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We study the Cauchy problem of the fractional Navier-Stokes equations in critical Fourier-Besov spaces 𝐹�̇�1−2𝛽+3/𝑝


𝑝,𝑞
. Some

properties of Fourier-Besov spaces have been discussed, and we prove a general global well-posedness result which covers some
recent works in classical Navier-Stokes equations. Particularly, our result is suitable for the critical case 𝛽 = 1/2. Moreover, we prove
the long time decay of the global solutions in Fourier-Besov spaces.

1. Introduction

We study the mild solutions to the fractional Navier-Stokes
equations in 𝑅+ × 𝑅3 as follows:

𝑢
𝑡
+ 𝜇(−Δ)

𝛽
𝑢 + (𝑢 ⋅ ∇) 𝑢 + ∇𝜋 = 0, (𝑡, 𝑥) ∈ 𝑅

+
× 𝑅

3
;

∇ ⋅ 𝑢 = 0, (𝑡, 𝑥) ∈ 𝑅
+
× 𝑅

3
;

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝑥 ∈ 𝑅

3
.

(1)

Here 𝑢(𝑡, 𝑥) = (𝑢
1
(𝑡, 𝑥), 𝑢

2
(𝑡, 𝑥), 𝑢

3
(𝑡, 𝑥)) denotes the velocity

vector, 𝜇 > 0 is the viscosity coefficient, and the scalar
function 𝜋 denotes the pressure. The initial data 𝑢

0
is a

divergence free vector field and the operator (−Δ)𝛽 is the
Fourier multiplier with symbol |𝜉|2𝛽.

The fractional Navier-Stokes equations, which are also
called generalized Navier-Stokes equations, enjoy an invari-
ance under the scaling

𝑢
𝜆
(𝑡, 𝑥) = 𝜆

2𝛽−1
𝑢 (𝜆

2𝛽
𝑡, 𝜆𝑥) ,

𝑝
𝜆
(𝑡, 𝑥) = 𝜆

4𝛽−2
𝑝 (𝜆

2𝛽
𝑡, 𝜆𝑥) ,

𝑢
0,𝜆

= 𝜆
2𝛽−1

𝑢
0
(𝜆𝑥) .

(2)

We say that a function space is 𝛽-critical for (1) if its norm is
invariant under the scaling 𝑢

0
(𝑥) → 𝜆

2𝛽−1
𝑢
0
(𝜆𝑥). There are

many examples of critical spaces, for instance, 𝐵𝑀𝑂
−(2𝛽−1),

�̇�
−(2𝛽−1)

∞,∞
, and the spaces we will discuss in this paper.

The classical incompressibleNavier-Stokes equations (i.e.,
𝛽 = 1) have been intensively studied. Leray first [1]
introduced the concept of weak solutions and obtained the
global existence of weak solutions. Fujita and Kato [2] gave a
different approach to study the equations in their equivalent
form of integral equations and proved the well-posedness
in the space frame �̇�1/2. A series study of mild solutions in
different function spaces then arose, for instance, Kato [3] in
Lebesgue space 𝐿3(𝑅3), Cannone [4] in Besov space �̇�−1+3/𝑝

𝑝,∞
,

and the important well-posedness in 𝐵𝑀𝑂
−1 by Koch and

Tataru [5]. These works naturally lead one to study the well-
posedness in the largest critical space �̇�−1

∞,∞
. In fact, all the

above spaces are critical spaces and satisfy the following
continuous embeddings in the 3 dimensions:

�̇�
1/2

→ 𝐿
3
→ �̇�

−1+3/𝑝

𝑝,∞(𝑝<∞)
→ 𝐵𝑀𝑂

−1
→ �̇�

−1

∞,∞
. (3)

However, in the space �̇�−1
∞,∞

, the Navier-Stokes equations are
ill-posedness (see Bourgain and Pavlović [6] and Cheskidov
and Shvydkoy [7]).
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As for the generalized case (1), Lions [8] proved the global
existence of classical solutions in 3 dimensions when 𝛽 ≥ 5/4
(see also Wu [9] in 𝑛 dimensions). For the important case
𝛽 < 5/4, Wu [10, 11] studied the well-posedness in �̇�1−2𝛽+3/𝑝

𝑝,𝑞
.

Inspired by Xiao [12] in the classical case (𝛽 = 1), Li and
Zhai [13, 14] studied (1) in some critical 𝑄-type spaces for
𝛽 ∈ (1/2, 1), and Zhai [15] showed the well-posedness in
𝐵𝑀𝑂

−(2𝛽−1) when 𝛽 ∈ (1/2, 1). For the biggest critical space
�̇�
−(2𝛽−1)

∞,∞
, Yu and Zhai [16] proved the well-posedness when

𝛽 ∈ (1/2, 1), Cheskidov and Shvydkoy [17] showed the ill-
posedness when 𝛽 ∈ [1, 5/4). Very recently, Deng and Yao
[18] studied (1) in Triebel-Lizorkin spaces �̇�−𝛽

𝛼,𝑟
and obtained

the well-posedness in �̇�−𝛽
3/(𝛽−1),2

and ill-posedness in �̇�−𝛽
3/(𝛽−1),𝑟

(𝑟 > 2) in the case 𝛽 ∈ (1, 5/4).
In this paper, wewill study (1) in the Fourier-Besov spaces

𝐹�̇�
𝑠

𝑝,𝑞
. We observe that although the Fourier-Besov spaces

𝐹�̇�
𝑠

𝑝,𝑞
appear in the literature very recently, they have received

a lot of attentions in studying Navier-Stokes equations,
although sometime people gave these spaces several different
names. An early paper by Cannone and Karch [19] worked
in the space PM𝑎, which is in fact the space 𝐹�̇�𝑎

∞,∞
(see

Section 2 for details). Biswas and Swanson [20] studied the
Gevrey regularity of Navier-Stokes equations in 𝐹�̇�

2−3/𝑝

𝑝,𝑝
.

Konieczny and Yoneda [21] used 𝐹�̇�𝑠
𝑝,𝑞

to study the Navier-
Stokes equations with Coriolis (see also Fang et al. [22]). Lei
and Lin [23] proved global existence ofmild solutions inX−1,
which is in fact equal to the space 𝐹�̇�−1

1,1
. Cannone and Wu

[24] extended the result in [23] to the Fourier-Herz spaces
Ḃ
𝑠

𝑞
. We may notice that Ḃ𝑠

𝑞
= 𝐹�̇�

−1

1,𝑞
. Also, some properties

of solutions in the spaceX−1 have been studied recently; see
Zhang and Yin [25] for the blow-up criterion and Benameur
[26] for the long time decay. All the above-mentioned works
are involved in the classical Navier-Stokes equations. Those
indicate that the Fourier-Besov spaces 𝐹�̇�𝑠

𝑝,𝑞
might be good

work frames in the study ofNavier-Stokes equations. Inspired
by these observations, in this paper, we will study generalized
Navier-Stokes equations in 𝐹�̇�

𝑠

𝑝,𝑞
. We obtain a global well-

posedness result which is more general than those in [23, 24].
Particularly, our well-posedness is also valid in the critical
case 𝛽 = 1/2. Moreover, the long time decay of the solutions
in Fourier-Besov spaces is also proved, which fully extends
the result of [26].

