . , −𝐹
𝑟+𝑛−1

, 𝐹
𝑟+𝑛

) (36)

be an odd-order alternative skew circulant matrix and let 𝑛 be
odd. Then

󵄩󵄩󵄩󵄩󵄩
𝐵
󸀠

𝑟,𝑛

󵄩󵄩󵄩󵄩󵄩2
=

𝑛

∑

𝑖=1

𝐹
𝑟+𝑖

= 𝐹
𝑟+𝑛+2

− 𝐹
𝑟+2

. (37)

Proof. By Lemma 3 in [21], we have

𝜆
𝑗
(𝐵
󸀠

𝑟,𝑛
) =

𝑛

∑

𝑖=1

(−1)
𝑖−1

𝐹
𝑟+𝑖
(𝜔
𝑗

𝜂)
𝑖−1

. (38)

So

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗
(𝐵
󸀠

𝑟,𝑛
)
󵄨󵄨󵄨󵄨󵄨
≤

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
(−1)
𝑖−1

𝐹
𝑟+𝑖

󵄨󵄨󵄨󵄨󵄨
⋅
󵄨󵄨󵄨󵄨󵄨󵄨
(𝜔
𝑗

𝜂)
𝑖−1󵄨󵄨󵄨󵄨󵄨󵄨

=

𝑛

∑

𝑖=1

𝐹
𝑟+𝑖
,

(39)

for all 𝑗 = 0, 1, . . . , 𝑛 − 1.
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Since 𝑛 is odd, ∑𝑛
𝑖=1

𝐹
𝑟+𝑖

is an eigenvalue of 𝐵󸀠
𝑟,𝑛
; that is

(

𝐹
𝑟+1

−𝐹
𝑟+2

⋅ ⋅ ⋅ 𝐹
𝑟+𝑛

−𝐹
𝑟+𝑛

𝐹
𝑟+1

⋅ ⋅ ⋅ −𝐹
𝑟+𝑛−1

...
... d

...
𝐹
𝑟+2

−𝐹
𝑟+3

⋅ ⋅ ⋅ 𝐹
𝑟+1

)
(
(

(

1

−1

1

−1

...
1

)
)

)

=

𝑛

∑

𝑖=1

𝐹
𝑟+𝑖

⋅
(
(

(

1

−1

1

−1

...
1

)
)

)

.

(40)

To sum up, we can get

max
0≤𝑗≤𝑛−1

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗
(𝐵
󸀠

𝑟,𝑛
)
󵄨󵄨󵄨󵄨󵄨
=

𝑛

∑

𝑖=1

𝐹
𝑟+𝑖
. (41)

Since all skew circulant matrices are normal, by Lemma 9
in [21], (5), and (41), we obtain

󵄩󵄩󵄩󵄩󵄩
𝐵
󸀠

𝑟,𝑛

󵄩󵄩󵄩󵄩󵄩2
=

𝑛

∑

𝑖=1

𝐹
𝑟+𝑖

= 𝐹
𝑟+𝑛+2

− 𝐹
𝑟+2

, (42)

which completes the proof.

Theorem 10. Let 𝐵
𝑟,𝑛

= 𝑆𝐶𝑖𝑟𝑐(𝐹
𝑟+1

, . . . , 𝐹
𝑟+𝑛

) be a skew
circulant matrix; then, the bounds for the spread of 𝐵

𝑟,𝑛
are

𝑠 (𝐵
𝑟,𝑛
) ⩽ √2𝑛 (𝐹

𝑟+𝑛
𝐹
𝑟+𝑛+1

− 𝐹
𝑟+1

𝐹
𝑟+2

),

𝑠 (𝐵
𝑟,𝑛
) ≥

1

𝑛 − 1

󵄨󵄨󵄨󵄨2𝐹𝑟+𝑛+4 − 𝑛𝐹
𝑟+𝑛+2

− 𝑛𝐹
𝑟+3

− 2𝐹
𝑟+4

󵄨󵄨󵄨󵄨 .

(43)

Proof. The trace of 𝐵
𝑟,𝑛

is denoted by tr𝐵
𝑟,𝑛

= 𝑛𝐹
𝑟+1

. By (18)
in [21] and (32), we know

𝑠 (𝐵
𝑟,𝑛
) ⩽ √2𝑛 (𝐹

𝑟+𝑛
𝐹
𝑟+𝑛+1

− 𝐹
𝑟+1

𝐹
𝑟+2

). (44)

Since

∑

𝑖 ̸= 𝑗

𝑎
𝑖𝑗
=

𝑛

∑

𝑘=2

(𝑛 − (𝑘 − 1)) 𝐹
𝑟+𝑘

−

𝑛

∑

𝑘=2

(𝑘 − 1) 𝐹
𝑟+𝑘

= (𝑛 + 2)

