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A type of complete financial market with finite and countable heterogeneous investors, that is, investors equipped with
heterogeneous elasticities of intertemporal substitution, heterogeneous time discount rates, and also heterogeneous beliefs, is
constructed and two main results are established. First, long-run behaviors, specifically golden rules or modified golden rules,
about consumption path andwealth accumulation are investigated under uncertainty and in the sense of uniform topology. Second,
inefficacy of temporary taxation policies, which are chosen to be consumption tax and wealth tax, is confirmed in the current
financial market.

1. Introduction

Our goal in this paper is to explore the golden rule or
modified golden rule properties of consumption and wealth-
accumulation dynamics, as well as the effects of temporary
taxation policies, which are chosen to be consumption tax
and wealth tax, in a type of complete financial market with
finite and countable heterogeneous investors (see, [1], e.g.),
that is, investors with heterogeneous elasticities of intertem-
poral substitution (e.g., [2, 3]), heterogeneous time discount
rates (e.g., [2–4]), and heterogeneous beliefs (see, [2, 3, 5–8],
and among others), choosing optimal consumption and port-
folio strategy in an economy of infinite horizon. Golden rules
about the consumption path, the wealth dynamics, and the
combination of both are proved under uncertainty and in the
sense of uniform topology, which would be regarded as the
first innovation of the current paper. Furthermore, inefficacy
of temporary taxation policies has also been confirmed in the
current complete financial market, leading us to the second
inspiration of the current paper.

In the past several decades, portfolio turnpikes (see
[9–15], among others) in financial economics have been
extensively studied and well-understood. Meanwhile, the
concept of golden rule or modified golden rule (e.g., [16–21],
among others) has been developed and plays a crucial role
in studying optimal economic growth and optimal capital

accumulation in macroeconomics. However, little attention
up to the present has been paid to the golden rule ormodified
golden rule of consumption path and wealth accumulation in
complete or incomplete financial market with heterogeneous
investors. Noting that consumption strategy and wealth
accumulation play the same, if not more, important role as
that of portfolio choice in both capital asset pricing models
(see [22–27], amongothers) andmarket selection theory (e.g.,
[2, 7, 28–35], among others), the current paper is encouraged
to meet the gap and investigate the long-run behavior of
consumption and wealth dynamics in a type of complete
financial market with heterogeneous investors.

Indeed, the current paper confirms the following strong
conclusion: both optimal consumption path and optimal
wealth dynamics are long-run golden rules in the sense of
uniform topology and in the corresponding nonstationary
environment, regardless of the fact that there are many
heterogeneous investors in the economy. In other words, the
uniform topology golden rules demonstrated in the present
paper are robust to the types of investors in the market as
long as they all exhibit the same type of CRRA preferences.
Nonetheless, these golden rules are not turnpikes because
they are sensitive to initial conditions of the corresponding
dynamics [36–38]. And hence, naturally, an open question
comes up: when these golden rules are also turnpikes? The
exploration of this question will be left to future study.
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The second goal of this paper is to study the effect
of taxation policies, which are specifically chosen to be
consumption tax and wealth tax, to optimal consumption
strategy. As in the literatures of Yano [38, 39] and Kondo
[40], the current paper proves the conclusion of inefficacy
of temporary taxation policies in a type of complete financial
market with heterogeneous investors in comparatively weak
conditions, which are different from those of Yano [38, 39]
and Kondo [40] due to the dynamic competitive-equilibrium
framework they employed.

In addition, although both this paper and Jin [13] inves-
tigate the long-run behavior of consumption process in a
continuous-time finance model, it is worthwhile mentioning
that our results are essentially different from those of Jin [13]
in the following aspects. First, Jin mainly proves the portfolio
turnpike theorems in a continuous-time model, which how-
ever is not our focus in this paper. In particular, Jin proves
related turnpike properties, whereas our paper confirms
the relevant golden rule properties, and we already know
that golden run property is generally weaker than turnpike
property. Second, Jin shows the related convergence between
processes under different utility-function assumptions, that
is, general utility functions, such that the inverse functions
of the derivative of utility functions for consumption and
investment belong to a special subclass of regularly varying
functions and power utility functions, whereas we show the
convergence between processes under arbitrary decisions and
optimal decisions. Third, Jin just confirms the convergence
of final wealth process while the present paper shows con-
vergence for the entire path of wealth accumulation. And
fourth, we show a much stronger convergence in the sense
of uniform topology while this desired property generally
cannot be satisfied in the paper of Jin.

Finally, we would like to indicate the differences and
also similarity between our investigation and the well-known
papers of Sandroni [30] and Blume and Easley [7]. First,
the fundamental issue investigated in these papers is distinct
with our paper, that is, they all focus on the market-selection
theory in complete or incomplete markets, while the current
study purely characterizes the long-run behaviors of wealth
and consumption processes of heterogeneous investors. Sec-
ond, it is easy to see that the currentmodel environment is dif-
ferent from the above papers; in particular, they use discrete-
time models and we use a continuous-time model driven
by Brownian motions, and it is easy to see that our model
intrinsically leads us to more complicated computations in
demonstrating the corresponding convergence result. Third,
although these papers emphasize the proof of corresponding
convergence, their convergence results are just in point-wise
sense and hence are much weaker than the present mean-
square convergence in uniform topology sense. Last but not
least, even though the huge differences exist in modeling
environment and focus, our result induces similar intuitive
implications as these papers, that is, wealth-accumulation
process will uniformly converge to the equilibrium path
under optimal decision andhencemarket selectionwill prefer
those make accurate predications in complete markets.

The rest of the paper is organized as follows. Section 2
presents the basic definitions and assumptions about the

complete financialmarket facing us; Section 3 solves the indi-
vidual optimization problem facing heterogeneous investors,
that is, both optimal consumption-portfolio strategy and
optimal wealth dynamics are derived; Section 4 proves the
uniform topology golden rules in the current financialmarket
based upon the results in Section 3. There is a brief conclud-
ing section. All proofs appear in the Appendix.

2. Definitions and Assumptions

Suppose that there are 𝐼 heterogeneous agents in the econ-
omy. Perfect foresight assumption is employed andwe denote
by (Ω𝑖

,F𝑖
, {F𝑖

𝑡
}

𝑡≥0
,P𝑖
) the complete and filtered probability

space with F 𝑖
= {F𝑖

𝑡
}

𝑡≥0
denoting the filtration and the sigma-

algebraF𝑖

𝑡
generated by a 𝑑-dimensional standard Brownian

motion (𝑊𝑖
(𝑠), 0 ≤ 𝑠 ≤ 𝑡). Here, and throughout the

current paper, E𝑖 is used to denote the expectation operator
with respect to the probability law P𝑖 for ∀𝑖 = 1, 2, . . . , 𝐼.
Moreover, we are provided with another stochastic basis
(Ω,F, {F

𝑡
}

𝑡≥0
,P), where Ω = ∏

𝐼

𝑖=1
Ω

𝑖, F = ⊗
𝐼

𝑖=1
F𝑖, F

𝑡
=

⊗
𝐼

𝑖=1
F𝑖

𝑡
, P = ⊗

𝐼

𝑖=1
P𝑖 and we let F = {F

𝑡
}

𝑡≥0
denote the

corresponding filtration satisfying the usual conditions. We
further denote by E the expectation operator with respect to
the probability law P.

We define the canonical Lebesgue measure 𝜇 on measure
space (R

+
,B(R

+
)) with R

+
= [0,∞), R

++
= (0,∞) and

B(R
+
) the Borel sigma-algebra, and also the corresponding

regular properties about Lebesgue measure are supposed
to be fulfilled. Thus, we can define the following product
measure spaces (Ω𝑖

× R
+
, F 𝑖

⊗ B(R
+
)) and (Ω × R

+
, F ⊗

B(R
+
))with corresponding productmeasures being𝑑𝜇⊗𝑑P𝑖

and 𝑑𝜇 ⊗ 𝑑P, respectively, for ∀𝑖 = 1, 2, . . . , 𝐼.
Now, based upon the probability space (Ω𝑖

,F𝑖
, F 𝑖
,P𝑖
), we

define the complete financial market as follows:

𝑑𝐵 (𝑡) = 𝑟 (𝑡) 𝐵 (𝑡) 𝑑𝑡, 𝐵 (0) = 1.

𝑑𝑆
𝑖

𝑗
(𝑡) = 𝑆

𝑖

𝑗
(𝑡) [𝑏

𝑖

𝑗
(𝑡) 𝑑𝑡 +

𝑑

∑

𝑘=1

𝜎
𝑗𝑘 (𝑡) 𝑑𝑊

𝑖

𝑘
(𝑡)] , 𝑆

𝑖

𝑗
(0) > 0,

(1)

where 𝐵(𝑡) denotes the price process of a safe or riskless
investment, for example, bank account, and 𝑆𝑖

𝑗
(𝑡) denotes the

price process of a risky investment, for instance, the stock,
for 𝑗 = 1, 2, . . . , 𝑚 and ∀𝑖 = 1, 2, . . . , 𝐼. And 𝑟(𝑡), 𝑏𝑖

𝑗
(𝑡),

𝜎
𝑗𝑘
(𝑡) ∈ R denote the riskless interest rate, the expectation

return rate of the stock and the market volatility in period
𝑡, respectively, for ∀𝑖 = 1, 2, . . . , 𝐼, 𝑗 = 1, 2, . . . , 𝑚 and 𝑘 =
1, 2, . . . , 𝑑. In particular, if we let 𝑏

𝑗
(𝑡) represent the true value

of market mean return of stock 𝑗, then we getE𝑖
[𝑏

𝑗
(𝑡) | F𝑖

𝑡
] =

𝑏
𝑖

𝑗
(𝑡) > (res. = or <) 𝑏

𝑗
(𝑡) if individual 𝑖 is an optimistic (res.

rational or pessimistic) investor, which reflects heterogeneous
beliefs in the current financial market. Moreover, all of the
above processes are supposed to be F 𝑖

⊗B(R
+
)-progressively



Journal of Applied Mathematics 3

measurable. Then, we can have the following SDE of wealth
accumulation:

𝑑𝑋
𝑖
(𝑡) = (1 − 𝜏

𝑋 (𝑡))𝑋
𝑖
(𝑡)

× [

[

𝑚

∑

𝑗=1

𝜋
𝑖

𝑗
(𝑡)

𝑑𝑆
𝑖

𝑗
(𝑡)

𝑆
𝑖

𝑗
(𝑡)

+ (1 −

𝑚

∑

𝑗=1

𝜋
𝑖

𝑗
(𝑡)) 𝑟 (𝑡) 𝑑𝑡]

]

− (1 + 𝜏
𝑐 (𝑡)) 𝑐

𝑖
(𝑡) 𝑑𝑡

= {(1 − 𝜏
𝑋 (𝑡))𝑋

𝑖
(𝑡)

× [𝜋
𝑖
(𝑡)

⊤
(𝑏

𝑖
(𝑡) − 𝑟 (𝑡) 1) + 𝑟 (𝑡)]

− (1 + 𝜏
𝑐 (𝑡)) 𝑐

𝑖
(𝑡)} 𝑑𝑡

+ (1 − 𝜏
𝑋 (𝑡))𝑋

𝑖
(𝑡) 𝜋

𝑖
(𝑡)

⊤
𝜎 (𝑡) 𝑑𝑊

𝑖
(𝑡)

(2)