Throughout this paper, the notation 𝐴 ∼ 𝐵 means that
there exist positive constants 𝐶

1
≤ 𝐶

2
such that 𝐶

1
𝐴 ≤

𝐵 ≤ 𝐶
2
𝐴. We use �̇�𝑠

𝑝,𝑞
to denote the classical homogenous

Besov spaces and �̇�𝑠 the homogenous Sobolev spaces. Also,
𝐶 denotes a positive constant which may differ in lines if not
being specified; 𝑝 is the number satisfying 1/𝑝 + 1/𝑝 = 1

for 1 ≤ 𝑝 ≤ ∞. The inverse Fourier transform is denoted by
F−1.

We organize the paper as follows. In Section 2 we give
the definition of Fourier-Besov spaces and discuss some basic
properties of these spaces. Our main results are also stated in

this section. In Section 3 we prove the global well-posedness
and in Section 4 we prove the long time decay property.

2. Preliminaries and Main Results

We first introduce the definition of Fourier-Besov spaces in 𝑛
dimensions. Let 𝜑 ∈ 𝐶

∞

𝑐
(𝑅
𝑛
) be a radial real-valued smooth

function such that 0 ≤ 𝜑(𝜉) ≤ 1 and

supp𝜑 ⊂ {𝜉 ∈ 𝑅𝑛 : 3
4
≤
𝜉
 ≤

8

3
} ,

∑

𝑗∈𝑍

𝜑 (2
−𝑗
𝜉) = 1,

for any 𝜉 ̸= 0.

(4)

We denote 𝜑
𝑗
(𝜉) = 𝜑(2

−𝑗
𝜉) and P the set of all polynomials.

The space of tempered distributions is denoted by 𝑆.

Definition 1. For 𝑠 ∈ 𝑅, 1 ≤ 𝑝, 𝑞 ≤ ∞, set

𝑓
𝐹�̇�
𝑠

𝑝,𝑞

=

{{{{

{{{{

{

(∑

𝑗∈𝑍

2
𝑗𝑠𝑞

𝜑
𝑗
𝑓


𝑞

𝐿
𝑝
)

1/𝑞

, 𝑞 < ∞;

sup
𝑗∈𝑍

2
𝑗𝑠
𝜑
𝑗
𝑓
𝐿𝑝

, 𝑞 = ∞.

(5)

One defines the homogeneous Fourier-Besov space 𝐹�̇�𝑠
𝑝,𝑞

as

𝐹�̇�
𝑠

𝑝,𝑞
= {𝑓 ∈

𝑆


P
:
𝑓
𝐹�̇�
𝑠

𝑝,𝑞

< ∞} . (6)

We see that the Fourier-Besov spaces are defined in a
similar way with the classical homogeneous Besov spaces, but
there are lack of the inverse Fourier transform. This allows
us to derive estimates by Hölder’s inequality directly, instead
of using Bernstein’s inequality. Now we explain that Fourier-
Besov spaces contain some known spaces applied in studying
Navier-Stokes equations.

Cannone and Karch [19] introduced the spaces PM𝑎 as
follows:

PM
𝑎
= {V ∈ 𝑆 : V̂ ∈ 𝐿1loc,

‖V‖PM𝑎 = esssup
𝜉∈𝑅
𝑛

𝜉


𝑎 V̂ (𝜉)
 < ∞} .

(7)

We easily see thatPM𝑎
= 𝐹�̇�

𝑎

∞,∞
.

The norm of Fourier-Herz spaces Ḃ𝑠

𝑞
in [24] is defined as

𝑓
Ḃ
𝑠

𝑞

=

{{{{

{{{{

{

(∑

𝑗∈𝑍

2
𝑗𝑠𝑞

𝜑
𝑗
𝑓


𝑞

𝐿
1
)

1/𝑞

, 𝑞 < ∞;

sup
𝑗∈𝑍

2
𝑗𝑠
𝜑
𝑗
𝑓
𝐿1
, 𝑞 = ∞.

(8)

Obviously, we have Ḃ𝑠

𝑞
= 𝐹�̇�

𝑠

1,𝑞
.

The spaceX−1 introduced by Lei and Lin [23] is

X
−1
= {𝑓 ∈ 𝑆


(𝑅
𝑛
) : ∫

𝑅
𝑛

𝜉


−1 
𝑓

𝑑𝜉 < ∞} . (9)
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We claim that X−1
= 𝐹�̇�

−1

1,1
. This fact can be seen by the

following proposition (proof in [21]).

Proposition 2. Define the spacesX𝑠 as

X
𝑠
= {𝑓 ∈

𝑆


P
: (∫

𝑅
𝑛

𝜉


𝑠𝑝
𝑓


𝑝

𝑑𝜉)

1/𝑝

< ∞} . (10)

Then one hasX𝑠
= 𝐹�̇�

𝑠

𝑝,𝑝
and the norms are equivalent:

𝑓
𝐹�̇�
𝑠

𝑝,𝑝

∼ (∫
𝑅
𝑛

𝜉


𝑠𝑝
𝑓


𝑝

𝑑𝜉)

1/𝑝

. (11)

We discuss some inclusion relationships in 𝐹�̇�𝑠
𝑝,𝑞
.

Proposition 3. Let 𝑠 ∈ 𝑅, 1 ≤ 𝑝, 𝑞 ≤ ∞. One has the
follwoing.

(1) If 𝑝 = 2, then 𝐹�̇�𝑠
2,𝑞

= �̇�
𝑠

2,𝑞
.

(2) If 𝑝 < 2, then 𝐹�̇�𝑠
𝑝,𝑞

⊂ �̇�
𝑠

𝑝

,𝑞
.

(3) If 𝑞
1
≤ 𝑞

2
, then 𝐹�̇�𝑠

𝑝,𝑞
1

⊂ 𝐹�̇�
𝑠

𝑝,𝑞
2

.
(4) If 1 ≤ 𝑞 ≤ ∞, 1 ≤ 𝑝

1
≤ 𝑝

2
≤ ∞, and 𝑠

1
, 𝑠
2
∈ 𝑅 satisfy

𝑠
1
+ 𝑛/𝑝

1
= 𝑠

2
+ 𝑛/𝑝

2
, then

𝐹�̇�
𝑠
2

𝑝
2
,𝑞
⊂ 𝐹�̇�

𝑠
1

𝑝
1
,𝑞
. (12)

(5) If 𝑠 = (1 − 𝜃)𝑠
1
+ 𝜃𝑠

2
, 1/𝑝 = (1 − 𝜃)/𝑝

1
+ (1 − 𝜃)/𝑝

2
,

and 1/𝑞 = (1 − 𝜃)/𝑞
1
+ (1 − 𝜃)/𝑞

2
for 0 ≤ 𝜃 ≤ 1, then

𝑓
𝐹�̇�
𝑠

𝑝,𝑞

≤
𝑓


1−𝜃

𝐹�̇�
𝑠1

𝑝1,𝑞1

𝑓


𝜃

𝐹�̇�
𝑠2

𝑝2,𝑞2

. (13)