𝑛

∑

𝑘=2

𝐹
𝑟+𝑘

− 2

𝑛

∑

𝑘=2

𝑘𝐹
𝑟+𝑘

= (𝑛 + 2) (𝐹
𝑟+𝑛+2

− 𝐹
𝑟+3

)

− 2 [

𝑛

∑

𝑘=2

(𝑟 + 𝑘) 𝐹
𝑟+𝑘

−

𝑛

∑

𝑘=2

𝑟𝐹
𝑟+𝑘

] ,

(45)

furthermore, by (5) and (7),

∑

𝑖 ̸= 𝑗

𝑎
𝑖𝑗
= (𝑛 + 2) (𝐹

𝑟+𝑛+2
− 𝐹
𝑟+3

)

− 2 [(𝑟 + 𝑛) 𝐹
𝑟+𝑛+2

− 𝐹
𝑟+𝑛+3

− (𝑟 + 1) 𝐹
𝑟+3

+𝐹
𝑟+4

− 𝑟𝐹
𝑟+𝑛+2

+ 𝑟𝐹
𝑟+3

]

= 2𝐹
𝑟+𝑛+4

− 𝑛𝐹
𝑟+𝑛+2

− 𝑛𝐹
𝑟+3

− 2𝐹
𝑟+4

.

(46)

By (19) in [21], we have

𝑠 (𝐵
𝑟,𝑛
) ≥

1

𝑛 − 1

󵄨󵄨󵄨󵄨2𝐹𝑟+𝑛+4 − 𝑛𝐹
𝑟+𝑛+2

− 𝑛𝐹
𝑟+3

− 2𝐹
𝑟+4

󵄨󵄨󵄨󵄨 . (47)

4. Determinant and Inverse of
Skew Left Circulant Matrix with the
Fibonacci Numbers

In this section, let 𝐵󸀠󸀠
𝑟,𝑛

= SLCirc(𝐹
𝑟+1

, . . . , 𝐹
𝑟+𝑛

) be a skew
left circulant matrix. By using the obtained conclusions in
Section 2, we give a determinant explicit formula for the
matrix 𝐵

󸀠󸀠

𝑟,𝑛
. Afterwards, we prove that 𝐵󸀠󸀠

𝑟,𝑛
is an invertible

matrix for any positive interger 𝑛. The inverse of the matrix
𝐵
󸀠󸀠

𝑟,𝑛
is also presented.
According to Lemma 5 in [21], Lemma 6 in [21], and

Theorems 4, 5, and 7, we can obtain the following theorems.

Theorem 11. Let 𝐵󸀠󸀠
𝑟,𝑛

= 𝑆𝐿𝐶𝑖𝑟𝑐(𝐹
𝑟+1

, . . . , 𝐹
𝑟+𝑛

) be a skew left
circulant matrix; then,

det𝐵󸀠󸀠
𝑟,𝑛

= (−1)
𝑛(𝑛−1)/2

𝐹
𝑟+1

[
𝐹
𝑟+2

𝐹
𝑟+1

⋅ 𝐹
𝑟+𝑛

+ 𝐹
𝑟+1

+

𝑛−2

∑

𝑘=1

(
𝐹
𝑟+2

𝐹
𝑟+1

⋅ 𝐹
𝑟+1+𝑘

− 𝐹r+2+𝑘)𝑥
𝑛−(𝑘+1)

]

× (𝐹
𝑟+1

+ 𝐹
𝑟+𝑛+1

)
𝑛−2

,

(48)

where 𝐹
𝑟+𝑛

is the (𝑟 + 𝑛)th Fibonacci number.

Theorem 12. Let 𝐵󸀠󸀠
𝑟,𝑛

= 𝑆𝐿𝐶𝑖𝑟𝑐(𝐹
𝑟+1

, . . . , 𝐹
𝑟+𝑛

) be a skew left
circulant matrix; then, 𝐵󸀠󸀠

𝑟,𝑛
is an invertible matrix.