= 𝑓
𝑖
(𝑋

𝑖
(𝑡)) 𝑑𝑡 + 𝑔

𝑖
(𝑋

𝑖
(𝑡)) 𝑑𝑊

𝑖
(𝑡) , (3)

subject to 𝑋𝑖
(0) = 𝑥

𝑖
> 0, 𝑊𝑖

(0) = 1
0
= (0, 0, . . . , 0)

⊤
P𝑖-

a.s., and 𝜏
𝑋
, 𝜏

𝑐
denote the wealth and consumption tax

rates, respectively. Let 𝜋𝑖
(𝑡) = (𝜋

𝑖

1
(𝑡), . . . , 𝜋

𝑖

𝑚
(𝑡))

⊤and let
𝑐

𝑖
(𝑡) represent portfolio strategy and consumption process,

respectively. And as usual, 𝑏𝑖
(𝑡) = (𝑏

𝑖

1
(𝑡), . . . , 𝑏

𝑖

𝑚
(𝑡))

⊤, 1 =

(1, 1, . . . , 1)
⊤,𝑊𝑖

(𝑡) = (𝑊
𝑖

1
(𝑡), . . . ,𝑊

𝑖

𝑑
(𝑡))

⊤, where the super-
script “⊤” denotes transpose, and 𝜎(𝑡) = (𝜎

𝑗𝑘
(𝑡)) ∈ R𝑚×𝑑

denotes a bounded matrix. Furthermore,𝑋𝑖
(𝑡) is assumed to

be F 𝑖
⊗ B(R

+
)-adapted and all the remaining processes are

F 𝑖
⊗ B(R

+
)-progressively measurable for ∀𝑖 = 1, 2, . . . , 𝐼. If

denoted in matrix form, we can get

𝑑𝑋 (𝑡) = 𝑓 (𝑋 (𝑡)) 𝑑𝑡 + 𝑔 (𝑋 (𝑡)) 𝑑𝑊 (𝑡) , (4)

in which 𝑋(𝑡) is assumed to be F ⊗ B(R
+
)-adapted and

both 𝑓(𝑋(𝑡)) and 𝑔(𝑋(𝑡)) are supposed to be F ⊗ B(R
+
)-

progressively measurable. We employ the following assump-
tions in the model.

Assumption 1. The initial conditions 𝑋𝑖
(0) = 𝑥

𝑖
> 0 (∀𝑖 =

1, 2, . . . , 𝐼) are supposed to be deterministic and bounded.

Assumption 2. The following linear growth and local Lips-
chitz continuity conditions are satisfied, respectively,


𝑓

𝑖
(𝑦

𝑖
)


2

+

𝑔

𝑖
(𝑦

𝑖
)


2

2
≤ 𝐶

𝑖
(1 +


𝑦

𝑖

2

) , (5)

𝑓 (𝑦)


2

2
+
𝑔 (𝑦)



2

2
≤ 𝐶 (1 +

𝑦


2

2
) , (6)

for some constants 𝐶𝑖, 𝐶 < ∞. And


𝑓

𝑖
(𝑦

𝑖
) − 𝑓

𝑖
(𝑧

𝑖
)


2

∨

𝑔

𝑖
(𝑦

𝑖
) − 𝑔

𝑖
(𝑧

𝑖
)


2

2
≤ 𝐿

𝑖

𝑅
𝑖


𝑦

𝑖
− 𝑧

𝑖

2

,

𝑓 (𝑦) − 𝑓 (𝑧)


2

2
∨
𝑔 (𝑦) − 𝑔 (𝑧)



2

2
≤ 𝐿

𝑅

𝑦 − 𝑧


2

2
,

(7)

for given constants 𝑅𝑖, 𝑅 > 0, |𝑦𝑖
| ∨ |𝑧

𝑖
| ≤ 𝑅

𝑖, ‖𝑦‖
2
∨ ‖𝑧‖

2
≤

𝑅, and constants 𝐿𝑖

𝑅
𝑖 , 𝐿𝑅

< ∞ depend only on 𝑅𝑖 and 𝑅,
respectively, for all 𝑦𝑖, 𝑧𝑖

∈ R
++
, 𝑦, 𝑧 ∈ R𝐼

++
, for ∀𝑖 =

1, 2, . . . , 𝐼.

Remark 3. (i) Provided Assumption 2, the existence and
uniqueness of strong solutions of the SDEs in (3) and (4) are
ensured.

(ii) Assumption 2 is indeed weak in the following sense,
that is, conditions (7) can be naturally satisfied for any 𝐶1

functions due to the mean value theorem.
(iii) Here, and throughout the current paper, | ⋅ | is used

to represent absolute value, ‖ ⋅ ‖
2
is used to denote both the

Euclidean vector norm and the Frobenius (or trace) matrix
norm, and ⟨⋅, ⋅⟩ is used to denote the scalar product.

Assumption 4. The real symmetric matrix 𝜎(𝑡)𝜎(𝑡)
⊤ is

assumed to be bounded and invertible throughout the current
paper.

Now, as a preparation for solving individual optimization
problem defined in the following section, we, as usual,
provide the following formal definition,

Definition 5 (Markov admissible strategy). We call the con-
trol variable (𝜋𝑖

(𝑡), 𝑐
𝑖
(𝑡)) ∈ [0, 1]

𝑚
×R

+
an admissible strategy

if the corresponding wealth process 𝑋𝑖
(𝑡, 𝜔) ≥ 0 𝑑𝜇 ⊗ 𝑑P𝑖-

a.e. and we further call it a Markov admissible strategy if it
satisfies Markov property of memorylessness, and then we
define the set of Markov admissible strategy as A𝑖 for ∀𝑖 =
1, 2, . . . , 𝐼.

Here, and throughout the current paper, we just consider
Markov admissible strategies for the investors in the present
complete financial market. In particular, we will derive in
the following section the corresponding Markov admissi-
ble strategies for these investors by employing stochastic
dynamic programming.

3. Individual Optimization Problem

We, as usual and without loss of any generality, suppose that
the agents exhibit constant relative risk aversion (CRRA)
preferences, and the individual optimization problem reads
as follows:

max
(𝜋
𝑖
(𝑡),𝑐
𝑖
(𝑡))∈A𝑖

E
𝑖

(𝑠,𝑥
𝑖
)
[∫

∞

𝑠

𝑒
−𝜌
𝑖
(𝑡−𝑠) 𝑐

𝑖
(𝑡)

𝛾
𝑖

𝛾𝑖
𝑑𝑡] (8)

s.t.
𝑑𝑋

𝑖
(𝑡) = {(1 − 𝜏

𝑋 (𝑡))𝑋
𝑖
(𝑡)

× [𝜋
𝑖
(𝑡)

⊤
(𝑏

𝑖
(𝑡) − 𝑟 (𝑡) 1) + 𝑟 (𝑡)]

− (1 + 𝜏
𝑐 (𝑡)) 𝑐

𝑖
(𝑡)} 𝑑𝑡

+ (1 − 𝜏
𝑋 (𝑡))𝑋

𝑖
(𝑡) 𝜋

𝑖
(𝑡)

⊤
𝜎 (𝑡) 𝑑𝑊

𝑖
(𝑡) ,

𝑋
𝑖
(0) = 𝑥

𝑖
> 0, P

𝑖-a.s.,

(9)
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where E𝑖

(𝑠,𝑥
𝑖
)
is defined in the precious section with initial

conditions (𝑠, 𝑥𝑖
) ∈ R

+
× R

++
, 𝜌𝑖

> 0 denotes the subjective
discount factor. and 𝛾𝑖

∈ (0, 1) is a constant with 1 − 𝛾𝑖

denoting relative risk aversion coefficient for ∀𝑖 = 1, 2, . . . , 𝐼.
Employing the classical technique of dynamic program-

ming, the individual optimization problem defined in (8)
is explicitly solved and the following proposition is, thus,
established.

Proposition6. ProvidedAssumption 4, then the optimal port-
folio reads as follows:

�̂�
𝑖
(𝑡) =

1

(1 − 𝜏
𝑋 (𝑡)) (1 − 𝛾

𝑖)
(𝜎 (𝑡) 𝜎(𝑡)

⊤
)

−1

(𝑏
𝑖
(𝑡) − 𝑟 (𝑡) 1) ,

(10)

and if

𝜌
𝑖
> (1 − 𝜏

𝑋 (𝑡)) [�̂�
𝑖
(𝑡)

⊤
(𝑏

𝑖
(𝑡) − 𝑟 (𝑡) 1) + 𝑟 (𝑡)] 𝛾𝑖

+
1

2
(1 − 𝜏

𝑋 (𝑡))
2
�̂�

𝑖
(𝑡)

⊤
𝜎 (𝑡) 𝜎(𝑡)

⊤
�̂�

𝑖
(𝑡) 𝛾

𝑖
(𝛾

𝑖
− 1) ,

(11)

then the optimal consumption strategy is given in the feedback
form, that is,

𝑐
𝑖
(𝑡) = [(1 + 𝜏𝑐 (𝑡)) 𝛾

𝑖
𝐶

𝑖
(𝑡)]

1/(𝛾
𝑖
−1)

𝑋
𝑖
(𝑡) , (12)

where

𝐶
𝑖
(𝑡) =

(1 − 𝛾
𝑖
)

1−𝛾
𝑖

𝛾𝑖(1 + 𝜏
𝑐 (𝑡))

𝛾
𝑖

× {𝜌
𝑖
− (1 − 𝜏

𝑋 (𝑡))

× [�̂�
𝑖
(𝑡)

⊤
(𝑏

𝑖
(𝑡) − 𝑟 (𝑡) 1) + 𝑟 (𝑡)] 𝛾𝑖

+
1

2
(1 − 𝜏

𝑋 (𝑡))
2
�̂�

𝑖
(𝑡)

⊤
𝜎 (𝑡)

× 𝜎(𝑡)
⊤
�̂�

𝑖
(𝑡) 𝛾

𝑖
(1 − 𝛾

𝑖
) }

𝛾
𝑖
−1

,

(13)

and 𝑋𝑖
(𝑡) is a strong solution of SDE

𝑑𝑋
𝑖
(𝑡) = 𝑋

𝑖
(𝑡)

× { (1 − 𝜏
𝑋 (𝑡)) [�̂�

𝑖
(𝑡)

⊤
(𝑏

𝑖
(𝑡) − 𝑟 (𝑡) 1) + 𝑟 (𝑡)]

− (1 + 𝜏
𝑐 (𝑡)) [(1 + 𝜏𝑐 (𝑡)) 𝛾

𝑖
𝐶

𝑖
(𝑡)]

1/(𝛾
𝑖
−1)

} 𝑑𝑡

+ (1 − 𝜏
𝑋 (𝑡))𝑋

𝑖
(𝑡) �̂�

𝑖
(𝑡)

⊤
𝜎 (𝑡) 𝑑𝑊

𝑖
(𝑡)

= 𝑓
𝑖
(𝑋

𝑖
(𝑡)) 𝑑𝑡 + 𝑔

𝑖
(𝑋

𝑖
(𝑡)) 𝑑𝑊

𝑖
(𝑡) ,

(14)

subject to𝑋𝑖
(0) = 𝑥

𝑖
> 0 P𝑖-a.s. for ∀𝑖 = 1, 2, . . . , 𝐼.

Proof. See Appendix A.