Proof. (1) is a consequence of Plancherel’s identity, and
Hausdorff-Young’s inequality gives (2). Equation (3) is just
the inclusion 𝑙𝑞1 ⊂ 𝑙

𝑞
2 for 1 ≤ 𝑞

1
≤ 𝑞

2
≤ ∞. To conclude

(4), we use Hölder’s inequality to get

𝜑
𝑗
𝑓
𝐿𝑝1

≤ 𝐶2
𝑗𝑛(1/𝑝

1
−1/𝑝
2
)
𝜑
𝑗
𝑓
𝐿𝑝2

. (14)

Since 𝑠
1
and 𝑠

2
satisfy 𝑠

1
+ 𝑛/𝑝

1
= 𝑠

2
+ 𝑛/𝑝

2
, we immediately

get

2
𝑗𝑠
1

𝜑
𝑗
𝑓
𝐿𝑝1

≤ 𝐶2
𝑗𝑠
2

𝜑
𝑗
𝑓
𝐿𝑝2

. (15)

Taking the 𝑙𝑞-norm on the above inequality we have
𝑓
𝐹�̇�
𝑠1

𝑝1,𝑞

≤ 𝐶
𝑓
𝐹�̇�
𝑠2

𝑝2,𝑞

. (16)

To prove (5), we have

𝑓
𝐹�̇�
𝑠

𝑝,𝑞

= (∑

𝑗

2
𝑗𝑠𝑞



𝜑
𝑗
𝑓


1−𝜃
𝜑
𝑗
𝑓


𝜃

𝑞

𝐿
𝑝

)

1/𝑞

≤ (∑

𝑗

2
𝑗(1−𝜃)𝑠

1
𝑞
𝜑
𝑗
𝑓


(1−𝜃)𝑞

𝐿
𝑝1

2
𝑗𝜃𝑠
2
𝑞
𝜑
𝑗
𝑓


𝜃𝑞

𝐿
𝑝2

)

1/𝑞

≤
𝑓


1−𝜃

𝐹�̇�
𝑠1

𝑝1,𝑞1

𝑓


𝜃

𝐹�̇�
𝑠2

𝑝2,𝑞1

.

(17)

Now we are ready to state our main results. From now on
in this paper we take the dimension 𝑛 = 3.

Definition 4. Let 𝑠 ∈ 𝑅, 1 ≤ 𝑝, 𝑞 ≤ ∞, and 𝐼 = [0, 𝑇), 𝑇 ∈

(0,∞]. The space-time norm is defined on 𝑓(𝑡, 𝑥) by

𝑓(𝑡, 𝑥)
L𝑟(𝐼;𝐹�̇�

𝑠

𝑝,𝑞
)
:= (∑

𝑗∈𝑍

2
𝑗𝑠𝑞

𝜑
𝑗
𝑓


𝑞

𝐿
𝑟
(𝐼;𝐿
𝑝
)
)

1/𝑞

. (18)

Our first result is on the well-posedness of (1).

Theorem 5. Let 1 ≤ 𝑝, 𝑞 ≤ ∞, and 1/2 < 𝛽 < min{1 +
3/𝑝


, 5/2}. Then there exists a constant 𝐶

0
= 𝐶

0
(𝛽, 𝑝, 𝑞) such

that, for any 𝑢
0
∈ 𝐹�̇�

1−2𝛽+3/𝑝


𝑝,𝑞
with ∇ ⋅ 𝑢

0
= 0 satisfying

𝑢0

𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

< 𝐶
0
𝜇, (19)

the Cauchy problem (1) admits a unique global mild solution 𝑢
and

𝑢 ∈ C([0,∞) ; 𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞
) ∩L

1
([0,∞) ; 𝐹�̇�

1+3/𝑝


𝑝,𝑞
) ,

(20)

and it satisfies

‖𝑢‖
L∞([0,∞);𝐹�̇�

1−2𝛽+3/𝑝


𝑝,𝑞
)

+ 𝜇‖𝑢‖
L1([0,∞);𝐹�̇�

1+3/𝑝


𝑝,𝑞
)

≤ 2(1 + (
16

9
)

𝛽

)
𝑢0


𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

.

(21)

Particularly, our result also holds in the critical case 𝑞 = 1 and
𝛽 = 1/2.

Remark 6. We emphasize that the case 𝛽 = 1/2 is important,
since it is also the critical case for the fractional Navier-Stokes
equations. Note that when 𝛽 = 1/2, the function spaces we
work on are 𝐹�̇�3/𝑝



𝑝,1
. All these spaces are embedded into 𝐹�̇�0

1,1
,

which is the space that consists of all functions whose Fourier
transforms are in 𝐿1 (see Proposition 2).

Remark 7. Note that 𝐹�̇�1−2𝛽+3/𝑝


𝑝,𝑞
⊂ �̇�

−2𝛽−1

∞,∞
by Proposition 3

and the space 𝐹�̇�1−2𝛽+3/𝑝


𝑝,𝑞
are also critical spaces. In fact, for

𝑢
0,𝜆

= 𝜆
2𝛽−1

𝑢
0
(𝜆𝑥), we have 𝑢

0,𝜆
= 𝜆

2𝛽−4
𝑢
0
(𝜆
−1
𝜉). Set

𝑔
𝑗
(𝜉) := 𝜑 (2

−𝑗+[log
2
𝜆]−log

2
𝜆
𝜉) 𝑢

0,𝜆
(𝜉) . (22)

Then we have

2
𝑗(1−2𝛽+3/𝑝


)
𝑔
𝑗

𝐿𝑝

= 2
𝑗(1−2𝛽+3/𝑝


)
𝜑 (2

−𝑗+[log
2
𝜆]−log

2
𝜆
𝜉) 𝜆

2𝛽−4
𝑢
0
(𝜆
−1
𝜉)
𝐿𝑝

= 2
([log
2
𝜆]−log

2
𝜆)(1−2𝛽+3/𝑝


)

× 2
(𝑗−[log

2
𝜆])(1−2𝛽+3/𝑝


)
𝜑 (2

−𝑗+[log
2
𝜆]
𝜂) 𝑢

0
(𝜂)

𝐿𝑝

∼ 2
(𝑗−[log

2
𝜆])(1−2𝛽+3/𝑝


)
𝜑(2

−𝑗+[log
2
𝜆]
𝜂)𝑢

0
(𝜂)

𝐿𝑝
.

(23)



4 Abstract and Applied Analysis

This implies that

(∑

𝑗∈𝑍

2
𝑗𝑞(1−2𝛽+3/𝑝


)
𝑔
𝑗



𝑞

𝐿
𝑝
)

1/𝑞

∼
𝑢0


𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

. (24)

On the other hand, by

𝜑
𝑗
(𝜉) 𝑢

0,𝜆
(𝜉) = ∑

|𝑘−𝑗|≤2

𝜑
𝑗
(𝜉) 𝑔

𝑘
(𝜉) , (25)

we can easily deduce that

𝑢0,𝜆

𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

∼ (∑

𝑗∈𝑍

2
𝑗𝑞(1−2𝛽+3/𝑝


)
𝑔
𝑗



𝑞

𝐿
𝑝
)

1/𝑞

. (26)

Unfortunately, Theorem 5 is not suitable for the case 𝛽 =

1, 𝑝 = 1, in which similar existence has been proved by
Cannone and Wu [24]. To address this case, we also get the
following theorem.

