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We present a two-parameter family ofminimal surfaces constructed by lifting a family of planar harmonicmappings. In the process,
we use theClunie and Sheil-Small shear construction for planar harmonicmappings convex in one direction.This family ofminimal
surfaces, through a continuous transformation, has connections with three well-known surfaces: Enneper’s surface, the wavy plane,
and the helicoid.Moreover, the identification process used to recognize the surfaces provides a connection to surfaces that give tight
bounds on curvature estimates first studied in a 1988 work by Hengartner and Schober.

1. Introduction

A recent approach to investigate minimal surfaces in R3 has
utilized results about harmonic mappings in the plane [1–7].
Specifically, the Weierstrass-Enneper representation which
provides a formula for the local representation of a minimal
surface inR3 is used, but in most cases the authors have been
unable to identify the minimal graphs constructed from the
corresponding planar harmonic mapping. For example, in
[5], Hengartner and Schober found curvature estimates for
any minimal surface lying over a strip domain, a half-plane,
and a slit plane with one slit lying on the real axis. For each
domain, they found surfaces for which the estimates were
sharp; however, they were only able to identify the surface
providing the tight bounds for one of the three domains. In
this paper, we identify the remaining two surfaces. Moreover,
we construct a family of minimal graphs associated with a
family of harmonic mappings built through the Clunie and
Sheil-Small shear construction [8]. This process leads to a
connection between three well-known surfaces: the Enneper
surface, the wavy plane, and the helicoid. Using conjugate
surfaces provides a further identification method between
harmonic mappings and minimal surfaces. In doing so, we
extend the familymentioned above to a two-parameter family
of minimal graphs.

2. Background

We begin with background on harmonic functions defined
on the open unit disk D = {𝑧 ∈ C : |𝑧| < 1}. Let H

0
(D)

be the set of analytic functions on D that fix zero. Define 𝑆 as
the set of functions 𝑓 ∈ H

0
(D) which are univalent and have

the additional normalization𝑓

󸀠
(0) = 1. A harmonic function

𝑓 : D → C with 𝑓(0) = 0 can be uniquely represented as
𝑓 = ℎ+𝑔with ℎ, 𝑔 ∈ H

0
(D). Furthermore, if we write𝑓(𝑧) =

𝑓(𝑥+ 𝑖𝑦) = 𝑢(𝑥, 𝑦)+ 𝑖V(𝑥, 𝑦), then 𝑓 is sense preserving if the
Jacobian, 𝐽

𝑓
, of the mapping (𝑥, 𝑦) 󳨃→ (𝑢, V) is positive. The

function 𝑓 is locally univalent if 𝐽
𝑓
never vanishes in D. By a

result of Lewy [9], 𝑓 = ℎ + 𝑔 is locally univalent and sense
preserving if and only if |𝑔

󸀠
(𝑧)| < |ℎ

󸀠
(𝑧)| for all 𝑧 ∈ D. In

this case, we simply say 𝑓 is locally univalent. In addition, we
call 𝑓 univalent if 𝑓 is one-to-one and sense preserving in D.
Let 𝑆

0

𝐻
be the family of harmonic univalent functions on D

of the form 𝑓 = ℎ + 𝑔 with ℎ(0) = 𝑔(0) = 𝑔

󸀠
(0) = 0 and

ℎ

󸀠
(0) = 1. Clearly 𝑆 ⊊ 𝑆

0

𝐻
. The dilatation of 𝑓 ∈ 𝑆

0

𝐻
is the

function 𝜔 : D → C given by 𝜔(𝑧) = 𝑔

󸀠
(𝑧)/ℎ

󸀠
(𝑧).

We recall that a domain𝐷 is convex in the direction of 𝜑,
𝜑 ∈ [0, 𝜋), if every line parallel to the line through 0 and 𝑒

𝑖𝜑

has a connected intersection with 𝐷, and a domain 𝐷 that is
convex in every direction is convex. If 𝜑 = 0, we say that 𝐷 is
convex in the direction of the real axis.The following theorem
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due to Clunie and Sheil-Small [8] is often referred to as the
shear construction and will be critical to our minimal surface
constructions.

Theorem 1. Let 𝜑 ∈ [0, 𝜋). A harmonic 𝑓 = ℎ + 𝑔 locally
univalent in D is a univalent mapping of D onto a domain
convex in the direction of𝜑 if and only if ℎ−𝑒

2𝑖𝜑
𝑔 is a conformal

univalent mapping of D onto a domain convex in the direction
of 𝜑.