4. Uniform Topology Golden Rules

By Proposition 6, we get the optimal paths of wealth accumu-
lation as follows:

𝑑𝑋
𝑖
(𝑡) = 𝑓

𝑖
(𝑋

𝑖
(𝑡)) 𝑑𝑡 + 𝑔

𝑖
(𝑋

𝑖
(𝑡)) 𝑑𝑊

𝑖
(𝑡) ,

𝑋
𝑖
(0) = 𝑥

𝑖
> 0, P

𝑖-a.s., ∀𝑖 = 1, 2, . . . , 𝐼,
(13


)

which can be rewritten in the following matrix form:

𝑑𝑋
𝑖
(𝑡) = 𝑓 (𝑋

𝑖
(𝑡)) 𝑑𝑡 + 𝑔 (𝑋

𝑖
(𝑡)) 𝑑𝑊 (𝑡)

𝑋
𝑖
(0) = 𝑥 > 0, P-a.s.

(15)

To prove the golden rules, we need the following assump-
tions.

Assumption 7. The initial conditions 𝑋𝑖
(0) = 𝑥

𝑖
> 0 (∀𝑖 =

1, 2, . . . , 𝐼) are supposed to be deterministic and bounded.

Assumption 8. There exist constants 𝐿
𝑓
, 𝐿

𝑔
> 0 such that

⟨𝑦 − �̂�, 𝑓 (𝑦) − 𝑓 (�̂�)⟩ ≤ 𝐿
𝑓

𝑦 − �̂�


2

2
, (16)

𝑔 (𝑦) − 𝑔 (�̂�)


2

2
≤ 𝐿

𝑔

𝑦 − �̂�


2

2
, (17)

for ∀𝑦, �̂� ∈ R𝐼

+
.

Remark 9. The inequality in (16) is the well-known one-sided
Lipschitz condition.

It follows from Assumption 8 that

⟨𝑓 (𝑦) , 𝑦⟩ = ⟨𝑓 (𝑦) − 𝑓 (0) , 𝑦⟩ + ⟨𝑓 (0) , 𝑦⟩ ≤ 𝐿
𝑓

𝑦


2

2
,

𝑔 (𝑦)


2

2
≤ 2
𝑔 (0)



2

2
+ 2
𝑔 (𝑦) − 𝑔 (0)



2

2
≤ 2𝐿

𝑔

𝑦


2

2
.

(18)

Thus, we directly give the following assumption.

Assumption 5. There exists a constant �̂� = 𝐿
𝑓
∨ 𝐿

𝑔
such that

⟨𝑓 (𝑦) , 𝑦⟩ ∨
𝑔 (𝑦)



2

2
≤ �̂�

𝑦


2

2
, (19)

for ∀𝑦 ∈ R𝐼

+
.

Given the above assumptions, the following lemma is
derived.

Lemma 10. Given the optimal wealth dynamics defined in (15)
and based upon Assumptions 7 and 5, then for ∀𝑝 ∈ N, 𝑝 ≥ 2

and for any given 𝑇 ≥ 0, there is a constant 𝑒 = 𝑒(𝑥, 𝑝, 𝑇) > 0
such that

E[ sup
0≤𝑡≤𝑇


𝑋

𝑖
(𝑡)


𝑝

2
] ≤ 𝑒. (20)

Proof. See Appendix B.
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Moreover, we give the following assumption.

Assumption 11. There exist constants �̂�𝑖, 𝐿𝑖, and 𝐿 > 0 such
that

⟨𝑓
𝑖
(𝑦

𝑖
) , 𝑦

𝑖
⟩ ∨


𝑔

𝑖
(𝑦

𝑖
)


2

2
≤ �̂�

𝑖
𝑦

𝑖

2

,

⟨𝑓
𝑖
(𝑦

𝑖
) , 𝑦

𝑖
⟩ ∨


𝑔

𝑖
(𝑦

𝑖
)


2

2
≤ 𝐿

𝑖
𝑦

𝑖

2

,

⟨𝑓 (𝑦) , 𝑦⟩ ∨
𝑔 (𝑦)



2

2
≤ 𝐿

𝑦


2

2
,

(21)

for ∀𝑦𝑖
, 𝑦

𝑖
∈ R

+
(∀𝑖 = 1, 2, . . . , 𝐼) and ∀𝑦 ∈ R𝐼

+
.

Thus, similar to the proof of Lemma 10, we get the
following lemma,

Lemma 12. Given the original wealth dynamics and the opti-
malwealth dynamics defined in (3), (4), and (13

), respectively.
Based upon Assumptions 1, 7, and 11, and for ∀𝑝 ∈ N, 𝑝 ≥ 2

and for any given 𝑇 ≥ 0, there are constants 𝑒 = 𝑒(𝑥, 𝑝, 𝑇),
𝑒

𝑖
= 𝑒

𝑖
(𝑥

𝑖
, 𝑝, 𝑇), and 𝑒𝑖

= 𝑒
𝑖
(𝑥

𝑖
, 𝑝, 𝑇) > 0 such that

E[ sup
0≤𝑡≤𝑇

‖𝑋 (𝑡)‖
𝑝

2
] ≤ 𝑒, E

𝑖
[ sup

0≤𝑡≤𝑇


𝑋

𝑖
(𝑡)


𝑝

] ≤ 𝑒
𝑖
,

E
𝑖
[ sup

0≤𝑡≤𝑇


𝑋

𝑖
(𝑡)


𝑝

] ≤ 𝑒
𝑖
,

(22)

for ∀𝑖 = 1, 2, . . . , 𝐼.

Noting that 𝑓𝑖, 𝑔𝑖, 𝑓, and 𝑔 are all 𝐶1 functions, thus, by
the mean value theorem, we get the following local Lipschitz
continuity property,

Condition 1 (local Lipschitz continuity). For any given con-
stants �̂�𝑖

, �̂� > 0, there exist constants 𝐿𝑖

�̂�
𝑖 , 𝐿 �̂�

> 0 such that


𝑓

𝑖
(𝑦

𝑖
) − 𝑓

𝑖
(�̂�

𝑖
)


2

∨

𝑔

𝑖
(𝑦

𝑖
) − 𝑔

𝑖
(�̂�

𝑖
)


2

2
≤ 𝐿

𝑖

�̂�
𝑖


𝑦

𝑖
− �̂�

𝑖

2

,


𝑓 (𝑦) − 𝑓 (�̂�)



2

2
∨
𝑔 (𝑦) − 𝑔 (�̂�)



2

2
≤ 𝐿

�̂�

𝑦 − �̂�


2

2
,

(23)

for |𝑦𝑖
| ∨ |�̂�

𝑖
| ≤ �̂�

𝑖, ‖𝑦‖
2
∨ ‖�̂�‖

2
≤ �̂�, and for all 𝑦𝑖

, �̂�
𝑖
∈

R
++
(∀𝑖 = 1, 2, . . . , 𝐼), 𝑦, �̂� ∈ R𝐼

++
.

And for the sake of simplicity, we need the following
assumption

Assumption 13. There exist constants𝐾
𝑖
, 𝐾 > 0 such that


𝑓

𝑖
(𝑦

𝑖
) − 𝑓

𝑖
(𝑦

𝑖
)


2

∨

𝑔

𝑖
(𝑦

𝑖
) − 𝑔

𝑖
(𝑦

𝑖
)


2

2
≤ 𝐾

𝑖


𝑦

𝑖

2

,


𝑓 (𝑦) − 𝑓 (𝑦)



2

2
∨
𝑔 (𝑦) − 𝑔 (𝑦)



2

2
≤ 𝐾

𝑦


2

2
,

(24)

for ∀𝑦𝑖
∈ R

++
, ∀𝑦 ∈ R𝐼

++
and for ∀𝑖 = 1, 2, . . . , 𝐼.

Now, based on Lemmas 10 and 12, the following uniform
topology golden rule is established.

Theorem 14 (uniform topology golden rule). Provided
Assumptions 1, 2, 7, 5, and 13, and Condition 1, then for
∀𝑀 = 𝑅 ∨ �̂�, where 𝑅 and �̂� appear in Assumption 2 and
Condition 1, respectively, for any given 𝑇 ≥ 0, and ∀𝜀 > 0,
there exist 𝛿

1
(𝑇,𝑀), 𝛿

2
(𝑇,𝑀) > 0 (for any given 𝑇 and𝑀), if

∨
𝐼

𝑖=1
𝑥

𝑖
< 𝛿

1
(𝑇,𝑀) and ‖𝑥 − 𝑥‖2

2
< 𝛿

2
(𝑇,𝑀), one must have

E[ sup
0≤𝑡≤𝑇


𝑋 (𝑡) − 𝑋 (𝑡)



2

2
] ≤ 𝜀. (25)

Moreover, if we let lim
𝑇 → ∞

𝛿
𝑖
(𝑇,𝑀) = 0 (for any given𝑀, ∀𝑖 =

1, 2), then one has

E[ lim
𝑇 → ∞

sup
0≤𝑡≤𝑇


𝑋 (𝑡) − 𝑋 (𝑡)



2

2
] = 0. (26)

Therefore, mean-square convergence in uniform topology is
confirmed for the current wealth accumulation paths.

Proof. See Appendix C.

Remark 15. This theorem is about the asymptotic properties
of two wealth processes, 𝑋𝑖

(𝑡) and 𝑋𝑖
(𝑡), in which 𝑋𝑖

(𝑡) is
the strong solution to the SDE (14) that is evaluated at the
optimal portfolio and consumption strategies and 𝑋𝑖

(𝑡) is
the strong solution of the SDE (2) but since those conditions
are introduced before the utility function as well as the
optimal decisions, it implies that the implicit portfolio and
consumption processes are arbitrary. Therefore, Theorem 14
demonstrates that an arbitrary wealth process will uniformly
converge to the optimal wealth-accumulation process in
mean-square sense as long as the initial level of wealth is
strictly controlled. Also, as the well-known argument of Yano
[38] shows that Theorem 14 cannot be regarded as a uniform
topology turnpike theorem, it, nevertheless, can be inter-
preted as a stability theorem. Actually, Theorem 14 proves
both Liapounov stability (see, [38, 41]) or dual Liapounov
stability (e.g., [38, 39]) and asymptotic stability (e.g., [38,
42], and among others) of the optimal wealth dynamics
under uncertainty and in the sense of uniform topology.
In particular, golden rule is a weaker concept relative to
the turnpike, that is, the former is allowed to depend on
initial conditions while the latter does not in the process of
convergence. Nevertheless, both golden rules and turnpikes
refer to equilibrium paths evaluated at optimal strategies of
individuals, that is, they represent desired paths.

Moreover, based upon Lemma 12 and similar to the proof
of Theorem 14, the following theorem is derived.

Theorem 16 (uniform topology golden rule). Provided
Assumptions 1, 2, 7, and 13, and Condition 1, then for ∀𝑀𝑖 =
𝑅

𝑖
∨ �̂�

𝑖, where 𝑅𝑖 and �̂�
𝑖 appear in Assumption 2 and

Condition 1, respectively, and for any given 𝑇 ≥ 0, and ∀𝜀𝑖
> 0,

there exist 𝛿𝑖

1
(𝑇,𝑀

𝑖

), 𝛿𝑖

2
(𝑇,𝑀

𝑖

) > 0 (for any given 𝑇 and𝑀𝑖),
if 𝑥𝑖

< 𝛿
𝑖

1
(𝑇,𝑀

𝑖

) and |𝑥𝑖
− 𝑥

𝑖
|
2

< 𝛿
𝑖

2
(𝑇,𝑀

𝑖

), one must have

E
𝑖
[ sup

0≤𝑡≤𝑇


𝑋

𝑖
(𝑡) − 𝑋

𝑖
(𝑡)


2

] ≤ 𝜀
𝑖
, (27)
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for ∀𝑖 = 1, 2, . . . , 𝐼. Moreover, if we let lim
𝑇 → ∞

𝛿
𝑖

𝑗
(𝑇,𝑀

𝑖

) =

0 (𝑗 = 1, 2) for any given𝑀𝑖

(∀𝑖 = 1, 2, . . . , 𝐼), then one has

E
𝑖
[ lim

𝑇 → ∞

sup
0≤𝑡≤𝑇


𝑋

𝑖
(𝑡) − 𝑋

𝑖
(𝑡)


2

] = 0. (28)

Notice, by Proposition 6, that the optimal consumption
path amounts to

𝑐
𝑖
(𝑡) = [(1 + 𝜏𝑐 (𝑡)) 𝛾

𝑖
𝐶

𝑖
(𝑡)]

1/(𝛾
𝑖
−1)

𝑋
𝑖
(𝑡) = �̂�

𝑖
(𝑡) 𝑋

𝑖
(𝑡) .