Theorem 8. Let 1 ≤ 𝑝 ≤ 𝑞 ≤ 2 and 𝛽 ∈ (1/2, 1 + 3/2𝑝

].

Then there exists a constant 𝐶
0
= 𝐶

0
(𝛽, 𝑝, 𝑞) such that, for any

𝑢
0
∈ 𝐹�̇�

1−2𝛽+3/𝑝


𝑝,𝑞
with ∇ ⋅ 𝑢

0
= 0 satisfying

𝑢0

𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

< 𝐶
0
𝜇, (27)

the Cauchy problem (1) admits a unique global mild solution 𝑢
and

𝑢 ∈ C([0,∞) ; 𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞
) ∩L

1
([0,∞) ; 𝐹�̇�

1+3/𝑝


𝑝,𝑞
) ,

(28)

and it satisfies

‖𝑢‖
L∞([0,∞);𝐹�̇�

1−2𝛽+3/𝑝


𝑝,𝑞
)

+ 𝜇‖𝑢‖
L1([0,∞);𝐹�̇�

1+3/𝑝


𝑝,𝑞
)

≤ 2(1 + (
16

9
)

𝛽

)
𝑢0


𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

.

(29)

Particularly, our result also holds in the critical case 𝑝 = 𝑞 = 1
and 𝛽 = 1/2.

Remark 9. In comparison withTheorem 5, although we have
a limitation 1 ≤ 𝑝 ≤ 𝑞 ≤ 2, the regularity index 𝛽 in
Theorem 10 lies in a larger interval when 𝑝 = 1.

Our third result is on the decay property of the global
solutions

Theorem 10. Let 1 ≤ 𝑝 ≤ 𝑞 ≤ 2 and 𝛽 ∈ (5/6, 1]. Assume that
𝑢 ∈ 𝐶([0,∞); 𝐹�̇�

1−2𝛽+3/𝑝


𝑝,𝑞
) is a global solution of (1). One has

lim sup
𝑡→∞

‖𝑢(𝑡)‖
𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

= 0. (30)

Remark 11. Recently, Benameur [26] obtained the same
property in the space X−1

= 𝐹�̇�
−1

1,1
for the classical Navier-

Stokes equations (𝛽 = 1). Our result improves and extends
his result.

3. The Well-Posedness

First, we study the linear estimates of (1). For this purpose we
consider the dissipative equation:

𝑢
𝑡
+ 𝜇(−Δ)

𝛽
𝑢 = 𝐹 (𝑡, 𝑥) , (𝑡, 𝑥) ∈ 𝑅

+
× 𝑅

3
;

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑥 ∈ 𝑅

3
.

(31)

It is easy to see that the equivalent integral equation of (31) is

𝑢 (𝑡, 𝑥) = 𝑒
−𝜇𝑡(−Δ)

𝛽

𝑢
0
− ∫

𝑡

0

𝑒
−𝜇(𝑡−𝜏)(−Δ)

𝛽

𝐹 (𝜏, 𝑥) 𝑑𝜏. (32)

By taking 𝐹(𝑡, 𝑥) = 0 or 𝑢
0
(𝑥) = 0, we obtain the linear

term or the nonlinear term of the equation, respectively. This
indicates that the following lemma is very useful in our later
proof.

Lemma 12 (linear estimate). Let 𝐼 = [0, 𝑇), 0 < 𝑇 ≤ ∞,
𝑠 ∈ 𝑅, 1 ≤ 𝑝, and 𝑞 ≤ ∞. Assume that 𝑢

0
∈ 𝐹�̇�

𝑠

𝑝,𝑞
and 𝐹 ∈

L1
(𝐼; 𝐹�̇�

𝑠

𝑝,𝑞
). Then the solution 𝑢(𝑡, 𝑥) to the Cauchy problem

(31) satisfies

‖𝑢‖L∞(𝐼;𝐹�̇�
𝑠

𝑝,𝑞
)
+ 𝜇‖𝑢‖

L1(𝐼;𝐹�̇�
𝑠+2𝛽

𝑝,𝑞
)

≤ (1 + (
16

9
)

𝛽

)(
𝑢0

𝐹�̇�
𝑠

𝑝,𝑞

+ ‖𝐹‖L1(𝐼;𝐹�̇�
𝑠

𝑝,𝑞
)
) .

(33)

Proof. By taking the Fourier transform we have

𝜕
𝑡
�̂� + 𝜇

𝜉


2𝛽

�̂� = 𝐹. (34)

Multiplying 𝜑
𝑗
and taking the 𝐿𝑝-norm on both sides,

𝑑

𝑑𝑡


𝑢
𝑗

𝐿𝑝
+ (

9

16
)

𝛽

𝜇2
2𝛽𝑗

𝑢
𝑗

𝐿𝑝
≤

𝐹
𝑗

𝐿𝑝
, (35)

where we denote 𝑢
𝑗
= 𝜑

𝑗
�̂�. Integrating with respect to time

on [0, 𝑡), we get


𝑢
𝑗

𝐿𝑝
+ (

9

16
)

𝛽

𝜇2
2𝛽𝑗

𝑢
𝑗

𝐿1(0,𝑡;𝐿𝑝)
≤

𝑢
0
𝑗
𝐿𝑝

+

𝐹
𝑗

𝐿1(𝐼;𝐿𝑝)
.

(36)

By the definition of 𝐹�̇�𝑠
𝑝,𝑞

and the triangle inequality for 𝑙𝑞, it
is easy to obtain our desired inequality.

Next we consider the bilinear estimate, which is the key
estimate in solving the Navier-Stokes equations.

Lemma 13 (bilinear estimate). Let 1 ≤ 𝑝, 𝑞 ≤ ∞, and 1/2 <
𝛽 < min{1 + 3/𝑝, 5/2} and set

𝑋 = L
∞
(𝐼; 𝐹�̇�

1−2𝛽+3/𝑝


𝑝,𝑞
) ∩L

1
(𝐼; 𝐹�̇�

1+3/𝑝


𝑝,𝑞
) , (37)

with the norm

‖𝑢‖𝑋 = ‖𝑢‖
L∞(𝐼;𝐹�̇�

1−2𝛽+3/𝑝


𝑝,𝑞
)

+ 𝜇‖𝑢‖
L1(𝐼;𝐹�̇�

1+3/𝑝


𝑝,𝑞
)

. (38)
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Then there exists some constant 𝐶 = 𝐶(𝛽, 𝑝, 𝑞) > 0 depending
on 𝛽, 𝑝, and 𝑞 such that

‖∇ ⋅ (𝑢 ⊗ V)‖
L1(𝐼;𝐹�̇�

1−2𝛽+3/𝑝


𝑝,𝑞
)

≤ 𝐶𝜇
−1
‖𝑢‖𝑋‖V‖𝑋. (39)

Particularly, it is true for the cases 𝑞 = 1 and 𝛽 = 1/2.