We now turn to some background on minimal surfaces
prior to introducing the connection between harmonic map-
pings and minimal surfaces.

A regular surface 𝑆 ⊆ R3 can be parameterized by a map
X : Ω ⊆ R2 → R3 written as X(𝑢, V) = (𝑥

1
(𝑢, V), 𝑥

2
(𝑢, V),

𝑥
3
(𝑢, V)). At a given point𝑃

0
= X(𝑢

0
, V
0
), there exists a normal

vector n. Let T be a tangent direction at 𝑃
0
and let 𝐶 be the

curve of intersection of the surface and the plane containingn
and T. Letting 𝛼(𝑠) be the parameterization of 𝐶 with respect
to arclength 𝑠, the normal curvature in the directionT is given
by 𝑘(T) = 𝛼

󸀠󸀠
(𝑠) ⋅ n where we have assumed the surface

has continuous second partial derivatives in its parametric
representations. The principal curvatures 𝑘

1
and 𝑘

2
of the

surface at 𝑃
0
are the maximum and minimum values of 𝑘(T)

as T ranges over all directions in the tangent plane.Themean
curvature of the surface at𝑃

0
is𝐻 = (𝑘

1
+𝑘
2
)/2 and a surface is

minimal if𝐻 ≡ 0 at every point on the surface. Geometrically,
this means that the principal curvatures bend to the same
extent in opposite directions with respect to the normal. Note
that we will use the term minimal graph when a minimal
surface has no self-intersections over its given domain. More
about minimal surfaces can be found in [10–12].

One classical way to connect two minimal surfaces is
through what are called conjugate surfaces. Let X and Y be
parameterizations of surfaces from a region Ω ⊊ C into
R3. Then X and Y, given in terms of 𝑧 = 𝑢 + 𝑖V ∈ Ω, are
conjugate if they satisfy the Cauchy-Riemann equations.That
is, they satisfy X

𝑢
= YV and XV = −Y

𝑢
. Additionally, any two

conjugate minimal surfaces X and Y can be joined through
the one-parameter family of minimal surfaces given by

Z = cos 𝑡X + sin 𝑡Y, 𝑡 ∈ R. (1)

Clearly, when 𝑡 = 0, we have the minimal surface parame-
terized by X and when 𝑡 = 𝜋/2 we have the minimal surface
parameterized by Y. Thus, for 0 ≤ 𝑡 ≤ 𝜋/2, we have a family
of minimal surfaces known as associated surfaces.

Threeminimal surfaces that will arise in this paper are the
helicoid, wavy plane, and Enneper’s surface.The helicoid can
be parameterized on D \ (−1, 0] in the following way:

Y
0
(𝑧) = (Re(𝑧 −

1

𝑧

) , Im(𝑧 +

1

𝑧

) , 2 Im log 𝑧) . (2)

The wavy plane can be parameterized on D \ (−1, 0] by

Y
1 (

𝑧) = (

1

2

Re(log 𝑧 −

1

2

𝑧

2
) , −

1

2

Im(log 𝑧 +

1

2

𝑧

2
) ,

Im (𝑖𝑧) ) .

(3)

Enneper’s surface can be parameterized on D by

Y
2
(𝑧) = (Re(𝑧 −

1

3

𝑧

3
) , Im(𝑧 +

1

3

𝑧

3
) , Im (−𝑖𝑧

2
)) . (4)

It is worth noting that scalings and reflections across
planes containing two axes do not alter the geometry of
minimal surfaces.

In this paper, we will use the shear construction (Theo-
rem 1) to produce a family of harmonic mappings that can be
lifted to a family of minimal surfaces by using the following
version of Weierstrass-Enneper representation (cf. [13, pp.
177-178]).

Theorem 2 (Weierstrass-Enneper representation). Let Ω ⊊

C be a simply connected domain containing the origin. If a
minimal graph

{(𝑢, V, 𝐹 (𝑢, V)) : 𝑢 + 𝑖V ∈ Ω} (5)

is parameterized by sense-preserving isothermal parameters
𝑧 = 𝑥 + 𝑖𝑦 ∈ D, the projection onto its base plane defines a
harmonic mapping 𝑤 = 𝑢 + 𝑖V = 𝑓(𝑧) of D onto Ω whose
dilatation is the square of an analytic function. Conversely, if
𝑓 = ℎ + 𝑔 is a harmonic univalent mapping of D onto Ω with
dilatation 𝜔 = 𝑔