(29)

Thus, by Itô’s rule and (13
), we get

𝑑𝑐
𝑖
(𝑡) = [�̂�

𝑖
(𝑡) 𝑋

𝑖
(𝑡) + �̂�

𝑖
(𝑡) 𝑓

𝑖
(𝑋

𝑖
(𝑡))] 𝑑𝑡

+ �̂�
𝑖
(𝑡) 𝑔

𝑖
(𝑋

𝑖
(𝑡)) 𝑑𝑊

𝑖
(𝑡)

= 𝑓
𝑖
(𝑋

𝑖
(𝑡)) 𝑑𝑡 + 𝑔

𝑖
(𝑋

𝑖
(𝑡)) 𝑑𝑊

𝑖
(𝑡) ,

(30)

subject to 𝑐𝑖
(0) = �̂�

𝑖
(0)𝑥

𝑖
> 0, P𝑖-a.s. for ∀𝑖 = 1, 2, . . . , 𝐼.

Moreover, when denoted by matrix form, we get

𝑑𝑐 (𝑡) = 𝑓 (𝑋 (𝑡)) 𝑑𝑡 + 𝑔 (𝑋 (𝑡)) 𝑑𝑊 (𝑡) , (31)

subject to 𝑐(0) = diag(�̂�1
(0), . . . , �̂�

𝐼
(0))𝑥 > 0, P-a.s..

In particular, if we are given the following case.

Case 1. There is a coefficient 𝜆𝑖
(𝑡) such that

𝑐
𝑖
(𝑡) = 𝜆

𝑖
(𝑡) 𝑋

𝑖
(𝑡) , 𝑡 ≥ 0, (32)

for ∀𝑖 = 1, 2, . . . , 𝐼. That is, 𝑐(𝑡) = diag(𝜆1
(𝑡), . . . , 𝜆

𝐼
(𝑡))𝑋(𝑡)

with 𝑋(𝑡) defined in (4) subject to 𝑐(0) = diag(𝜆1
(0),

. . . , 𝜆
𝐼
(0))𝑥 > 0, P-a.s..

Indeed, as corollaries of Theorem 14, we have the follow-
ing.

Corollary 17 (uniform topology golden rule). Based upon the
assumptions and conclusions of Theorem 14, then for any given
𝑇 ≥ 0, ∀𝜀 ≥ 0, one gets

E[ sup
0≤𝑡≤𝑇

‖𝑐 (𝑡) − 𝑐 (𝑡)‖
2

2
] ≤ 𝜀. (33)

Moreover, similar to Theorem 14, one gets

E[ lim
𝑇 → ∞

sup
0≤𝑡≤𝑇

‖𝑐 (𝑡) − 𝑐 (𝑡)‖
2

2
] = 0. (34)

Proof. See Appendix D.

If we define

Ψ (𝑡) = (𝑐 (𝑡) , 𝑋 (𝑡))
⊤
, Ψ̂ (𝑡) = (𝑐 (𝑡) , 𝑋 (𝑡))

⊤

. (35)

Then we have the following.

Corollary 18 (uniform topology golden rule). Based upon the
assumptions and conclusions ofTheorem 14, then for any given
𝑇 ≥ 0, ∀𝜀 ≥ 0, one gets

E[ sup
0≤𝑡≤𝑇


Ψ (𝑡) − Ψ̂ (𝑡)



2

2
] ≤ 𝜀. (36)

Moreover, similar to Theorem 14, one gets

E[ lim
𝑇 → ∞

sup
0≤𝑡≤𝑇


Ψ (𝑡) − Ψ̂ (𝑡)



2

2
] = 0. (37)

Proof. See Appendix E.

We now denote by

𝜏
1
(𝑡) = (𝜏

1

𝑋
(𝑡) , 𝜏

1

𝑐
(𝑡)) , 𝜏

2
(𝑡) = (𝜏

2

𝑋
(𝑡) , 𝜏

2

𝑐
(𝑡)) (38)

two alternative taxation policies. Then the corresponding
optimal consumption paths are denoted by

𝑐 (𝑡, 𝜏
1
(𝑡))

= diag (�̂�1
(𝑡, 𝜏

1
(𝑡)) , . . . , �̂�

𝐼
(𝑡, 𝜏

1
(𝑡)))𝑋 (𝑡, 𝜏

1
(𝑡)) ,

(39)

𝑐 (𝑡, 𝜏
2
(𝑡))

= diag (�̂�1
(𝑡, 𝜏

2
(𝑡)) , . . . , �̂�

𝐼
(𝑡, 𝜏

2
(𝑡)))𝑋 (𝑡, 𝜏

2
(𝑡)) ,

(40)

respectively. Indeed, similar toTheorem 5 of Dai [43], we get
the following.

Corollary 19 (inefficacy of temporary taxation policies).
Based upon the assumptions and conclusions of Theorem 14,
then for any given 𝑇 ≥ 0, ∀𝜀 ≥ 0, one gets

E[ sup
0≤𝑡≤𝑇


𝑐 (𝑡, 𝜏

1
(𝑡)) − 𝑐 (𝑡, 𝜏

2
(𝑡))



2

2
] ≤ 𝜀. (41)

Moreover, similar to Theorem 14, one has

E[ lim
𝑇 → ∞

sup
0≤𝑡≤𝑇


𝑐 (𝑡, 𝜏

1
(𝑡)) − 𝑐 (𝑡, 𝜏

2
(𝑡))



2

2
] = 0. (42)

Proof. See Appendix F.

In (32), we suppose that there is a linear relationship
between the original consumption path and the original
wealth dynamics. Now,we relax this assumption and consider
the following.

Case 2. We do not prespecify any relationship between con-
sumption process 𝑐(𝑡) and wealth stock𝑋(𝑡), which would be
regarded as the most general case.
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We first introduce the following assumptions.

Assumption 20. There is a constant𝐻 > 0 such that


𝑓(𝑦)



2

2
∨
𝑔(𝑦)



2

2
≤ 𝐻

2𝑦


2

2
, (43)

for 𝑓, 𝑔 defined in (31) and for ∀𝑦 ∈ R𝐼

+
.

Assumption 21. For ∀𝜀 ≥ 0 and ∀𝑝 ∈ N, 𝑝 ≥ 2, we have

E‖𝑐(0) − 𝑐(0)‖
𝑝

2
≤ 𝜀. (44)

Assumption 22. Consumption path 𝑐(𝑡) is continuously dif-
ferentiable and for ∀𝜀 ≥ 0, ∀𝑝 ∈ N, 𝑝 ≥ 2 and for any given
𝑇 ≥ 0, we get

∫

𝑇

0

E
∇𝑡
𝑐 (𝑡)



𝑝

2
𝑑𝑡 ≤ 𝜀, (45)

where ∇
𝑡
𝑐(𝑡) = (𝑐

1
(𝑡), . . . , 𝑐

𝐼
(𝑡))

⊤.

Consequently, we get the following theorem.

Theorem 23 (uniform topology golden rule). Based upon
Assumptions 20, 21 and 22, and for ∀𝑝 ∈ N, 𝑝 ≥ 2, any given
𝑇 ≥ 0, ∀𝜀 ≥ 0, one has

E[ sup
0≤𝑡≤𝑇

‖𝑐 (𝑡) − 𝑐 (𝑡)‖
𝑝

2
] ≤ 𝜀. (46)

Moreover, one can show

E[ lim
𝑇 → ∞

sup
0≤𝑡≤𝑇

‖𝑐(𝑡) − 𝑐 (𝑡)‖
𝑝

2
] = 0. (47)

Proof. See Appendix G.

Remark 24. One can easily tell the differences between
Corollary 17 and Theorem 23, and indeed the main differ-
ences can be expressed as follows: first, Theorem 23 provides
us with a much stronger conclusion than that of Corollary 17;
second, noting thatTheorem 23 corresponds to Case 2, which
is much more general than Case 1, Corollary 17 depends on
much weaker assumptions than Theorem 23. However, both
Corollary 17 and Theorem 23 demonstrate the Liapounov
stability and asymptotic stability of optimal consumption
paths in the sense of uniform topology and in non-stationary
environments.

5. Concluding Remarks

As is well known, theory about golden rule or modi-
fied golden rule and different types of turnpike theorems
(i.e., Neighborhood Turnpike Theorem, see Yano [44], and
Asymptotic Turnpike Theorem, see Yano [45]) have been
developed and extensively studied for several decades and
play very important roles in both macroeconomics and
mathematical economics. Meanwhile, noting that portfolio
choice, consumption strategy, and wealth accumulation are
important issues in financial economics, especially in asset

pricing models and market selection theories, and portfo-
lio turnpikes has attracted broad interest of investigation
while little attention has been focused on the turnpike or
golden rule properties about consumption path and wealth
dynamics in financial economics. Moreover, one can easily
notice that portfolio choice, consumption strategy andwealth
accumulation are intimately correlated with each other both
in financial models and in financial markets. Accordingly,
the current paper argues from the following two viewpoints
that first, exploration about the golden rule or turnpike
properties of consumption path and wealth accumulation
should be of independent interest; second, the exploration
of consumption path and wealth accumulation in different
financial markets may possibly in turn enhance and deepen
our understanding of portfolio turnpikes (see, [14]). And
hence, the major purpose of the current paper is to meet
the above gap and we indeed have proved the golden rules
about consumption path and wealth dynamics in a type
of complete financial markets with heterogeneous investors.
Moreover, inefficacy of temporary taxation policies also has
been confirmed in the present model, which would be
regarded as a natural byproduct of the investigation about
golden rules of the corresponding financial market.

Finally, the current paper can be naturally extended
according to the following three lines: first, one can explore
uniform topology turnpikes about consumption path and
wealth accumulation in financial market, that is, one can
search for the conditions under which the uniform topology
golden rules demonstrated in the present paper are also
uniform topology turnpikes; second, one can study the
existence and uniqueness of uniform topology golden rule or
turnpike of any given incomplete financial market or market
with asymmetric information, that is, there exists insider
trade in market, and to further characterize their properties
from the view of point of economics; last but not least, one
can, if motivated, investigate golden rules or turnpikes in
the framework of general equilibrium or dynamic general
equilibrium of any given financial market.