Proof. We will use the technique of the paraproduct. Set

Δ̇
𝑗
𝑢 = (F

−1
𝜑
𝑗
) ∗ 𝑢,

�̇�
𝑗
= ∑

𝑘≤𝑗−1

Δ̇
𝑘
𝑢,

̃̇
Δ
𝑗
𝑢 = ∑

|𝑘−𝑗|≤1

Δ̇
𝑘
𝑢,

for ∀𝑗 ∈ 𝑍.

(40)

By Bony’s decomposition, we have for fixed 𝑗

Δ̇
𝑗
(𝑢V) = ∑

|𝑘−𝑗|≤4

Δ̇
𝑗
(�̇�
𝑘−1

𝑢Δ̇
𝑘
V)

+ ∑

|𝑘−𝑗|≤4

Δ̇
𝑗
(�̇�
𝑘−1

VΔ̇
𝑘
𝑢)

+ ∑

𝑘≥𝑗−3

Δ̇
𝑗
(Δ̇

𝑘
𝑢
̃̇
Δ
𝑘
V)

:= 𝐼
𝑗
+ 𝐼𝐼

𝑗
+ 𝐼𝐼𝐼

𝑗
.

(41)

For simplicity,we can view ∇ ⋅ (𝑢 ⊗ V), as the first derivative of
two scale functions 𝑢, V. Consider

‖𝜕 (𝑢V)‖
L1(𝐼:𝐹�̇�

1−2𝛽+3/𝑝


𝑝,𝑞
)

≤
8

3
(∑

𝑗

2
(1−2𝛽+3/𝑝


)𝑗𝑞
2
𝑗𝑞


̂̇
Δ
𝑗
(𝑢V)



𝑞

𝐿
1
(𝐼;𝐿
𝑝
)

)

1/𝑞

≤
8

3

[

[

(∑

𝑗

2
(2−2𝛽+3/𝑝


)𝑗𝑞

𝐼
𝑗



𝑞

𝐿
1
(𝐼;𝐿
𝑝
)
)

1/𝑞

+ (∑

𝑗

2
(2−2𝛽+3/𝑝


)𝑗𝑞

𝐼𝐼
𝑗



𝑞

𝐿
1
(𝐼;𝐿
𝑝
)
)

1/𝑞

+ (∑

𝑗

2
(2−2𝛽+3/𝑝


)𝑗𝑞

𝐼𝐼𝐼
𝑗



𝑞

𝐿
1
(𝐼;𝐿
𝑝
)
)

1/𝑞

]

]

.

(42)

The terms 𝐼
𝑗
and 𝐼𝐼

𝑗
are symmetrical. Using Young’s inequal-

ity and Hölder’s inequality we have


𝐼
𝑗

𝐿1(𝐼;𝐿𝑝)
≤ ∑

|𝑘−𝑗|≤4



̂
�̇�
𝑘−1

𝑢Δ̇
𝑘
V
𝐿1(𝐼;𝐿𝑝)

≤ ∑

|𝑘−𝑗|≤4

V̂𝑘
𝐿1(𝐼;𝐿𝑝)

∑

𝑙≤𝑘−2

𝑢𝑙
𝐿∞(𝐼;𝐿1)

≤ ∑

|𝑘−𝑗|≤4

V̂𝑘
𝐿1(𝐼;𝐿𝑝)

× ( ∑

𝑙≤𝑘−2

2
(1−2𝛽)𝑙𝑞𝑢𝑙



𝑞

𝐿
∞
(𝐼;𝐿
1
)
)

1/𝑞

× ( ∑

𝑙≤𝑘−2

2
(2𝛽−1)𝑙𝑞



)

1/𝑞


≤ 𝐶 ∑

|𝑘−𝑗|≤4

2
(2𝛽−1)𝑘V̂𝑘

𝐿1(𝐼;𝐿𝑝)‖
𝑢‖

L∞(𝐼;𝐹�̇�
1−2𝛽

1,𝑞
)
.

(43)

Using the conclusion 𝐹�̇�1−2𝛽+3/𝑝


𝑝,𝑞
⊂ 𝐹�̇�

1−2𝛽

1,𝑞
, we have

(∑

𝑗

2
(2−2𝛽+3/𝑝


)𝑗𝑞

𝐼
𝑗



𝑞

𝐿
1
(𝐼;𝐿
𝑝
)
)

1/𝑞

≤ 𝐶‖𝑢‖
L∞(𝐼;𝐹�̇�

1−2𝛽+3/𝑝


𝑝,𝑞
)

‖V‖
L1(𝐼;𝐹�̇�

1+3/𝑝


𝑝,𝑞
)

.

(44)

In a similar way we can prove that

(∑

𝑗

2
(2−2𝛽+3/𝑝


)𝑗𝑞

𝐼𝐼
𝑗



𝑞

𝐿
1
(𝐼;𝐿
𝑝
)
)

1/𝑞

≤ 𝐶‖V‖
L∞(𝐼;𝐹�̇�

1−2𝛽+3/𝑝


𝑝,𝑞
)

‖𝑢‖
L1(𝐼;𝐹�̇�

1+3/𝑝


𝑝,𝑞
)

.

(45)

For the remaining term, we first consider the case 𝑝 ≤ 2 in
which 𝛽 < 1+3/𝑝. By Hölder’s inequality with 1/𝑝 = 1/𝑝 +
1/𝑝 − 1/𝑝

 and by Young’s inequality with 1 + 1/𝑝 − 1/𝑝 =
1/𝑝 + 1/𝑝, we have

2
(2−2𝛽+3/𝑝


)𝑗
𝐼𝐼𝐼

𝑗

𝐿1(𝐼;𝐿𝑝)

≤ 𝐶 ∑

𝑘≥𝑗−3

2
(2−2𝛽+3/𝑝


)𝑗
2
(3/𝑝

)𝑗



𝑢
𝑘
∗ ∑

|𝑙−𝑘|≤1

V̂
𝑙

𝐿1(𝐼;𝐿𝑝𝑝

/(𝑝

−𝑝)
)

≤ 𝐶 ∑

𝑘≥𝑗−3

2
(2−2𝛽+6/𝑝


)𝑗𝑢𝑘

𝐿1(𝐼;𝐿𝑝)
∑

|𝑙−𝑘|≤1

V̂𝑙
𝐿∞(𝐼;𝐿𝑝)

≤ 𝐶 ∑

𝑘≥𝑗−3

2
(2−2𝛽+6/𝑝


)(𝑗−𝑘)

2
(1−2𝛽+3/𝑝


)𝑘𝑢𝑘

𝐿∞(𝐼;𝐿𝑝)

× ∑

|𝑙−𝑘|≤1

2
(1+3/𝑝


)𝑙V̂𝑙

𝐿1(𝐼;𝐿𝑝)
.