Theorem 13. Let 𝐵󸀠󸀠
𝑟,𝑛

= 𝑆𝐿𝐶𝑖𝑟𝑐(𝐹
𝑟+1

, . . . , 𝐹
𝑟+𝑛

) be a skew left
circulant matrix; then,

𝐵
󸀠󸀠

𝑟,𝑛

−1

=
1

𝑓
𝑛

𝑆𝐿𝐶𝑖𝑟𝑐 (𝑥
󸀠󸀠

1
, 𝑥
󸀠󸀠

2
, . . . , 𝑥

󸀠󸀠

𝑛
) , (49)
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where

𝑥
󸀠󸀠

1
= 1 − (𝐹

𝑟+3
− 𝑠𝐹
𝑟+2

) ⋅
(−𝑎)
𝑛−3

𝑏𝑛−2

−

𝑛−3

∑

𝑖=1

(𝐹
𝑟+𝑛+2−𝑖

− 𝑠𝐹
𝑟+𝑛+1−𝑖

) ⋅
(−𝑎)
𝑖−1

𝑏𝑖
,

𝑥
󸀠󸀠

𝑘
= −𝑥
󸀠

𝑛−𝑘+2

=

2

∑

𝑖=1

(𝑓
𝑟+1+𝑖

− 𝑡𝑓
𝑟+𝑖
) ⋅

(−𝑎)
𝑛−𝑘−3+𝑖

𝑏𝑛−𝑘−2+𝑖
,

(𝑘 = 2, 3, . . . , 𝑛 − 2) ,

𝑥
󸀠󸀠

𝑛−1
= −𝑥
󸀠

3
= (𝐹
𝑟+3

− 𝑠𝐹
𝑟+2

) ⋅
1

𝑏
,

𝑥
󸀠󸀠

𝑛
= −𝑥
󸀠

2

= 𝑠 +

𝑛−2

∑

𝑖=1

(𝐹
𝑟+𝑛+1−𝑖

− 𝑠𝐹
𝑟+𝑛−𝑖

) ⋅
(−𝑎)
𝑖−1

𝑏𝑖
.

(50)

5. Norm and Spread of Skew Left Circulant
Matrix with the Fibonacci Numbers

Theorem 14. Let 𝐵󸀠󸀠
𝑟,𝑛

= 𝑆𝐿𝐶𝑖𝑟𝑐(𝐹
𝑟+1

, . . . , 𝐹
𝑟+𝑛

) be a skew left
circulant matrix.Then three kinds of norms of 𝐵󸀠󸀠

𝑟,𝑛
are given by

󵄩󵄩󵄩󵄩󵄩
𝐵
󸀠󸀠

𝑟,𝑛

󵄩󵄩󵄩󵄩󵄩1
=
󵄩󵄩󵄩󵄩󵄩
𝐵
󸀠󸀠

𝑟,𝑛

󵄩󵄩󵄩󵄩󵄩∞
= 𝐹
𝑟+𝑛+2

− 𝐹
𝑟+2

,

󵄩󵄩󵄩󵄩󵄩
𝐵
󸀠󸀠

𝑟,𝑛

󵄩󵄩󵄩󵄩󵄩𝐹
= √𝑛 (𝐹

𝑟+𝑛
𝐹
𝑟+𝑛+1

− 𝐹
𝑟
𝐹
𝑟+1

).

(51)

Proof. Using the method inTheorem 8 similarly, the conclu-
sion is obtained.

Theorem 15. Let

𝐵
󸀠󸀠󸀠

𝑟,𝑛
= 𝑆𝐿𝐶𝑖𝑟𝑐 (𝐹

𝑟+1
, −𝐹
𝑟+2

, . . . , −𝐹
𝑟+𝑛−1

, 𝐹
𝑟+𝑛

) (52)

be an odd-order alternative skew left circulant matrix; then,

󵄩󵄩󵄩󵄩󵄩
𝐵
󸀠󸀠󸀠

𝑟,𝑛

󵄩󵄩󵄩󵄩󵄩2
=

𝑛

∑

𝑖=1

𝐹
𝑟+𝑖

= 𝐹
𝑟+𝑛+2

− 𝐹
𝑟+2

. (53)

Proof. According to Lemma 4 in [21],

𝜆
𝑗
(𝐵
󸀠󸀠󸀠

𝑟,𝑛
) = ±

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

(−1)
𝑖−1

𝐹
𝑟+𝑖
𝜔
(𝑗−(1/2))(𝑘−1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (54)

for 𝑗 = 1, 2, . . . , (𝑛 − 1)/2, and

𝜆
(𝑛+1)/2

(𝐵
󸀠󸀠󸀠

𝑟,𝑛
) =

𝑛

∑

𝑖=1

𝐹
𝑟+𝑖
. (55)

So
󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗
(𝐵
󸀠󸀠󸀠

𝑟,𝑛
)
󵄨󵄨󵄨󵄨󵄨
≤

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
(−1)
𝑖−1

𝐹
𝑟+𝑖
(−1)
𝑖−1

󵄨󵄨󵄨󵄨󵄨

=

𝑛

∑

𝑖=1

𝐹
𝑟+𝑖
, (𝑗 = 1, 2, ⋅ ⋅ ⋅ ,

𝑛 + 1

2
) .