󸀠
/ℎ

󸀠 being the square of an analytic function,
then with 𝑧 = 𝑥 + 𝑖𝑦 ∈ D, the parameterization

X (𝑧) = (Re {ℎ (𝑧) + 𝑔 (𝑧)} , Im {ℎ (𝑧) − 𝑔 (𝑧)} ,

2 Im{∫

𝑧

0

√𝑔

󸀠
(𝜁) ℎ

󸀠
(𝜁) 𝑑𝜁})

(6)

defines a minimal graph whose projection into the complex
plane is 𝑓(D). Except for the choice of sign and an arbitrary
additive constant in the third coordinate function, this is the
only such surface.

While the Weierstrass-Enneper representation theorem
states that a univalent harmonicmap lifts to aminimal surface
that is a graph, a harmonic map that has a dilatation that is a
perfect square always lifts to aminimal surface but there is no
guarantee that the surface is a graph.

3. A Family of Minimal Surfaces

In this section, we use the shear construction derived from
Theorem 1 to build a family of harmonic univalent functions
with a range convex in one direction that lifts to a family
of minimal graphs as described in Theorem 2. Moreover, we
identify precisely which minimal graph the function lifts to
for various members of this family and provide a connection
between several well-known minimal surfaces. In doing so,
we will identify the surfaces utilized by Hengartner and
Schober in [5] to show tightness for bounds on curvature
estimates for surfaces lying over a half-plane and a slit plane
with one slit on the negative real axis. Finally, we use a result
on conjugate surfaces to introduce a two-parameter family of
minimal surfaces.
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Beforewe introduce the family of harmonicmappings, we
need some background on the analytic function commonly
referred to as the generalized Koebe function. For 𝑐 ∈ [0, 2],
define 𝑘

𝑐
: D → C, 𝑐 ∈ [0, 2], as

𝑘
𝑐
(𝑧) = ∫

𝑧

0

(1 + 𝑤)

𝑐−1

(1 − 𝑤)

𝑐+1
𝑑𝑤. (7)

We easily see

𝑘
0
(𝑧) =

1

2

log 1 + 𝑧

1 − 𝑧

,

𝑘
𝑐 (

𝑧) =

1

2𝑐

((

1 + 𝑧

1 − 𝑧

)

𝑐

− 1) , 𝑐 ∈ (0, 2] .

(8)

Notice 𝑘
1
(𝑧) = 𝑧/(1−𝑧) and 𝑘

2
(𝑧) = 𝑧/(1−𝑧)

2. For 𝑐 ∈ [0, 2],
𝑘
𝑐

∈ 𝑆 and 𝑘
𝑐
(D) is convex in the direction of the real axis.

Additionally, for 𝑐 ∈ [0, 1], 𝑘
𝑐
(D) is convex. From this, we

have the following theorem.

Theorem 3. For 𝑐 ∈ [0, 2], define 𝑓
𝑐
= ℎ
𝑐
+ 𝑔
𝑐
: D → C to be

the harmonic mapping satisfying

ℎ
𝑐 (

𝑧) − 𝑔
𝑐 (

𝑧) = 𝑘
𝑐 (

𝑧) , 𝑔

󸀠

𝑐
(𝑧) = 𝑧

2
ℎ

󸀠

𝑐
(𝑧) (9)

normalized by ℎ
𝑐
(0) = 𝑔

𝑐
(0) = 𝑔

󸀠

𝑐
(0) = ℎ

󸀠

𝑐
(0) − 1 = 0 where

𝑘
𝑐
is given by (7). Then 𝑓

𝑐
∈ 𝑆

0

𝐻
and 𝑓

𝑐
(D) is convex in the

direction of the real axis, and as 𝑐 varies from 0 to 2, 𝑓
𝑐
(D)

transforms from a strip mapping to a slit mapping.

Proof. By Theorem 1, 𝑓
𝑐

∈ 𝑆

0

𝐻
and 𝑓

𝑐
(D) is convex in the

direction of the real axis. What remains to be shown are the
mapping properties of 𝑓

𝑐
.