Appendices

A. Proof of Proposition 6

We do so by first defining the following process:

𝑌
𝑖
(𝑡) = (𝑠 + 𝑡, 𝑋

𝑖
(𝑡))

⊤

, 𝑡 ≥ 0, 𝑌
𝑖
(0

−
) = (𝑠, 𝑥

𝑖
)

⊤

. (A.1)

Thus, the differential generator of 𝑌𝑖
(𝑡) reads as follows:

L
𝑖
𝜙

𝑖
(𝑠, 𝑥

𝑖
) =

𝜕𝜙
𝑖

𝜕𝑠
+ { (1 − 𝜏

𝑋 (0)) 𝑥
𝑖

× [𝜋
𝑖
(0)

⊤
(𝑏

𝑖
(0) − 𝑟 (0) 1) + 𝑟 (0)]

− (1 + 𝜏
𝑐 (0)) 𝑐

𝑖
(0) }

𝜕𝜙
𝑖

𝜕𝑥𝑖
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+
1

2
(1 − 𝜏

𝑋 (0))
2
𝜋

𝑖
(0)

⊤
𝜎 (0) 𝜎(0)

⊤

× 𝜋
𝑖
(0) (𝑥

𝑖
)

2 𝜕
2
𝜙

𝑖

𝜕(𝑥𝑖)
2
.

(A.2)

If we try

𝜙
𝑖
(𝑠, 𝑥

𝑖
) = 𝑒

−𝜌
𝑖
𝑠
𝜑

𝑖
(𝑥

𝑖
) . (A.3)

Then we get

L
𝑖
𝜙

𝑖
(𝑠, 𝑥

𝑖
)

= 𝑒
−𝜌
𝑖
𝑠
( − 𝜌

𝑖
𝜑

𝑖
(𝑥

𝑖
)

+ { (1 − 𝜏
𝑋 (0))

× [𝜋
𝑖
(0)

⊤
(𝑏

𝑖
(0) − 𝑟 (0) 1) + 𝑟 (0)] 𝑥𝑖

− (1 + 𝜏
𝑐 (0)) 𝑐

𝑖
(0) } 𝜑

𝑖
(𝑥

𝑖
)

+
1

2
(1 − 𝜏

𝑋 (0))
2
𝜋

𝑖
(0)

⊤
𝜎 (0) 𝜎(0)

⊤

×𝜋
𝑖
(0) (𝑥

𝑖
)

2

𝜑
𝑖
(𝑥

𝑖
) ) = 𝑒

−𝜌
𝑖
𝑠
L

𝑖

0
𝜑

𝑖
(𝑥

𝑖
) ,

(A.4)

in particular, if we put

𝜑
𝑖
(𝑥

𝑖
) = 𝐶

𝑖
(0) (𝑥

𝑖
)

𝛾
𝑖

, (A.5)

then we get by the stochastic Hamilton-Jacobi-Bellman equa-
tion

(�̂�
𝑖
(0) , 𝑐

𝑖
(0)) = argmax{L𝑖

0
𝜑

𝑖
(𝑥

𝑖
) +

𝑐
𝑖
(0)

𝛾
𝑖

𝛾𝑖
}

= argmax {ℎ𝑖
(𝜋

𝑖
(0) , 𝑐

𝑖
(0))} ,

(A.6)

where,

ℎ
𝑖
(𝜋

𝑖
(0) , 𝑐

𝑖
(0))

= −𝜌
𝑖
𝐶

𝑖
(0) (𝑥

𝑖
)

𝛾
𝑖

+ {(1 − 𝜏
𝑋 (0)) [𝜋

𝑖
(0)

⊤
(𝑏

𝑖
(0) − 𝑟 (0) 1) + 𝑟 (0)] 𝑥𝑖

− (1 + 𝜏
𝑐 (0)) 𝑐

𝑖
(0) } 𝐶

𝑖
(0) 𝛾

𝑖
(𝑥

𝑖
)

𝛾
𝑖
−1

+
1

𝛾𝑖
𝑐

𝑖
(0)

𝛾
𝑖

+
1

2
(1 − 𝜏

𝑋 (0))
2
𝜋

𝑖
(0)

⊤
𝜎 (0) (0)

⊤

× 𝜋
𝑖
(0) 𝐶

𝑖
(0) 𝛾

𝑖
(𝛾

𝑖
− 1) (𝑥

𝑖
)

𝛾
𝑖

.

(A.7)

Notice that ℎ𝑖 is concave in (𝜋𝑖
(0), 𝑐

𝑖
(0)), thus, the maximum

of ℎ𝑖 is attained via the following FOC:

𝜕ℎ
𝑖

𝜕𝜋𝑖
= (1 − 𝜏

𝑋 (0)) (𝑏
𝑖
(0) − 𝑟 (0) 1) 𝐶𝑖

(0) 𝛾
𝑖
(𝑥

𝑖
)

𝛾
𝑖

+ (1 − 𝜏
𝑋 (0))

2
𝜎 (0) 𝜎(0)

⊤

× 𝜋
𝑖
(0) 𝐶

𝑖
(0) 𝛾

𝑖
(𝛾

𝑖
− 1) (𝑥

𝑖
)

𝛾
𝑖

= 0,

𝜕ℎ
𝑖

𝜕𝑐𝑖
= − (1 + 𝜏

𝑐 (0)) 𝐶
𝑖
(0) 𝛾

𝑖
(𝑥

𝑖
)

𝛾
𝑖
−1

+ 𝑐
𝑖
(0)

𝛾
𝑖
−1
= 0.

(A.8)

Then one can easily get

�̂�
𝑖
(0) =

1

(1 − 𝜏
𝑋 (0)) (1 − 𝛾

𝑖)

× (𝜎 (0) 𝜎(0)
⊤
)

−1

(𝑏
𝑖
(0) − 𝑟 (0) 1) ,

𝑐
𝑖
(0) = [(1 + 𝜏𝑐 (0)) 𝛾

𝑖
𝐶

𝑖
(0)]

1/(𝛾
𝑖
−1)

𝑋
𝑖
(0) ,

(A.9)

noting that we should have

ℎ
𝑖
(�̂�

𝑖
(0) , 𝑐

𝑖
(0)) = 0, (A.10)

thus, we get

𝐶
𝑖
(0) =

(1 − 𝛾
𝑖
)

1−𝛾
𝑖

𝛾𝑖(1 + 𝜏
𝑐 (0))

𝛾
𝑖

× {𝜌
𝑖
− (1 − 𝜏

𝑋 (0))

× [�̂�
𝑖
(0)

⊤
(𝑏

𝑖
(0) − 𝑟 (0) 1) + 𝑟 (0)] 𝛾𝑖

+
1

2
(1 − 𝜏

𝑋 (0))
2
�̂�

𝑖
(0)

⊤

× 𝜎 (0) 𝜎(0)
⊤
�̂�

𝑖
(0) 𝛾

𝑖
(1 − 𝛾

𝑖
)}

𝛾
𝑖
−1

.

(A.11)

Consequently, applying the Markov properties of the solu-
tions, the desired results in Proposition 6 are established.

B. Proof of Lemma 10

Applying Itô’s rule to (15), we get


𝑋(𝑡)



2

2
=

𝑋(0)



2

2
+ 2∫

𝑡

0

⟨𝑓 (𝑋 (𝑠)) , 𝑋 (𝑠)⟩ 𝑑𝑠

+ ∫

𝑡

0


𝑔 (𝑋 (𝑠))



2

2
𝑑𝑠

+ 2∫

𝑡

0

⟨𝑋 (𝑠) , 𝑔 (𝑋 (𝑠)) 𝑑𝑊 (𝑠)⟩ ,

(B.1)
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thus, for some constant �̂� = �̂�(𝑝, 𝑇) > 0, which may change
at each occurrence throughout the proof, and 𝑡

1
∈ [0, 𝑇], we

obtain by using Assumption 5

sup
0≤𝑡≤𝑡1


𝑋(𝑡)



𝑝

2

≤ �̂�{

𝑋(0)



𝑝

2
+ [∫

𝑡1

0

�̂�

𝑋(𝑠)



2

2
𝑑𝑠]

𝑝/2

+ sup
0≤𝑡≤𝑡1



∫

𝑡

0

⟨𝑋 (𝑠) , 𝑔 (𝑋 (𝑠)) 𝑑𝑊 (𝑠)⟩



𝑝/2

} .

(B.2)

It follows from applying Cauchy-Schwarz inequality and
taking expectations on both sides that

E[ sup
0≤𝑡≤𝑡1


𝑋(𝑡)



𝑝

2
]

≤ �̂�{E

𝑋(0)



𝑝

2
+ E [∫

𝑡1

0


𝑋(𝑠)



𝑝

2
𝑑𝑠]

+ E[ sup
0≤𝑡≤𝑡1



∫

𝑡

0

⟨𝑋 (𝑠) , 𝑔 (𝑋 (𝑠)) 𝑑𝑊 (𝑠)⟩



𝑝/2

]} .

(B.3)

Applying the Burkholder-Davis-Gundy inequality (see [46],
pp. 166 ), we get

E[ sup
0≤𝑡≤𝑡1


𝑋(𝑡)



𝑝

2
]

≤ �̂�{E

𝑋(0)



𝑝

2
+ ∫

𝑡1

0

E

𝑋(𝑠)



𝑝

2
𝑑𝑠

+ E[∫
𝑡1

0


𝑋 (𝑠)



2

2


𝑔 (𝑋 (𝑠))



2

2
𝑑𝑠]

𝑝/4

} .

(B.4)

Next, by using the Young inequality (see [47]),
Assumption 5, and Hölder inequality, we see that for
�̂� given in (B.4)

E[∫
𝑡1

0


𝑋(𝑠)



2

2


𝑔(𝑋(𝑠))



2

2
𝑑𝑠]

𝑝/4

≤ E[ sup
0≤𝑡≤𝑡1


𝑋(𝑡)



𝑝/2

2
(∫

𝑡1

0


𝑔(𝑋(𝑠))



2

2
𝑑𝑠)

𝑝/4

]

≤
1

2�̂�

E[ sup
0≤𝑡≤𝑡1


𝑋(𝑡)



𝑝

2
] +

�̂�

2
E[∫

𝑡1

0


𝑔(𝑋(𝑠))



2

2
𝑑𝑠]

𝑝/2

≤
1

2�̂�

E[ sup
0≤𝑡≤𝑡1


𝑋(𝑡)



𝑝

2
] +

�̂�

2
�̂�

𝑝/2
E[∫

𝑡1

0


𝑋(𝑠)



2

2
𝑑𝑠]

𝑝/2

≤
1

2�̂�

E[ sup
0≤𝑡≤𝑡1


𝑋 (𝑡)



𝑝

2
] +

�̂�

2
�̂�

𝑝/2
𝑇

(𝑝−2)/2
E [∫

𝑡1

0


𝑋 (𝑠)



𝑝

2
𝑑𝑠].

(B.5)

Substituting this into (B.4) produces

E[ sup
0≤𝑡≤𝑇


𝑋(𝑡)



𝑝

2
] ≤ �̂� [E


𝑋 (0)



𝑝

2
+ ∫

𝑇

0

E

𝑋 (𝑠)



𝑝

2
𝑑𝑠] .

(B.6)

Thus, by applying Assumption 7 and the following fact (see,
[47])

E

𝑋(𝑡)



𝑝

2
≤ �̂� (𝑝, 𝑇) [1 + E


𝑋(0)



𝑝

2
] , (B.7)

by directly applying (B.7) to the right hand side of inequality
(B.6) to simplify the corresponding formula, which immedi-
ately gives rise to the desired assertion in the lemma.