(56)

By (55) and (56), we know

max
0≤𝑖≤(𝑛+1)/2

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑖
(𝐵
󸀠󸀠󸀠

𝑟,𝑛
)
󵄨󵄨󵄨󵄨󵄨
=

𝑛

∑

𝑖=1

𝐹
𝑟+𝑖
. (57)

Since all skew left circulant matrices are symmetrical, by
Lemma 9 in [21], (5), and (57), we obtain

󵄩󵄩󵄩󵄩󵄩
𝐵
󸀠󸀠󸀠

𝑟,𝑛

󵄩󵄩󵄩󵄩󵄩2
= 𝐹
𝑟+𝑛+2

− 𝐹
𝑟+2

. (58)

Theorem 16. Let 𝐵󸀠󸀠
𝑟,𝑛

= 𝑆𝐿𝐶𝑖𝑟𝑐(𝐹
𝑟+1

, . . . , 𝐹
𝑟+𝑛

) be skew left
circulant matrix, if 𝑛 is odd, then

2𝐹
𝑟+𝑛

≤ 𝑠 (𝐵
󸀠󸀠

𝑟,𝑛
)

⩽ √2𝑛 (𝐹
𝑟+𝑛

𝐹
𝑟+𝑛+1

− 𝐹
𝑟+1

𝐹
𝑟
) −

2

𝑛
(𝐹
𝑟+𝑛−1

+ 𝐹
𝑟−1

)
2

;

(59)

if 𝑛 is even, then

2𝐹
𝑟+𝑛

≤ 𝑠 (𝐵
󸀠󸀠

𝑟,𝑛
) ⩽ √2𝑛 (𝐹

𝑟+𝑛
𝐹
𝑟+𝑛+1

− 𝐹
𝑟+1

𝐹
𝑟
). (60)

Proof. Since 𝐵󸀠󸀠
𝑟,𝑛

is a symmetric matrix, by (20) in [21],

𝑠 (𝐵
󸀠󸀠

𝑟,𝑛
) ≥ 2max

𝑖 ̸= 𝑗

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
= 2𝐹
𝑟+𝑛

. (61)

If 𝑛 is odd, the trace of 𝐵󸀠󸀠
𝑟,𝑛

is

tr (𝐵󸀠󸀠
𝑟,𝑛
)

= 𝐹
𝑟+1

− 𝐹
𝑟+2

+ 𝐹
𝑟+3

− ⋅ ⋅ ⋅ + 𝐹
𝑟+𝑛

= 𝐹
𝑟+1

+ 𝐹
𝑟+1

+ 𝐹
𝑟+3

+ ⋅ ⋅ ⋅ + 𝐹
𝑟+𝑛−2

= 2𝐹
𝑟+1

+ 𝐹
𝑟+1

+ 𝐹
𝑟+2

+ ⋅ ⋅ ⋅ + 𝐹
𝑟+𝑛−3

= 2𝐹
𝑟+1

+

𝑛−3

∑

𝑖=1

𝐹
𝑟+𝑖
;

(62)

by (5), we know

tr (𝐵󸀠󸀠
𝑟,𝑛
) = 𝐹
𝑟+𝑛−1

+ 𝐹
𝑟−1

. (63)

By (18) in [21], (51), and (63), we obtain

𝑠 (𝐵
󸀠󸀠

𝑟,𝑛
)

⩽ √2𝑛 (𝐹
𝑟+𝑛

𝐹
𝑟+𝑛+1

− 𝐹
𝑟
𝐹
𝑟+1

) −
2

𝑛
(𝐹
𝑟+𝑛−1

+ 𝐹
𝑟−1

)
2

.

(64)

If 𝑛 is even, the trace of 𝐵󸀠󸀠
𝑟,𝑛

is

tr (𝐵󸀠󸀠
𝑟,𝑛
) = 𝐹
𝑟+1

− 𝐹
𝑟+1

+ 𝐹
𝑟+3

−𝐹
𝑟+3

⋅ ⋅ ⋅ + 𝐹
𝑟+𝑛−1

− 𝐹
𝑟+𝑛−1

= 0.

(65)

By (18) in [21], (51), and (65), we can get

𝑠 (𝐵
󸀠󸀠

𝑟,𝑛
) ⩽ √2𝑛 (𝐹

𝑟+𝑛
𝐹
𝑟+𝑛+1

− 𝐹
𝑟
𝐹
𝑟+1

). (66)

So the result follows.
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6. Conclusion

We discuss the invertibility of skew circulant type matri-
ces with any continuous Fibonacci numbers and present
the determinant and the inverse matrices by constructing
the transformation matrices. The four kinds of norms and
bounds for the spread of these matrices are given, respec-
tively. In [20], a new fast algorithm for optimal design of block
digital filters (BDFs) was proposed based on skew circulant
matrix. The reason why we focus our attentions on skew
circulant is to explore the application of skew circulant in the
related field in real-time tracking and networks engineering.
On the basis of method of [17] and ideas of [43], we will
exploit real-time tracking with kernel matrix of skew circu-
lant structure. On the basis of existing application situation
[1–11], we will exploit application of network engineering
based on skew circulant matrix.
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