Using (9) to solve for ℎ
𝑐
and 𝑔

𝑐
gives

ℎ
𝑐
(𝑧)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

1

4

(

2𝑧

1 − 𝑧

2
+ log(

1 + 𝑧

1 − 𝑧

)) , if 𝑐 = 0,

1

4

(

3𝑧 − 2𝑧

2

(1 − 𝑧)

2
+

1

2

log(

1 + 𝑧

1 − 𝑧

)) , if 𝑐 = 1,

1

4

(

1

𝑐 (1 − 𝑐

2
)

(

1 + 𝑧

1 − 𝑧

)

𝑐

×

1 − 2𝑐

2
+ 2𝑐𝑧 − 𝑧

2

1 − 𝑧

2
+

2𝑐

2
− 1

𝑐 (1 − 𝑐

2
)

) , if 𝑐 ̸= 0, 1,

𝑔
𝑐
(𝑧)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

1

4

(

2𝑧

1 − 𝑧

2
− log(

1 + 𝑧

1 − 𝑧

)) , if 𝑐 = 0,

1

4

(

−𝑧 + 2𝑧

2

(1 − 𝑧)

2
+

1

2

log(

1 + 𝑧

1 − 𝑧

)) , if 𝑐 = 1,

1

4

(

1

𝑐 (1 − 𝑐

2
)

(

1 + 𝑧

1 − 𝑧

)

𝑐

×

−1 + 2𝑐𝑧 + (1 − 2𝑐

2
) 𝑧

2

1 − 𝑧

2
+

1

𝑐 (1 − 𝑐

2
)

), if 𝑐 ̸= 0, 1.

(10)

In order to understand the mapping properties of 𝑓
𝑐
, we

perform a change of variables using

𝑤 =

1 + 𝑧

1 − 𝑧

. (11)

With 𝑧 = (𝑤 − 1)/(𝑤 + 1), this substitution leads to

ℎ
𝑐
(𝑧) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

1

8

(2 log𝑤 −

1

𝑤

+ 𝑤) , if 𝑐 = 0,

1

8

(

1

2

𝑤

2
+ 2𝑤 + log𝑤 −

5

2

) , if 𝑐 = 1,

1

8

(

1

𝑐 + 1

𝑤

𝑐+1
+

2

𝑐

𝑤

𝑐
+

1

𝑐 − 1

𝑤

𝑐−1

−

2 (2𝑐

2
− 1)

𝑐 (𝑐

2
− 1)

) , if 𝑐 ̸= 0, 1,

𝑔
𝑐
(𝑧) =

{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{

{

1

8

(−2 log𝑤 −

1

𝑤

+ 𝑤) , if 𝑐 = 0,

1

8

(

1

2

𝑤

2
− 2𝑤 + log𝑤 +

3

2

) , if 𝑐 = 1,

1

8

(

1

𝑐 + 1

𝑤

𝑐+1
−

2

𝑐

𝑤

𝑐
+

1

𝑐 − 1

𝑤

𝑐−1

−

2

𝑐 (𝑐

2
− 1)

) , if 𝑐 ̸= 0, 1.

(12)

By writing 𝑤 = 𝑥 + 𝑖𝑦, 𝑥 > 0 and 𝑦 ∈ R, and 𝑓
𝑐
(𝑧) = 𝑢

𝑐
+ 𝑖V
𝑐
,

again with 𝑧 = (𝑤 − 1)/(𝑤 + 1), it is not difficult to show that
𝑓
0
mapsD onto the strip {𝑧 ∈ C : | Im 𝑧| < 𝜋/4} and 𝑓

2
maps

D onto C \ {𝑧 ∈ C : 𝑧 < −1/3}.

See Figure 1 for graphs of 𝑓
𝑐
(|𝑧| = 𝑟) for various values

of 𝑐 ∈ [0, 2] and 𝑟 < 1. It is worth noting that by the above
work, we may also explicitly describe the image of 𝑓

1
(D) to

be the region containing the origin and bounded by the curve
𝑢 = 1/8(−4V2 + 2 ln(2|V|) − 1) in the 𝑢V-plane.

We are now prepared to introduce a family of minimal
graphs which will later be extended to the two-parameter
family of minimal graphs discussed in the introduction.

Theorem 4. For 𝑐 ∈ [0, 2], define 𝑓
𝑐

= ℎ
𝑐
+ 𝑔
𝑐

: D → C to
be the harmonic mapping satisfying (9) normalized by ℎ

𝑐
(0) =

𝑔
𝑐
(0) = 𝑔

󸀠

𝑐
(0) = ℎ

󸀠

𝑐
(0) − 1 = 0. Then 𝑓

𝑐
lifts to a minimal graph

X
𝑐
on D for each 𝑐 ∈ [0, 2]. Moreover, X

0
(D) is a part of the

helicoid,X
1
(D) is a part of the wavy plane, andX

2
(D) is a part

of the Enneper surface.