C. Proof of Theorem 14

The idea of the proof comes fromHigham et al. [47]. Provided
Assumptions 2, 5, and Condition 1, and given the wealth
dynamics defined in (4) and (15), we get the corresponding
strong solutions

𝑋(𝑡) = 𝑋 (0) + ∫

𝑡

0

𝑓 (𝑋 (𝑠)) 𝑑𝑠 + ∫

𝑡

0

𝑔 (𝑋 (𝑠)) 𝑑𝑊 (𝑠) , (C.1)

𝑋 (𝑡) = 𝑋 (0) + ∫

𝑡

0

𝑓 (𝑋 (𝑠)) 𝑑𝑠 + ∫

𝑡

0

𝑔 (𝑋 (𝑠)) 𝑑𝑊 (𝑠) ,

(C.2)

respectively. By Lemmas 10 and 12, we can choose some
constant𝑀 = 𝑒 ∨ 𝑒 such that

E[ sup
0≤𝑡≤𝑇

‖𝑋(𝑡)‖
𝑝

2
] ∨ E[ sup

0≤𝑡≤𝑇


𝑋(𝑡)



𝑝

2
] ≤ 𝑀, (C.3)

using Assumption 2 and Condition 1, one can choose 𝑀 =

𝑅 ∨ �̂� such that ‖𝑋(𝑡)‖
2
∨ ‖𝑋(𝑡)‖

2
≤ 𝑀, ∀𝑡 ≥ 0,

otherwise we just consider 𝑋(𝑡) ∧ 1
𝑀

and 𝑋(𝑡) ∧ 1
𝑀

with
1

𝑀
= (𝑀,𝑀, . . . ,𝑀)

⊤ instead of𝑋(𝑡) and𝑋(𝑡), respectively,
and then send 𝑀 into infinity by applying the well-known
Lebesgue dominated convergence theorem. In what follows,
we proceed by first defining the following stopping times:

𝜏
𝑀
= inf {𝑡 ≥ 0; 𝑋(𝑡)

2
≥ 𝑀} ,

𝜏
𝑀
= inf {𝑡 ≥ 0; ‖𝑋(𝑡)‖2

≥ 𝑀} ,

𝜏
𝑀
= 𝜏

𝑀
∧ 𝜏

𝑀
.

(C.4)
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Then by the Young inequality (see, [47]) and for any 𝜐 > 0

E[ sup
0≤𝑡≤𝑇


𝑋(𝑡) − 𝑋(𝑡)



2

2
]

= E[ sup
0≤𝑡≤𝑇


𝑋 (𝑡) − 𝑋 (𝑡)



2

2
𝜒

{𝜏
𝑀

>𝑇,𝜏
𝑀

>𝑇}
]

+ E[ sup
0≤𝑡≤𝑇


𝑋(𝑡) − 𝑋(𝑡)



2

2
𝜒

{𝜏
𝑀

≤𝑇,𝜏
𝑀

≤𝑇}
]

≤ E[ sup
0≤𝑡≤𝑇


𝑋(𝑡 ∧ 𝜏

𝑀
) − 𝑋(𝑡 ∧ 𝜏

𝑀
)


2

2

𝜒
{𝜏
𝑀

>𝑇}
]

+
2𝜐

𝑝
E[ sup

0≤𝑡≤𝑇


𝑋 (𝑡) − 𝑋 (𝑡)



𝑝

2
]

+
1 − (2/𝑝)

𝜐2/(𝑝−2)
P {𝜏

𝑀
≤ 𝑇, or 𝜏𝑀

≤ 𝑇} ,

(C.5)

where 𝜒
{⋅}
denotes indicator function of set {⋅}. And it follows

from (C.3) that

P {𝜔; 𝜏
𝑀
(𝜔) ≤ 𝑇}

= E
[
[

[

𝜒
{𝜏
𝑀

≤𝑇}


𝑋(𝜏

𝑀
)


𝑝

2

𝑀
𝑝

]
]

]

≤
1

𝑀
𝑝
E[ sup

0≤𝑡≤𝑇


𝑋(𝑡)



𝑝

2
] ≤

𝑀

𝑀
𝑝
.

(C.6)

And similarly, P{𝜔; 𝜏𝑀
(𝜔) ≤ 𝑇} ≤ 𝑀/𝑀

𝑝. So we have

P {𝜔; 𝜏
𝑀
(𝜔) ≤ 𝑇, or 𝜏𝑀

(𝜔) ≤ 𝑇}

≤ P {𝜔; 𝜏
𝑀
(𝜔) ≤ 𝑇} + P {𝜔; 𝜏

𝑀
(𝜔) ≤ 𝑇} ≤

2𝑀

𝑀
𝑝
.

(C.7)

Thus, we obtain

E[ sup
0≤𝑡≤𝑇


𝑋(𝑡) − 𝑋(𝑡)



𝑝

2
]

≤ 2
𝑝−1

E[ sup
0≤𝑡≤𝑇

(

𝑋(𝑡)



𝑝

2
+ ‖𝑋(𝑡)‖

𝑝

2
)] ≤ 2

𝑝
𝑀.

(C.8)

Hence, (C.5) becomes

E[ sup
0≤𝑡≤𝑇


𝑋(𝑡) − 𝑋(𝑡)



2

2
]

≤ E[ sup
0≤𝑡≤𝑇


𝑋(𝑡 ∧ 𝜏

𝑀
) − 𝑋(𝑡 ∧ 𝜏

𝑀
)


2

2

]

+
2

𝑝+1
𝜐𝑀

𝑝
+
2 (𝑝 − 2)𝑀

𝑝𝜐2/(𝑝−2)𝑀
𝑝
.

(C.9)

Thus, by using Cauchy-Schwarz inequality and Assumptions
2 and 13, we have


𝑋(𝑡 ∧ 𝜏

𝑀
) − 𝑋(𝑡 ∧ 𝜏

𝑀
)


2

2

=



[𝑋 (0) − 𝑋 (0)] + ∫

𝑡∧𝜏
𝑀

0

[𝑓 (𝑋 (𝑠)) − 𝑓 (𝑋 (𝑠))] 𝑑𝑠

+∫

𝑡∧𝜏
𝑀

0

[𝑔(𝑋(𝑠)) − 𝑔(𝑋(𝑠))] 𝑑𝑊(𝑠)



2

2

≤ 2[

[


𝑋(0) − 𝑋(0)



2

2

+ 𝑇∫

𝑡∧𝜏
𝑀

0


𝑓(𝑋(𝑠)) − 𝑓(𝑋(𝑠))



2

2
𝑑𝑠

+



∫

𝑡∧𝜏
𝑀

0

[𝑔 (𝑋 (𝑠)) − 𝑔 (𝑋 (𝑠))] 𝑑𝑊 (𝑠)



2

2

]

]

.

(C.10)

Taking expectation on both sides and applying the Itô
isometry reveals

E[

𝑋(𝑡 ∧ 𝜏

𝑀
) − 𝑋(𝑡 ∧ 𝜏

𝑀
)


2

2

]

≤ 4E[

𝑋(0) − 𝑋(0)



2

2

+ 𝑇∫

𝑡∧𝜏
𝑀

0


𝑓(𝑋(𝑠)) − 𝑓(𝑋(𝑠))



2

2
𝑑𝑠

+ 𝑇∫

𝑡∧𝜏
𝑀

0


𝑓(𝑋(𝑠)) − 𝑓(𝑋(𝑠))



2

2
𝑑𝑠

+ ∫

𝑡∧𝜏
𝑀

0


𝑔(𝑋(𝑠)) − 𝑔(𝑋(𝑠))



2

2
𝑑𝑠

+∫

𝑡∧𝜏
𝑀

0


𝑔 (𝑋 (𝑠)) − 𝑔 (𝑋 (𝑠))



2

2
𝑑𝑠]

≤ 4E[

𝑋(0) − 𝑋(0)



2

2
+ 𝑇𝐿

𝑅
∫

𝑡∧𝜏
𝑀

0


𝑋(𝑠) − 𝑋(𝑠)



2

2
𝑑𝑠

+ 𝑇𝐾∫

𝑡∧𝜏
𝑀

0


𝑋 (𝑠)



2

2
𝑑𝑠 + 𝐿

𝑅
∫

𝑡∧𝜏
𝑀

0


𝑋(𝑠) − 𝑋(𝑠)



2

2
𝑑𝑠

+𝐾∫

𝑡∧𝜏
𝑀

0


𝑋 (𝑠)



2

2
𝑑𝑠] .

(C.11)
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Thus, by Assumptions 1 and 7, for any 𝜏 ≤ 𝑇, we have

E[ sup
0≤𝑡≤𝜏


𝑋(𝑡 ∧ 𝜏

𝑀
) − 𝑋(𝑡 ∧ 𝜏

𝑀
)


2

2

]

≤ 4[E

𝑋(0) − 𝑋(0)



2

2
+ (𝑇 + 1) 𝐿𝑅

E

× ∫

𝑡∧𝜏
𝑀

0


𝑋(𝑠) − 𝑋(𝑠)



2

2
𝑑𝑠

+ (𝑇 + 1)𝐾∫

𝑡∧𝜏
𝑀

0

E

𝑋 (𝑠)



2

2
𝑑𝑠]

≤ 4

𝑋 (0) − 𝑋 (0)



2

2
+ 4 (𝑇 + 1) 𝐿𝑅

× ∫

𝜏

0

E[ sup
0≤𝑡0≤𝑠


𝑋 (𝑡

0
∧ 𝜏

𝑀
) − 𝑋(𝑡

0
∧ 𝜏

𝑀
)


2

2

]𝑑𝑠

+ 4 (𝑇 + 1)𝐾∫

𝑇

0

E

𝑋(𝑠)



2

2
𝑑𝑠.

(C.12)

So the Gronwall’s inequality (see, [47]) yields

E[ sup
0≤𝑡≤𝜏


𝑋(𝑡 ∧ 𝜏

𝑀
) − 𝑋(𝑡 ∧ 𝜏

𝑀
)


2

2

]

≤ 4 [

𝑋(0) − 𝑋(0)



2

2
+ (𝑇 + 1)𝐾∫

𝑇

0

E

𝑋(𝑠)



2

2
𝑑𝑠]

× 𝑒
4(𝑇+1)𝐿𝑅 .

(C.13)

Inserting this into (C.9) gives

E[ sup
0≤𝑡≤𝑇


𝑋(𝑡) − 𝑋(𝑡)



2

2
]

≤ 4 [

𝑋 (0) − 𝑋 (0)



2

2
+ (𝑇 + 1)𝐾∫

𝑇

0

E

𝑋 (𝑠)



2

2
𝑑𝑠]

× 𝑒
4(𝑇+1)𝐿𝑅 +

2
𝑝+1
𝜐𝑀

𝑝
+
2 (𝑝 − 2)𝑀

𝑝𝜐2/(𝑝−2)𝑀
𝑝
.

(C.14)

Hence, for ∀𝜀 > 0, we can choose some 𝜐 and𝑀 such that

2
𝑝+1
𝜐𝑀

𝑝
≤
𝜀

4
,

2 (𝑝 − 2)𝑀

𝑝𝜐2/(𝑝−2)𝑀
𝑝
≤
𝜀

4
. (C.15)

Noting that 𝑋(𝑡), defined in (15), is a vector of Geomet-
ric Brownian motions, which combines with Assumption 7
shows that for any given 𝑇 > 0 and 𝑀 > 0, there is a
𝛿

1
(𝑇,𝑀) > 0 such that if ∨𝐼

𝑖=1
𝑥

𝑖
< 𝛿

1
(𝑇,𝑀), then we have

4𝑒
4(𝑇+1)𝐿𝑅

(𝑇 + 1)𝐾∫

𝑇

0

E

𝑋(𝑠)



2

2
𝑑𝑠 ≤

𝜀

4
. (C.16)

Moreover, we can choose 𝛿
2
(𝑇,𝑀) > 0 such that if ‖𝑥 − 𝑥‖2

2
<

𝛿
2
(𝑇,𝑀), then we have

4𝑒
4(𝑇+1)𝐿𝑅


𝑋(0) − 𝑋(0)



2

2
≤
𝜀

4
. (C.17)

To summarize, we obtain the desired results in the theorem,
that is,

E[ sup
0≤𝑡≤𝑇


𝑋(𝑡) − 𝑋(𝑡)



2

2
] ≤ 𝜀. (C.18)

Moreover, noting that, for any given𝑀, lim
𝑇 → ∞

𝛿
𝑖
(𝑇,𝑀) =

0 (∀𝑖 = 1, 2), thus, we have

lim
𝑇 → ∞

E[ sup
0≤𝑡≤𝑇


𝑋(𝑡) − 𝑋(𝑡)



2

2
] = 0. (C.19)

Applying the well-known Levi lemma leads us to

E[ lim
𝑇 → ∞

sup
0≤𝑡≤𝑇


𝑋(𝑡) − 𝑋(𝑡)



2

2
] = 0, (C.20)

which completes the proof.