(46)



6 Abstract and Applied Analysis

When 𝑞 > 2, we take 𝑙𝑞-norm of both sides of (46) and use
Young’s inequality with 1 + 1/𝑞 = 1/𝑞 + 2/𝑞 to get

(∑

𝑗

2
(2−2𝛽+3/𝑝


)𝑗𝑞

𝐼𝐼𝐼
𝑗



𝑞

𝐿
1
(𝐼;𝐿
𝑝
)
)

1/𝑞

≤ 𝐶

2
(1−2𝛽+3/𝑝


)𝑘𝑢𝑘

𝐿∞(𝐼;𝐿𝑝)

× ∑

|𝑙−𝑘|≤1

2
(1+3/𝑝


)𝑙V̂𝑙

𝐿1(𝐼;𝐿𝑝)

𝑙𝑞/2(𝑘)

≤ 𝐶‖𝑢‖
L∞(𝐼;𝐹�̇�

1−2𝛽+3/𝑝


𝑝,𝑞
)

‖V‖
L1(𝐼;𝐹�̇�

1+3/𝑝


𝑝,𝑞
)

.

(47)

When 𝑞 ≤ 2, since 𝐹�̇�1+3/𝑝


𝑝,𝑞
⊂ 𝐹�̇�

1+3/𝑝


𝑝,𝑞
 , we take 𝑙𝑞-norm of

both sides of (46) and use Young’s inequality with 1 + 1/𝑞 =
1 + 1/𝑞 to get

(∑

𝑗

2
(2−2𝛽+3/𝑝


)𝑗𝑞

𝐼𝐼𝐼
𝑗



𝑞

𝐿
1
(𝐼:𝐿
𝑝
)
)

1/𝑞

≤ 𝐶



2
(1−2𝛽+3/𝑝


)𝑘𝑢𝑘

𝐿∞(𝐼;𝐿𝑝)

× ∑

|𝑙−𝑘|≤1

2
(1+3/𝑝


)𝑙V̂𝑙

𝐿1(𝐼;𝐿𝑝)

𝑙1(𝑘)

≤ 𝐶‖𝑢‖
L∞(𝐼;𝐹�̇�

1−2𝛽+3/𝑝


𝑝,𝑞
)

‖V‖
L1(𝐼;𝐹�̇�

1+3/𝑝


𝑝,𝑞

)

≤ 𝐶‖𝑢‖
L∞(𝐼;𝐹�̇�

1−2𝛽+3/𝑝


𝑝,𝑞
)

‖V‖
L1(𝐼;𝐹�̇�

1+3/𝑝


𝑝,𝑞
)

.

(48)

Next we consider the case 𝑝 > 2 and hence 𝛽 ≤ 5/2. By
Hölder’s inequality we have

2
(2−2𝛽+3/𝑝


)𝑗
𝐼𝐼𝐼

𝑗

𝐿1(𝐼;𝐿𝑝)

≤ 𝐶 ∑

𝑘≥𝑗−3

2
(2−2𝛽+3/𝑝


)𝑗
2
(3/𝑝)𝑗



𝑢
𝑘
∗ ∑

|𝑙−𝑘|≤1

V̂
𝑙

𝐿1(𝐼;𝐿∞)

≤ 𝐶 ∑

𝑘≥𝑗−3

2
(5−2𝛽)𝑗𝑢𝑘

𝐿∞(𝐼;𝐿𝑝


)
∑

|𝑙−𝑘|≤1

V̂𝑙
𝐿1(𝐼;𝐿𝑝)

≤ 𝐶 ∑

𝑘≥𝑗−3

2
(5−2𝛽)(𝑗−𝑘)

2
(1−2𝛽+3/𝑝


)𝑘𝑢𝑘

𝐿∞(𝐼;𝐿𝑝)

× ∑

|𝑙−𝑘|≤1

2
(1+3/𝑝


)𝑙V̂𝑙

𝐿1(𝐼:𝐿𝑝)
.

(49)

Following the same steps as in the case 𝑝 ≤ 2, we obtain the
same estimate for 𝑝 > 2. Collecting the above estimates we
finish our proof.

Next we introduce an abstract lemma on the existence of
fixed point solutions [16, 24].

Lemma 14. Let 𝑋 be a Banach space with norm ‖ ⋅ ‖
𝑋
and let

𝐵 : 𝑋 × 𝑋 → 𝑋 be a bounded bilinear operator satisfying

‖𝐵(𝑢, V)‖𝑋 ≤ 𝜂‖𝑢‖𝑋‖V‖𝑋, (50)

for all 𝑢, V ∈ 𝑋 and a constant 𝜂 > 0. Then for any fixed
𝑦 ∈ 𝑋 satisfying ‖𝑦‖

𝑋
< 𝜖 < 1/4𝜂, the equation 𝑥 :=

𝑦 + 𝐵(𝑥, 𝑥) has a solution 𝑥 in 𝑋 such that ‖𝑥‖
𝑋
≤ 2‖𝑦‖

𝑋
.

Also, the solution is unique in 𝐵(0, 2𝜖). Moreover, the solution
depends continuously on 𝑦 in the sense that if ‖𝑦‖

𝑋
< 𝜖,

𝑥

= 𝑦


+ 𝐵(𝑥


, 𝑥

), and ‖𝑥‖

𝑋
< 2𝜖, then


𝑥 − 𝑥

𝑋
≤

1

1 − 4𝜖𝜂


𝑦 − 𝑦

𝑋
. (51)

This lemma allows us to solve the Cauchy problem (1)
with bounded bilinear form and small data.Themild solution
of (1) is the solution to the equivalent integral form:

𝑢 (𝑡, 𝑥) = 𝑒
−𝜇𝑡(−Δ)

𝛽

𝑢
0
− ∫

𝑡

0

𝑒
−𝜇(𝑡−𝜏)(−Δ)

𝛽

P∇

⋅ (𝑢 ⊗ 𝑢) (𝜏, 𝑥) 𝑑𝜏

= 𝑒
−𝜇𝑡(−Δ)

𝛽

𝑢
0
+ 𝐵 (𝑢, 𝑢) ,

(52)

where P = 𝐼 + ∇(−Δ)
−1 div is the Leray-Hopf projector. To

make 𝐵(𝑢, V) become a bilinear form, we simply take (1/2)𝑢⊗
V + (1/2)V ⊗ 𝑢 instead of 𝑢 ⊗ V in the integral.

Proof of Theorem 5. We begin with the bilinear operator
𝐵(𝑢, V). Observing that 𝐵(𝑢, V) can be viewed as the solution
to the dissipative equation (31) with 𝑢

0
= 0, 𝐹 = −P∇⋅(𝑢⊗V).

Thus we can use Lemma 12 with 𝑠 = 1 − 2𝛽 + 3/𝑝
 and

Lemma 13 to obtain

‖𝐵 (𝑢, V)‖𝑋

≤ (1 + (
16

9
)

𝛽

) ‖−P∇ ⋅ (𝑢 ⊗ V)‖
L1(𝐼;𝐹�̇�

1−2𝛽+3/𝑝


𝑝,𝑞
)

≤ (1 + (
16

9
)

𝛽

)𝐶𝜇
−1
‖𝑢‖𝑋‖V‖𝑋.