Proof. Since 𝑔

󸀠

𝑐
(𝑧) = 𝑧

2
ℎ

󸀠

𝑐
(𝑧), by Theorem 2, 𝑓

𝑐
lifts to a

minimal graph on D for each 𝑐 ∈ [0, 2]. Applying this
theorem yields the following representations of minimal
graphs for 𝑐 = 0, 1, 2:

X
0
(𝑧) = (Re 𝑧

1 − 𝑧

2
,

1

2

Im (log 1 + 𝑧

1 − 𝑧

) , Im 𝑧

2

1 − 𝑧

2
) , (13)
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3

2

1

0

−1

−2

−3

c = 0

321−1−2−3

(a)

c = 0.15

3

2

1

0

−1

−2

−3

321−1−2−3

(b)

c = 0.5

3

2

1

0

−1

−2

−3

321−1−2−3

(c)

c = 1

3

2

1

0

−1

−2

−3

321−1−2−3

(d)

c = 1.5

3

2

1

0

−1

−2

−3

321−1−2−3

(e)

c = 2

3

2

1

0

−1

−2

−3

321−1−2−3

(f)

Figure 1: Images of 𝑓
𝑐
(|𝑧| = 𝑟), 𝑟 = 0.4, 0.6, 0.8, and 0.9999.
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X
1 (

𝑧) = (

1

4

Re(

2𝑧

(1 − 𝑧)

2
+ log 1 + 𝑧

1 − 𝑧

) , Im 𝑧

1 − 𝑧

,

1

4

Im(

2𝑧

(1 − 𝑧)

2
− log 1 + 𝑧

1 − 𝑧

)) ,

(14)

X
2
(𝑧) = (

1

3

Re
𝑧 (2𝑧

2
− 3𝑧 + 3)

(1 − 𝑧)

3
, Im 𝑧

(1 − 𝑧)

2
,

1

3

Im 𝑧

2
(𝑧 − 3)

(1 − 𝑧)

3
)

(15)

which are hardly recognizable as representations of part of
the helicoid, wavy plane, and Enneper’s surface, respectively.
However, as in the proof of Theorem 3, applying the change
of variables 𝑤 = (1 + 𝑧)/(1 − 𝑧) and again writing 𝑧 = (𝑤 −

1)/(𝑤 + 1) these representations can be expressed as

X
0 (

𝑧) = (

1

4

Re(𝑤 −

1

𝑤

) ,

1

2

Im (log𝑤) ,

1

4

Im(𝑤 +

1

𝑤

)) ,

(16)

X
1 (

𝑧) = (

1

8

Re (𝑤

2
+ 2 log𝑤 − 1) ,

1

2

Im𝑤,

1

4

Im(

1

2

𝑤

2
− log 𝑤)) ,

(17)

X
2 (

𝑧) = (

1

4

Re(

1

3

𝑤

3
+ 𝑤 −

4

3

) ,

1

4

Im𝑤

2
,

1

4

Im (

1

3

𝑤

3
− 𝑤)) .

(18)

Comparing the transformed surface given in (16) with the
parameterization of the helicoid in (2), we see that inter-
changing the second and third coordinates of X

0
in (16) and

scaling by a factor of 4 give the formula for the helicoid given
in (2). Since the formula in (2) extends into the right half
plane, we see that X

0
(D) is the same surface as Y

0
({𝑧 ∈ C :

Re 𝑧 > 0}). That is, X
0
(D) is part of the helicoid. Similarly,

interchanging the second and third coordinates ofX
1
given in

(17), scaling by a factor of 2, and a translation by a constant,
we have the conjugate surface to Y

1
given in (3). Since the

conjugate surface of the wavy plane is itself, we see thatX
1
(D)

is the same surface as Y
1
({𝑧 ∈ C : Re 𝑧 > 0}). Hence, X

1
(D)

is part of the wavy plane. Finally, using the same approach as
done for X

1
, X
2
(D) is the same surface as Y

2
({𝑧 ∈ C : Re 𝑧 >

0}), and so X
2
(D) is part of the Enneper surface. See Figure 2

for an image of the surfaces X
0
, X
1
, and X

2
.