D. Proof of Corollary 17

By (29), we get

𝑐 (𝑡) = diag (�̂�1
(𝑡) , . . . , �̂�

𝐼
(𝑡))𝑋 (𝑡) , (D.1)

and we put

�̂� (𝑡) = (�̂�
1
(𝑡) , . . . , �̂�

𝐼
(𝑡))

⊤

. (D.2)

Similarly, by (32), we obtain

𝑐 (𝑡) = diag (𝜆1
(𝑡) , . . . , 𝜆

𝐼
(𝑡))𝑋 (𝑡) , (D.3)

and we put

𝜆 (𝑡) = (𝜆
1
(𝑡) , . . . , 𝜆

𝐼
(𝑡))

⊤

. (D.4)
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Thus, we get

‖𝑐(𝑡) − 𝑐(𝑡)‖
2

2

=

diag(𝜆1

(𝑡), . . . , 𝜆
𝐼
(𝑡))𝑋(𝑡) − diag(�̂�1

(𝑡), . . . , �̂�
𝐼
(𝑡))𝑋(𝑡)



2

2

=

diag (𝜆1

(𝑡) , . . . , 𝜆
𝐼
(𝑡))𝑋 (𝑡)

− diag (𝜆1
(𝑡) , . . . , 𝜆

𝐼
(𝑡))𝑋 (𝑡)

+ diag (𝜆1
(𝑡) , . . . , 𝜆

𝐼
(𝑡))𝑋 (𝑡)

− diag(�̂�1
(𝑡), . . . , �̂�

𝐼
(𝑡))𝑋(𝑡)



2

2

≤ 2

diag(𝜆1

(𝑡), . . . , 𝜆
𝐼
(𝑡))(𝑋(𝑡) − 𝑋(𝑡))



2

2

+ 2

diag(𝜆1

(𝑡) − �̂�
1
(𝑡), . . . , 𝜆

𝐼
(𝑡) − �̂�

𝐼
(𝑡))𝑋(𝑡)



2

2

≤ 2

diag(𝜆1

(𝑡), . . . , 𝜆
𝐼
(𝑡))


2

2


𝑋(𝑡) − 𝑋(𝑡)



2

2

+ 2

diag(𝜆1

(𝑡) − �̂�
1
(𝑡), . . . , 𝜆

𝐼
(𝑡) − �̂�

𝐼
(𝑡))


2

2


𝑋(𝑡)



2

2

= 2‖𝜆 (𝑡)‖
2

2


𝑋 (𝑡) − 𝑋 (𝑡)



2

2
+ 2

𝜆 (𝑡) − �̂� (𝑡)



2

2


𝑋 (𝑡)



2

2
.

(D.5)

Noting that

‖𝜆(𝑡)‖
2

2
≤ 𝐼,


𝜆(𝑡) − �̂�(𝑡)



2

2
≤ 2 (‖𝜆(𝑡)‖

2

2
+

�̂�(𝑡)



2

2
) ≤ 4𝐼.

(D.6)

Then, we have

‖𝑐(𝑡) − 𝑐(𝑡)‖
2

2
≤ 2𝐼


𝑋(𝑡) − 𝑋(𝑡)



2

2
+ 8𝐼


𝑋(𝑡)



2

2
, (D.7)

hence, we get

E[ sup
0≤𝑡≤𝑇

‖𝑐(𝑡) − 𝑐(𝑡)‖
2

2
]

≤ 2𝐼E[ sup
0≤𝑡≤𝑇


𝑋(𝑡) − 𝑋(𝑡)



2

2
] + 8𝐼E[ sup

0≤𝑡≤𝑇


𝑋(𝑡)



2

2
] .

(D.8)

Based on the assumptions and conclusions of Theorem 14,
one can show that, for ∀𝜀 > 0,

E[ sup
0≤𝑡≤𝑇


𝑋(𝑡) − 𝑋(𝑡)



2

2
] ≤

𝜀

4𝐼
,

E[ sup
0≤𝑡≤𝑇


𝑋(𝑡)



2

2
] ≤

𝜀

16𝐼
.

(D.9)

To sum up, we have

E[ sup
0≤𝑡≤𝑇

‖𝑐(𝑡) − 𝑐(𝑡)‖
2

2
] ≤

𝜀

2
+
𝜀

2
= 𝜀. (D.10)

Furthermore, similar to the proof of Theorem 14, we also get
by using Levi lemma

E[ lim
𝑇 → ∞

sup
0≤𝑡≤𝑇

‖𝑐(𝑡) − 𝑐(𝑡)‖
2

2
] = 0. (D.11)

This completes the proof.

E. Proof of Corollary 18

Noting that

Ψ (𝑡) = (
𝑐 (𝑡)

𝑋 (𝑡)
) = (

diag (𝜆1
(𝑡) , . . . , 𝜆

𝐼
(𝑡))

I
𝐼×𝐼

)𝑋 (𝑡)

= A𝑋 (𝑡) ,

Ψ̂ (𝑡) = (
𝑐 (𝑡)

𝑋 (𝑡)
) = (

diag (�̂�1
(𝑡) , . . . , �̂�

𝐼
(𝑡))

I
𝐼×𝐼

)𝑋 (𝑡)

= Â𝑋 (𝑡) .

(E.1)

Thus,

Ψ(𝑡) − Ψ̂(𝑡)



2

2

=

A𝑋(𝑡) − Â𝑋(𝑡)

2

2

=

A𝑋(𝑡) − A𝑋(𝑡) + A𝑋(𝑡) − Â𝑋(𝑡)

2

2

≤ 2

A(𝑋(𝑡) − 𝑋(𝑡))

2

2
+ 2

(A − Â)𝑋(𝑡)

2

2

≤ 2‖A‖2

2


𝑋(𝑡) − 𝑋(𝑡)



2

2
+ 2

A − Â

2

2


𝑋(𝑡)



2

2

= 2 (‖𝜆 (𝑡)‖
2

2
+ 𝐼)


𝑋 (𝑡) − 𝑋 (𝑡)



2

2

+ 2

𝜆 (𝑡) − �̂� (𝑡)



2

2


𝑋 (𝑡)



2

2

≤ 4𝐼

𝑋(𝑡) − 𝑋(𝑡)



2

2
+ 8𝐼


𝑋(𝑡)



2

2
.

(E.2)

Then we have

E[ sup
0≤𝑡≤𝑇


Ψ(𝑡) − Ψ̂(𝑡)



2

2
]

≤ 4𝐼E[ sup
0≤𝑡≤𝑇


𝑋(𝑡) − 𝑋(𝑡)



2

2
] + 8𝐼E[ sup

0≤𝑡≤𝑇


𝑋(𝑡)



2

2
] .

(E.3)

Based upon the assumptions and conclusions ofTheorem 14,
one can choose conditions such that, for ∀𝜀 > 0,

E[ sup
0≤𝑡≤𝑇


𝑋(𝑡) − 𝑋 (𝑡)



2

2
] ≤

𝜀

8𝐼
,

E[ sup
0≤𝑡≤𝑇


𝑋(𝑡)



2

2
] ≤

𝜀

16𝐼
.

(E.4)

Therefore, we get

E[ sup
0≤𝑡≤𝑇


Ψ(𝑡) − Ψ̂(𝑡)



2

2
] ≤

𝜀

2
+
𝜀

2
= 𝜀. (E.5)
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Moreover, similar to the proof of Theorem 14, we get by
applying the well-known Levi lemma

E[ lim
𝑇 → ∞

sup
0≤𝑡≤𝑇


Ψ(𝑡) − Ψ̂(𝑡)



2

2
] = 0, (E.6)

which gives the desired result.

F. Proof of Corollary 19

We define

�̂� (𝑡, 𝜏
1
(𝑡)) = (�̂�

1
(𝑡, 𝜏

1
(𝑡)) , . . . , �̂�

𝐼
(𝑡, 𝜏

1
(𝑡)))

⊤

,

�̂� (𝑡, 𝜏
2
(𝑡)) = (�̂�

1
(𝑡, 𝜏

2
(𝑡)) , . . . , �̂�

𝐼
(𝑡, 𝜏

2
(𝑡)))

⊤

.

(F.1)

Then we get

𝑐(𝑡, 𝜏

1
(𝑡)) − 𝑐(𝑡, 𝜏

2
(𝑡))


2

2

=

diag (�̂�1

(𝑡, 𝜏
1
(𝑡)) , . . . , �̂�

𝐼
(𝑡, 𝜏

1
(𝑡)))𝑋 (𝑡, 𝜏

1
(𝑡))

− diag(�̂�1
(𝑡, 𝜏

2
(𝑡)), . . . , �̂�

𝐼
(𝑡, 𝜏

2
(𝑡)))𝑋(𝑡, 𝜏

2
(𝑡))


2

2

≤ 2

diag(�̂�1

(𝑡, 𝜏
1
(𝑡)), . . . , �̂�

𝐼
(𝑡, 𝜏

1
(𝑡)))𝑋(𝑡, 𝜏

1
(𝑡))


2

2

+ 2

diag(�̂�1

(𝑡, 𝜏
2
(𝑡)), . . . , �̂�

𝐼
(𝑡, 𝜏

2
(𝑡)))𝑋(𝑡, 𝜏

2
(𝑡))


2

2

≤ 2

diag(�̂�1

(𝑡, 𝜏
1
(𝑡)), . . . , �̂�

𝐼
(𝑡, 𝜏

1
(𝑡)))



2

2


𝑋(𝑡, 𝜏

1
(𝑡))


2

2

+ 2

diag (�̂�1

(𝑡, 𝜏
2
(𝑡)) , . . . , �̂�

𝐼
(𝑡, 𝜏

2
(𝑡)))



2

2


𝑋 (𝑡, 𝜏

2
(𝑡))



2

2

= 2

�̂�(𝑡, 𝜏

1
(𝑡))


2

2


𝑋(𝑡, 𝜏

1
(𝑡))


2

2

+ 2

�̂� (𝑡, 𝜏

2
(𝑡))



2

2


𝑋 (𝑡, 𝜏

2
(𝑡))



2

2

≤ 2𝐼 (

𝑋 (𝑡, 𝜏

1
(𝑡))



2

2
+

𝑋 (𝑡, 𝜏

2
(𝑡))



2

2
) .