(53)

By Lemma 14 we know that if ‖𝑒−𝜇𝑡(−Δ)
𝛽

𝑢
0
‖
𝑋
< 𝑅 with 𝑅 =

𝜇/4(1+(16/9)
𝛽
)𝐶, then (52) has a unique solution in𝐵(0, 2𝑅),

where

𝐵 (0, 2𝑅) := {𝑥 ∈ 𝑋 : ‖𝑥‖𝑋 ≤ 2𝑅} . (54)

Now we need to derive ‖𝑒−𝜇𝑡(−Δ)
𝛽

𝑢
0
‖
𝑋

< 𝑅. Similarly,
𝑒
−𝜇𝑡(−Δ)

𝛽

𝑢
0
is the solution to the dissipative equation (31) with

𝑢
0
= 𝑢

0
and 𝐹 = 0. By Lemma 12 we obtain


𝑒
−𝜇𝑡(−Δ)

𝛽

𝑢
0

𝑋
≤ (1 + (

16

9
)

𝛽

)
𝑢0


𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

. (55)
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Thus we conclude that if ‖𝑢
0
‖
𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

< 𝐶
0
𝜇 with 𝐶

0
=

(4(1 + (16/9)
𝛽
)
2

𝐶)

−1

, then (52) has a unique global solution
𝑢 ∈ 𝑋 satisfying

‖𝑢‖𝑋 ≤ 2

𝑒
−𝜇𝑡(−Δ)

𝛽

𝑢
0

𝑋
≤ 2(1 + (

16

9
)

𝛽

)
𝑢0


𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

.

(56)

The continuity with respect to time is standard and thus we
finish our proof.

Proof of Theorem 8. The method is the same with the proof
of Theorem 5. But we substitute Lemma 13 by the following
lemma.

Lemma 15. Let 1 ≤ 𝑝 ≤ 𝑞 ≤ 2 and 𝛽 ∈ (1/2, 1 + 3/2𝑝

] and

𝑋 is the same as in Lemma 13. Then there exists some constant
𝐶 = 𝐶(𝛽, 𝑝, 𝑞) > 0 depending on 𝛽, 𝑝, and 𝑞 such that

‖∇ ⋅ (𝑢 ⊗ V)‖
L1(𝐼;𝐹�̇�

1−2𝛽+3/𝑝


𝑝,𝑞
)

≤ 𝐶𝜇
−1
‖𝑢‖𝑋‖V‖𝑋. (57)

Particularly, it is true for the cases 𝑝 = 𝑞 = 1 and 𝛽 = 1/2.

Proof. The proof is also same with Lemma 13. In fact by Bony’s
decomposition, we divide Δ̇

𝑗
(𝑢V) into three parts 𝐼

𝑗
, 𝐼𝐼

𝑗
, and

𝐼𝐼𝐼
𝑗
. The parts 𝐼

𝑗
and 𝐼𝐼

𝐽
satisfy the same estimate. Hence it is

sufficient to deal with the part 𝐼𝐼𝐼
𝐽
. In fact when 𝑞 ≥ 𝑝, we have

(∑

𝑗

2
(2−2𝛽+3/𝑝


)𝑗𝑞

𝐼𝐼𝐼
𝑗



𝑞

𝐿
1
(𝐼;𝐿
𝑝
)
)

1/𝑞

≤



∑

𝑘≥𝑗−3

∫
𝐼



2
(2−2𝛽+3/𝑝


)𝑗
𝜑
𝑗
(𝜉)

× [𝑢
𝑘
∗ ∑

|𝑙−𝑘|≤1

V̂
𝑙
]

𝐿
𝑝

𝜉

𝑑𝑡

𝑙𝑞(𝑗)

≤ ∑

𝑘

∫
𝐼



∫
𝑅
3

2
(2−2𝛽+3/𝑝


)𝑝𝑗

×

𝜑
𝑗
(𝜉)


𝑝

[𝑢
𝑘
∗ ∑

|𝑙−𝑘|≤1

V̂
𝑙
]

𝑝

𝑑𝜉



1/𝑝

𝑙
𝑞/𝑝
(𝑗≤𝑘+3)

𝑑𝑡

≤ sup
𝜉

(∑

𝑗

𝜑
𝑗
(𝜉)

𝑞
)

1/𝑞

∑

𝑘

2
(2−2𝛽+3/𝑝


)(𝑘+3)

× ∫
𝐼



𝑢
𝑘
∗ ∑

|𝑙−𝑘|≤1

V̂
𝑙

𝐿
𝑝

𝜉

𝑑𝑡

≤ 2
3(2−2𝛽+3/𝑝


)
∑

𝑘

2
(1−2𝛽)𝑘𝑢𝑘

𝐿∞(𝐼:𝐿1)

× ∑

|𝑙−𝑘|≤1

2
(1+3/𝑝


)(𝑘−𝑙)

2
(1+3/𝑝


)𝑙V̂𝑙

𝐿1(𝐼;𝐿𝑝)

≤ 𝐶‖𝑢‖
L∞(𝐼;𝐹�̇�

1−2𝛽

1,𝑞
)
‖V‖

L1(𝐼;𝐹�̇�
1+3/𝑝


𝑝,𝑞
)

.

(58)

In the last inequality we use a similar conclusion with (3)
in Proposition 3; that is, L1

(𝐼; 𝐹�̇�
1+3/𝑝



𝑝,𝑞
) ⊂ L1

(𝐼; 𝐹�̇�
1+3/𝑝



𝑝,𝑞
 ),

when 𝑞 ∈ [1, 2].

4. The Decay Property

We introduce some lemmas which have interest in them-
selves.

Lemma 16. Let 𝛽 < 5/4, 𝑠 > 5/2− 2𝛽, and 1 ≤ 𝑝, 𝑞 ≤ 2. Then
we have

𝑓

𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

≤ 𝐶
𝑓


1−(5/2−2𝛽)/𝑠

𝐿
2

𝑓


(5/2−2𝛽)/𝑠

�̇�
𝑠 . (59)

Proof. By definition and Hölder’s inequality we have
𝑓

𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

= (∑

𝑗∈𝑍

2
(1−2𝛽+3/𝑝


)𝑗𝑞

𝜑
𝑗
𝑓


𝑞

𝐿
𝑝
)

1/𝑞

≤ (∑

𝑗∈𝑍

2
(1−2𝛽+3/𝑝


)𝑗𝑞

𝜑
𝑗
𝑓


𝑞

𝐿
2
2
(3/𝑝−3/2)𝑗𝑞

)

1/𝑞

≤ (∑

𝑗≤𝑀

2
(5/2−2𝛽)𝑗𝑞

𝜑
𝑗
𝑓


𝑞

𝐿
2
)

1/𝑞

+ (∑

𝑗≥𝑀

2
(5/2−2𝛽−𝑠)𝑗𝑞

2
𝑠𝑗𝑞

𝜑
𝑗
𝑓


𝑞

𝐿
2
)

1/𝑞

≤ 𝐶
1
2
(5/2−2𝛽−𝑠)𝑀

(∑

𝑗∈𝑍


𝜑
𝑗
𝑓


2

𝐿
2
)

1/2

+ 𝐶
2
2
(5/2−2𝛽−𝑠)𝑀

(∑

𝑗∈𝑍

2
𝑠𝑗𝑞

𝜑
𝑗
𝑓


2

𝐿
2
)

1/2

.

(60)

Since �̇�𝑠
2,2

= �̇�
𝑠 and �̇�0

2,2
= 𝐿

2 and by Proposition 3, we know
that 𝐹�̇�𝑠

2,2
= �̇�

𝑠

2,2
; we finish our proof by taking𝑀 such that

2
𝑀
= (‖𝑓‖

�̇�
𝑠/‖𝑓‖

𝐿
2)
1/𝑠.