In general, for all 𝑐 ∈ [0, 2], 𝑓
𝑐

= ℎ
𝑐
+ 𝑔
𝑐
given in (9) lift

to a minimal graph, and for 𝑐 ̸= 0, 1 and 𝑧 = (𝑤 − 1)/(𝑤 + 1)

this graph is given by

X
𝑐
(𝑧) = (

1

4 (𝑐

2
− 1)

Re ((𝑐 − 1)𝑤

𝑐+1
+ (𝑐 + 1)𝑤

𝑐−1
− 2𝑐) ,

1

2𝑐

Im (𝑤

𝑐
− 1) ,

1

4 (𝑐

2
− 1)

Im ((𝑐 − 1)𝑤

𝑐+1
− (𝑐 + 1)𝑤

𝑐−1
)) .

(19)

Thus, as the parameter 𝑐 increases from 0 to 2, the minimal
graphs transform continuously from the helicoid to the wavy
plane and finally to the Enneper surface.

It is now evident that the surfaces constructed by Hen-
gartner and Schober in [5] to obtain sharp bounds for
curvature estimates are indeed related to those inTheorem 4.
That is, the surface lying over the entire half-plane given by
Hengartner and Schober is the conjugate to the surface given
byX
1
in (14). As the wavy plane is conjugate to itself, we have

now identified the surface in [5] as the wavy plane. Further,
for the surface lying over the slit plane with a slit lying on
the real axis constructed in [5], we now see it as a polynomial
Enneper surface through the same change of variables and
similar analysis as above.

With the results from Theorem 4 on the nature of the
surface X

𝑐
, 𝑐 ∈ [0, 2], formed by lifting 𝑓

𝑐
as given by (9) in

Theorem 3, we use the following theorem which provides a
connection between harmonic mappings, conjugate surfaces,
and associated surfaces to provide the two-parameter family
of minimal graphs as described in the introduction.

Theorem 5. Let 𝜑 ∈ 𝑆 with 𝜑(D) convex and 𝑏 ∈ H
0
(D).

Define the harmonic function 𝑓 : D → C such that 𝑓 = ℎ + 𝑔

satisfies ℎ − 𝑔 = 𝜑, 𝑔󸀠/ℎ󸀠 = 𝑏

2, ℎ(0) = 𝑔(0) = 𝑔

󸀠
(0) = 0,

and ℎ

󸀠
(0) = 1. For 𝜃 ∈ R, define 𝑓

𝜃
: D → C to be 𝑓

𝜃
=

ℎ
𝜃
+ 𝑔
𝜃

= 𝑒

𝑖𝜃/2
ℎ + 𝑒

𝑖𝜃/2
𝑔. Then 𝑓

𝜃
lifts to a minimal graph X

𝜃

onD. Moreover,X
0
andX

𝜋
are conjugate surfaces and for each

𝜃 ∈ (0, 𝜋), X
𝜃
is an associated surface of X

0
.

Proof. First, observe by Theorem 1, 𝑓 ∈ 𝑆

0

𝐻
and maps D onto

a domain convex in the direction of the real axis. Second, for
𝛼 = 𝜋−𝜃/2, ℎ−𝑒

2𝑖𝛼
𝑒

𝑖𝜃
𝑔 = 𝜑 and the dilatation of 𝑒−𝑖𝜃/2𝑓

𝜃
= ℎ+

𝑒

𝑖𝜃
𝑔 is 𝑒𝑖𝜃𝑏2.Thus, by this same theorem,we see that 𝑒−𝑖𝜃/2𝑓

𝜃
∈

𝑆

0

𝐻
and maps D onto domain convex in the direction of 𝛼 =

𝜋 − 𝜃/2.
Since 𝑓

𝜃
is simply a rotation of a univalent harmonic

function, by Theorem 2, it is clear that 𝑓
𝜃
lifts to a minimal

graph X
𝜃
. Moreover, for 𝜃 ∈ [0, 𝜋] and 𝑧 ∈ D,

X
𝜃
(𝑧) =(Re (𝑒

𝑖𝜃/2
(ℎ (𝑧) + 𝑔 (𝑧))) , Im (𝑒

𝑖𝜃/2
(ℎ (𝑧) − 𝑔 (𝑧))),

2 Im(𝑒

𝑖𝜃/2
∫

𝜁

0

√ℎ

󸀠
(𝜁) 𝑔

󸀠
(𝜁) 𝑑𝜁))

= (cos 𝜃

2

)(Re (ℎ (𝑧) + 𝑔 (𝑧)) , Im (ℎ (𝑧) − 𝑔 (𝑧)) ,

2 Im(∫

𝑧

0

√ℎ

󸀠
(𝜁) 𝑔

󸀠
(𝜁) 𝑑𝜁))