(F.2)
Thus, based upon the assumptions similar to Theorem 14,
for ∀𝜀 > 0, there exist 𝛿

1
(𝑇), 𝛿

2
(𝑇) > 0 such that if

∨
𝐼

𝑖=1
𝑋(0, 𝜏

1
(0)) < 𝛿

1
(𝑇) and ∨𝐼

𝑖=1
𝑋(0, 𝜏

2
(0)) < 𝛿

2
(𝑇), then

we have

𝑋(𝑡, 𝜏

1
(𝑡))


2

2
≤
𝜀

4𝐼
,


𝑋 (𝑡, 𝜏

2
(𝑡))



2

2
≤
𝜀

4𝐼
. (F.3)

To summarize, we get

𝑐(𝑡, 𝜏

1
(𝑡)) − 𝑐(𝑡, 𝜏

2
(𝑡))


2

2
≤
𝜀

2
+
𝜀

2
= 𝜀, ∀0 ≤ 𝑡 ≤ 𝑇. (F.4)

Then we obtain

E[ sup
0≤𝑡≤𝑇


𝑐(𝑡, 𝜏

1
(𝑡)) − 𝑐 (𝑡, 𝜏

2
(𝑡))



2

2
] ≤ 𝜀. (F.5)

Moreover, similar to the assumption and proof of
Theorem 14, we get by using the well-known Levi lemma

E[ lim
𝑇 → ∞

sup
0≤𝑡≤𝑇


𝑐(𝑡, 𝜏

1
(𝑡)) − 𝑐 (𝑡, 𝜏

2
(𝑡))



2

2
] = 0, (F.6)

which completes the proof.

G. Proof of Theorem 23

By using Itô’s rule and (31), one gets

‖𝑐(𝑡) − 𝑐(𝑡)‖
2

2
= ‖𝑐(0) − 𝑐(0)‖

2

2

+ 2∫

𝑡

0

⟨𝑐 (𝑠) − 𝑐 (𝑠) , ∇𝑠
𝑐 (𝑠)⟩ 𝑑𝑠

+ 2∫

𝑡

0

⟨𝑐 (𝑠) − 𝑐 (𝑠) , 𝑓 (𝑋 (𝑠))⟩ 𝑑𝑠

+ ∫

𝑡

0


𝑔 (𝑋 (𝑠))



2

2
𝑑𝑠

+ 2∫

𝑡

0

⟨𝑐 (𝑠) − 𝑐 (𝑠) , 𝑔 (𝑋 (𝑠)) 𝑑𝑊 (𝑠)⟩ .

(G.1)

Then, by applying Assumption 20, for some constant 𝜉 =

𝜉(𝑝, 𝑇) > 0, which may be different from line to line
throughout the proof, and for 𝑡

1
∈ [0, 𝑇]

sup
0≤𝑡≤𝑡1

‖𝑐(𝑡) − 𝑐(𝑡)‖
𝑝

2

≤ 𝜉{‖𝑐(0) − 𝑐(0)‖
𝑝

2
+ 𝐻

𝑝
[∫

𝑡1

0


𝑋(𝑠)



2

2
𝑑𝑠]

𝑝/2

+ [∫

𝑡1

0

⟨𝑐(𝑠) − 𝑐(𝑠), ∇𝑠
𝑐(𝑠)⟩

 𝑑𝑠]

𝑝/2

+ [∫

𝑡1

0


⟨𝑐(𝑠) − 𝑐(𝑠), 𝑓(𝑋(𝑠))⟩


𝑑𝑠]

𝑝/2

+ sup
0≤𝑡≤𝑡1



∫

𝑡

0

⟨𝑐 (𝑠) − 𝑐 (𝑠) , 𝑔 (𝑋 (𝑠)) 𝑑𝑊 (𝑠)⟩



𝑝/2

} .

(G.2)

It follows from Cauchy-Schwarz inequality that

sup
0≤𝑡≤𝑡1

‖𝑐(𝑡) − 𝑐(𝑡)‖
𝑝

2

≤ 𝜉{‖𝑐(0) − 𝑐(0)‖
𝑝

2
+ [∫

𝑡1

0

‖𝑐(𝑠) − 𝑐(𝑠)‖2

∇𝑠
𝑐(𝑠)

2
𝑑𝑠]

𝑝/2

+ ∫

𝑡1

0


𝑋 (𝑠)



𝑝

2
𝑑𝑠

+ [∫

𝑡1

0

‖𝑐(𝑠) − 𝑐(𝑠)‖2


𝑓(𝑋(𝑠))

2
𝑑𝑠]

𝑝/2

+ sup
0≤𝑡≤𝑡1



∫

𝑡

0

⟨𝑐(𝑠) − 𝑐(𝑠), 𝑔(𝑋(𝑠))𝑑𝑊(𝑠)⟩



𝑝/2

} .

(G.3)
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By Young inequality (see, [47]), we get

[∫

𝑡1

0

‖𝑐(𝑠) − 𝑐(𝑠)‖2

∇𝑠
𝑐(𝑠)

2
𝑑𝑠]

𝑝/2

≤ sup
0≤𝑡≤𝑡1

‖𝑐(𝑡) − 𝑐(𝑡)‖
𝑝/2

2
[∫

𝑡1

0

∇𝑠
𝑐(𝑠)

2
𝑑𝑠]

𝑝/2

≤
1

4𝜉
sup

0≤𝑡≤𝑡1

‖𝑐 (𝑡) − 𝑐 (𝑡)‖
𝑝

2
+ 𝜉[∫

𝑡1

0

∇𝑠
𝑐 (𝑠)

2
𝑑𝑠]

𝑝

.

(G.4)

Similarly, using Young inequality (see, [47]) and
Assumption 20, we obtain

[∫

𝑡1

0

‖𝑐(𝑠) − 𝑐(𝑠)‖2


𝑓(𝑋(𝑠))

2
𝑑𝑠]

𝑝/2

≤
1

4𝜉
sup

0≤𝑡≤𝑡1

‖𝑐 (𝑡) − 𝑐 (𝑡)‖
𝑝

2
+ 𝜉𝐻

𝑝
[∫

𝑡1

0


𝑋 (𝑠)

2
𝑑𝑠]

𝑝

.

(G.5)

Substituting (G.4) and (G.5) into (G.3) gives

sup
0≤𝑡≤𝑡1

‖𝑐(𝑡) − 𝑐(𝑡)‖
𝑝

2

≤ 𝜉{‖𝑐(0) − 𝑐(0)‖
𝑝

2
+ [∫

𝑡1

0

∇𝑠
𝑐(𝑠)

2
𝑑𝑠]

𝑝

+ ∫

𝑡1

0


𝑋(𝑠)



𝑝

2
𝑑𝑠 + [∫

𝑡1

0


𝑋(𝑠)

2
𝑑𝑠]

𝑝

+ sup
0≤𝑡≤𝑡1



∫

𝑡

0

⟨𝑐 (𝑠) − 𝑐 (𝑠) , 𝑔 (𝑋 (𝑠)) 𝑑𝑊 (𝑠)⟩



𝑝/2

} .

(G.6)

Taking expectations on both sides and applying Burkholder-
Davis-Gundy inequality (see, [46], pp.166) show

E[ sup
0≤𝑡≤𝑡1

‖𝑐(𝑡) − 𝑐(𝑡)‖
𝑝

2
]

≤ 𝜉{E‖𝑐(0) − 𝑐(0)‖
𝑝

2
+ E[∫

𝑡1

0

∇𝑠
𝑐(𝑠)

2
𝑑𝑠]

𝑝

+ ∫

𝑡1

0

E

𝑋(𝑠)



𝑝

2
𝑑𝑠 + E[∫

𝑡1

0


𝑋(𝑠)

2
𝑑𝑠]

𝑝

+ E[∫
𝑡1

0

‖𝑐(𝑠) − 𝑐(𝑠)‖
2

2


𝑔(𝑋(𝑠))



2

2
𝑑𝑠]

𝑝/4

} .

(G.7)

Next, by using the Young inequality (see, [47]), Hölder
inequality, and Assumption 20, we see that

E[∫
𝑡1

0

‖𝑐(𝑠) − 𝑐(𝑠)‖
2

2


𝑔(𝑋(𝑠))



2

2
𝑑𝑠]

𝑝/4

≤ E[ sup
0≤𝑡≤𝑡1

‖𝑐(𝑡) − 𝑐(𝑡)‖
𝑝/2

2
(∫

𝑡1

0


𝑔(𝑋(𝑠))



2

2
𝑑𝑠)

𝑝/4

]

≤
1

2𝜉
E[ sup

0≤𝑡≤𝑡1

‖𝑐(𝑡) − 𝑐(𝑡)‖
𝑝

2
] +

𝜉

2
𝐻

𝑝
E[∫

𝑡1

0


𝑋(𝑠)



2

2
𝑑𝑠]

𝑝/2

≤
1

2𝜉
E[ sup

0≤𝑡≤𝑡1

‖𝑐 (𝑡) − 𝑐 (𝑡)‖
𝑝

2
]

+
𝜉

2
𝐻

𝑝
𝑇

(𝑝−2)/2
E [∫

𝑡1

0


𝑋 (𝑠)



𝑝

2
𝑑𝑠] .

(G.8)

Substituting this into (G.7) produces

E[ sup
0≤𝑡≤𝑡1

‖𝑐(𝑡) − 𝑐(𝑡)‖
𝑝

2
]

≤ 𝜉{E‖𝑐(0) − 𝑐(0)‖
𝑝

2
+ E[∫

𝑡1

0

∇𝑠
𝑐(𝑠)

2
𝑑𝑠]

𝑝

+∫

𝑡1

0

E

𝑋(𝑠)



𝑝

2
𝑑𝑠 + E[∫

𝑡1

0


𝑋(𝑠)

2
𝑑𝑠]

𝑝

} .

(G.9)

Using the well-known Hölder inequality again reveals

E[ sup
0≤𝑡≤𝑇

‖𝑐(𝑡) − 𝑐(𝑡)‖
𝑝

2
]

≤ 𝜉{E‖𝑐 (0) − 𝑐 (0)‖
𝑝

2
+∫

𝑇

0

E

𝑋 (𝑡)



𝑝

2
𝑑𝑡 + ∫

𝑇

0

E
∇𝑡
𝑐 (𝑡)



𝑝

2
𝑑𝑡}.

(G.10)

Thus, by Assumptions 21 and 22, we have, for ∀𝜀 > 0,

E‖𝑐(0) − 𝑐(0)‖
𝑝

2
≤
𝜀

3𝜉
, ∫

𝑇

0

E
∇𝑡
𝑐(𝑡)



𝑝

2
𝑑𝑡 ≤

𝜀

3𝜉
. (G.11)

Similar toTheorem 14, if there exists 𝛿(𝑇) > 0 such that when
∨

𝐼

𝑖=1
𝑥

𝑖
< 𝛿(𝑇), we must have

∫

𝑇

0

E

𝑋(𝑡)



𝑝

2
𝑑𝑡 ≤

𝜀

3𝜉
. (G.12)

Thus, to sum up

E[ sup
0≤𝑡≤𝑇

‖𝑐 (𝑡) − 𝑐 (𝑡)‖
𝑝

2
] ≤

𝜀

3
+
𝜀

3
+
𝜀

3
= 𝜀. (G.13)

Moreover, if we have lim
𝑇 → ∞

𝛿(𝑇) = 0, then we get

lim
𝑇 → ∞

E[ sup
0≤𝑡≤𝑇

‖𝑐(𝑡) − 𝑐(𝑡)‖
𝑝

2
] = 0, (G.14)
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which yields by using the well-known Levi lemma

E[ lim
𝑇 → ∞

sup
0≤𝑡≤𝑇

‖𝑐(𝑡) − 𝑐(𝑡)‖
𝑝

2
] = 0, (G.15)

which gives the desired result.
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