+ (sin 𝜃

2

)(− Im (ℎ (𝑧) + 𝑔 (𝑧)) ,Re (ℎ (𝑧) − 𝑔 (𝑧)),

2Re(∫

𝑧

0

√ℎ

󸀠
(𝜁) 𝑔

󸀠
(𝜁) 𝑑𝜁))

= (cos 𝜃

2

)(Re (ℎ (𝑧) + 𝑔 (𝑧)) , Im (ℎ (𝑧) − 𝑔 (𝑧)) ,

2 Im(∫

𝑧

0

√ℎ

󸀠
(𝜁) 𝑔

󸀠
(𝜁) 𝑑𝜁))
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X0({z : < 0})Re zX0( )D

X1( )D X1({z : < 0})Re z

X2( )D X2({z : < 0})Re z

Figure 2: Images of X
𝑐
.

+ (sin 𝜃

2

)(Re (𝑖 (ℎ (𝑧) + 𝑔 (𝑧))) ,

Im (𝑖 (ℎ (𝑧) − 𝑔 (𝑧))) ,

2 Im(𝑖∫

𝑧

0

√ℎ

󸀠
(𝜁) 𝑔

󸀠
(𝜁) 𝑑𝜁))

= (cos 𝜃

2

)X
0 (

𝑧) + (sin 𝜃

2

)X
𝜋 (

𝑧) .

(20)

Thus, what remains to be shown is that X
0
and X

𝜋
are

conjugate surfaces. Using line (20), we see that the coordinate
functions of X

0
are the imaginary parts of the analytic func-

tions 𝑖(ℎ + 𝑔), ℎ − 𝑔, and ∫

𝑧

0
√ℎ

󸀠
(𝜁)𝑔

󸀠
(𝜁) 𝑑𝜁 = ∫

𝑧

0
ℎ

󸀠
(𝜁)𝑏(𝜁) 𝑑𝜁,

respectively, while the coordinate functions ofX
𝜋
are the real

parts, respectively. Therefore, X
0
and X

𝜋
satisfy the Cauchy-

Riemann equations and are conjugate surfaces.

Notice that in the proof ofTheorem 5, we have shown that
if 𝑓 = ℎ + 𝑔 lifts to a minimal graph on D and (ℎ − 𝑔)(D) is
convex, then 𝐹 = 𝑖ℎ + 𝑖𝑔 lifts to the conjugate minimal graph
on D. By a similar approach, we see that for any 𝜃 ∈ R, if 𝑓

𝜃

onD lifts to a minimal graph and (ℎ
𝜃
−𝑔
𝜃
)(D) is convex, then

𝑓
𝜃+𝜋

on D will lift to its conjugate minimal graph.

Corollary 6. For 𝑐 ∈ [0, 1] and 𝜃 ∈ [0, 𝜋], define 𝑓
𝑐,𝜃

: D →

C by

𝑓
𝑐,𝜃

(𝑧) = ℎ
𝑐,𝜃

(𝑧) + 𝑔
𝑐,𝜃

(𝑧) = 𝑒

𝑖𝜃/2
ℎ
𝑐
(𝑧) + 𝑒

𝑖𝜃/2
𝑔
𝑐
(𝑧),

(21)

where ℎ
𝑐
− 𝑔
𝑐
is defined by (9) and is normalized by ℎ

𝑐
(0) =

𝑔
𝑐
(0) = 𝑔

󸀠

𝑐
(0) = ℎ

󸀠

𝑐
(0) − 1 = 0. Then for each 𝑐 ∈ [0, 1]
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Table 1: Images of 𝑓
𝑐,𝜃

(|𝑧| = 𝑟), 𝑟 = 0.4, 0.6, 0.8, 0.9999, and the corresponding minimal surfaces.

𝑐 = 0 𝜃 = 0 𝜃 = 𝜋/2 𝜃 = 𝜋

4

2

0

−2

−4

42−2−4

4

2

0

−2

−4

42−2−4

4

2

0

−2

−4

42−2−4

Surface Helicoid Associated surface Catenoid
𝑐 = 0.5 𝜃 = 0 𝜃 = 𝜋/2 𝜃 = 𝜋

3

2

1

0
−1

−2

−3

321−1−2−3

3

2

1

0
−1

−2

−3

321−1−2−3

3

2

1

0
−1

−2

−3

321−1−2−3

Surface
𝑐 = 1 𝜃 = 0 𝜃 = 𝜋/2 𝜃 = 𝜋

3

2

1

0
−1

−2

−3

321−1−2−3

3

2

1

0
−1

−2

−3

321−1−2−3

3

2

1

0
−1

−2

−3

321−1−2−3

Surface Wavy plane Associated surface Wavy plane
𝑐 = 1.5 𝜃 = 0 𝜃 = 𝜋/2 𝜃 = 3𝜋/4

3

2

1

0
−1

−2

−3

321−1−2−3

3

2

1

0
−1

−2

−3

321−1−2−3

3

2

1

0
−1

−2

−3

321−1−2−3

Surface
𝑐 = 2 𝜃 = 0 𝜃 = 𝜋/20 𝜃 = 𝜋/2

3

2

1

0
−1

−2

−3

321−1−2−3

3

2

1

0
−1

−2

−3

321−1−2−3

3

2

1

0
−1

−2

−3

321−1−2−3

Surface Enneper’s surface Enneper’s surface Enneper’s surface
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and 𝜃 ∈ [0, 𝜋], 𝑓
𝑐,𝜃

lifts to a minimal graph X
𝑐,𝜃
, and for each

𝑐 ∈ [0, 1], X
𝑐,0

and X
𝑐,𝜋

are conjugate surfaces.

Proof. For 𝑐 ∈ [0, 1] and 𝜃 ∈ [0, 𝜋], let 𝑓
𝑐,𝜃

: D → C be
defined as in (21). Recall that, for 𝑐 ∈ [0, 1] and 𝑘

𝑐
given

by (7), 𝑘
𝑐
(D) is convex. This in conjunction with (9) and

Theorem 5 allows for the construction of a two-parameter
family of minimal graphsX

𝑐,𝜃
using theWeierstrass-Enneper

representation of Theorem 2 to lift 𝑓
𝑐,𝜃
. For a fixed 𝑐 ∈ [0, 1],

X
𝑐,0

is given by the surfaces X
𝑐
in (13), (14), and (19). Thus,

for a fixed 𝑐 ∈ [0, 1], as 𝜃 ranges from 0 to 𝜋, the surface X
𝑐,𝜃

transforms from associated surfaces of X
𝑐
given in (13), (14),

and (19) to the respective conjugate surface.

Problems for Further Investigation

(1) As noted earlier, Theorem 2 states that a univalent
harmonic map lifts to a minimal surface that is a
graph. Nonetheless, a harmonic map with a perfect
square dilatation always lifts to a minimal surface.
There is just no guarantee that the surface is a graph
over its domain. Thus, while we can only be certain
for 𝑐 ∈ [0, 1] that as 𝜃 varies in [0, 𝜋], 𝑓

𝑐,𝜃
given in

Corollary 6 lifts to a minimal graph, we conjecture
that for 𝑐 ∈ (1, 2] there exists some 𝜃

𝑐
< 𝜋 for which

𝑓
𝑐,𝜃
, 𝜃 ∈ (0, 𝜃

𝑐
), is univalent and hence would lift to

a minimal graph by Theorem 2. Further, it appears
that as 𝑐 increases towards two, 𝜃

𝑐
decreases towards

zero. Table 1 summarizes some information relating
the images of 𝑓

𝑐,𝜃
(D) and the corresponding minimal

surfaces for various values of 𝑐 and 𝜃 providing some
evidence in support of the conjectures for 𝑐 ∈ (1, 2].

(2) Additionally, the family of harmonic mappings given
inTheorem 3 can also be generalized by changing the
dilatation to 𝜔(𝑧) = 𝑧

2𝑛, 𝑛 ∈ N. That is, for 𝑐 ∈ [0, 2]

and 𝑛 ∈ N, let 𝑓
𝑐,𝑛

= ℎ
𝑐,𝑛

+ 𝑔
𝑐,𝑛

: D → C, where

ℎ
𝑐,𝑛

(𝑧) − 𝑔
𝑐,𝑛

(𝑧) = 𝑘
𝑐
(𝑧) , 𝑔

󸀠

𝑐,𝑛
(𝑧) = 𝑧

2𝑛
ℎ

󸀠

𝑐,𝑛
(𝑧) . (22)

The case 𝑛 = 1 is the basis of this paper. For the case
𝑛 = 2 and 𝑐 = 2, it appears that the resulting minimal
surface is a helicoid. It would be interesting to use the
techniques from this paper to investigate the family of
functions 𝑓

𝑐,𝑛
for 𝑛 ≥ 2.
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