Lemma 17. Let 𝛽 ∈ (1/2, 1] and 1 ≤ 𝑝, 𝑞 ≤ 2. Consider

‖𝑢V‖
�̇�
1−𝛽 ≤ 𝐶‖𝑢‖𝐿2‖V‖

𝐹�̇�
1−𝛽+3/𝑝



𝑝,𝑞

+ 𝐶‖𝑢‖
�̇�
𝛽‖V‖

𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

. (61)
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Proof. We use the equivalence �̇�
𝑠

= �̇�
𝑠

2,2
= 𝐹�̇�

𝑠

2,2
. To

conclude the result we only need to show that

‖𝑢V‖
�̇�
1−𝛽 ≤ 𝐶‖𝑢‖𝐿2‖V‖

𝐹�̇�
1−𝛽+3/𝑝



𝑝,2

+ 𝐶‖𝑢‖
�̇�
𝛽‖V‖

𝐹�̇�
1−2𝛽

1,2

, (62)

since we have the conclusions 𝐹�̇�1−2𝛽+3/𝑝


𝑝,2
⊂ 𝐹�̇�

1−2𝛽

1,2
and

𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞
⊂ 𝐹�̇�

1−2𝛽+3/𝑝


𝑝,2
by Proposition 3. The method is

similar with the proof of Lemma 13. Consider

‖𝑢V‖
𝐹�̇�
1−𝛽

2,2

≤ (∑

𝑗

2
(1−𝛽)𝑗2

𝐼
𝑗



2

𝐿
2
)

1/2

+ (∑

𝑗

2
(1−𝛽)𝑗2

𝐼𝐼
𝑗



2

𝐿
2
)

1/2

+ (∑

𝑗

2
(1−𝛽)𝑗2

𝐼𝐼𝐼
𝑗



2

𝐿
2
)

1/2

,

(63)

where 𝐼
𝑗
, 𝐼𝐼

𝑗
, and 𝐼𝐼𝐼

𝑗
are the same with the proof of

Lemma 13. Consider


𝐼
𝑗

𝐿2
≤ ∑

|𝑘−𝑗|≤4



̂
�̇�
𝑘−1

𝑢Δ̇
𝑘
V
𝐿2

≤ ∑

|𝑘−𝑗|≤4

V̂𝑘
𝐿2

∑

𝑙≤𝑘−2

𝑢𝑙
𝐿1

≤ 𝐶 ∑

|𝑘−𝑗|≤4

V̂𝑘
𝐿2

× ( ∑

𝑙≤𝑘−2

2
(1−2𝛽)𝑙2𝑢𝑙



2

𝐿
1)

1/2

× ( ∑

𝑙≤𝑘−2

2
(2𝛽−1)𝑙2

)

1/2

≤ 𝐶 ∑

|𝑘−𝑗|≤4

2
(2𝛽−1)𝑘V̂𝑘

𝐿2‖
𝑢‖
𝐹�̇�
1−2𝛽

1,2

.

(64)

Thus we get

(∑

𝑗

2
(1−𝛽)𝑗2

𝐼
𝑗



2

𝐿
2
)

1/2

≤ 𝐶‖V‖
�̇�
𝛽‖𝑢‖

𝐹�̇�
1−2𝛽

1,2

. (65)

To estimate the term 𝐼𝐼
𝑗
, wemake aminormodification to get


𝐼𝐼
𝑗

𝐿2
≤ ∑

|𝑘−𝑗|≤4



̂
�̇�
𝑘−1

VΔ̇
𝑘
𝑢
𝐿2

≤ ∑

|𝑘−𝑗|≤4

𝑢𝑘
𝐿𝑝

∑

𝑙≤𝑘−2

V̂𝑙
𝐿2𝑝/(3𝑝−2)

≤ 𝐶 ∑

|𝑘−𝑗|≤4

𝑢𝑘
𝐿𝑝

× ( ∑

𝑙≤𝑘−2

2
−2𝑙(3/𝑝


)V̂𝑙



2

𝐿
2𝑝/(3𝑝−2))

1/2

× ( ∑

𝑙≤𝑘−2

2
2𝑙(3/𝑝


)
)

1/2

≤ 𝐶 ∑

|𝑘−𝑗|≤4

2
(3/𝑝

)𝑘𝑢𝑘

𝐿𝑝‖
V‖
𝐹�̇�
−3/𝑝


2𝑝/(3𝑝−2),2

.

(66)

By (4) in Proposition 3, we know that 𝐿2 = 𝐹�̇�
0

2,2
⊂

𝐹�̇�
−3/𝑝


2𝑝/(3𝑝−2),2
. Thus

(∑

𝑗

2
(1−𝛽)𝑗2

𝐼𝐼
𝑗



2

𝐿
2
)

1/2

≤ 𝐶‖𝑢‖
𝐹�̇�
1−𝛽+3/𝑝



𝑝,2

‖V‖𝐿2 . (67)

Finally we derive the estimate of the last part as

(∑

𝑗

2
(1−𝛽)𝑗2

𝐼𝐼𝐼
𝑗



2

𝐿
2
)

1/2

≤



∑

𝑘≥𝑗−3



2
(1−𝛽)𝑗

𝜑
𝑗
(𝜉)

× [𝑢
𝑘
∗ ∑

|𝑙−𝑘|≤1

V̂
𝑙
]

𝐿2
𝜉

𝑙2(𝑗)

≤ ∑

𝑘

(∫
𝑅
3

∑

𝑗≤𝑘+3

2
(1−𝛽)2𝑗

𝜑
𝑗
(𝜉)


2

×[𝑢
𝑘
∗ ∑

|𝑙−𝑘|≤1

V̂
𝑙
]

2

𝑑𝜉)

1/2

≤ sup
𝜉

(∑

𝑗

𝜑
𝑗
(𝜉)

2
)

1/2
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×∑

𝑘

2
(1−𝛽)(𝑘+3)



𝑢
𝑘
∗ ∑

|𝑙−𝑘|≤1

V̂
𝑙

𝐿2
𝜉

≤ 𝐶∑

𝑘

2
𝛽𝑘𝑢𝑘

𝐿2
∑

|𝑙−𝑘|≤1

2
(1−2𝛽)(𝑘−𝑙)

2
(1−2𝛽)𝑙V̂𝑙

𝐿1

≤ 𝐶‖𝑢‖
�̇�
𝛽‖V‖

𝐹�̇�
1−2𝛽

1,2

.

(68)

Now we can begin our proof of Theorem 10. The method
is based on the work from Gallagher-Iftimie-Planchon [27].

Proof of Theorem 10. Let 𝜖 > 0 be any constant small enough
such that 𝜖 ≤ 𝐶

0
𝜇, where𝐶

0
is the constant inTheorem 5 and

𝜇 is the viscosity coefficient in (1). For 𝑘 ∈ 𝑁+, define

A
𝑘
:= {𝜉 ∈ 𝑅

3
:
𝜉
 ≤ 𝑘 and 𝑢0 (𝜉)

 ≤ 𝑘} . (69)

Obviously F−1
(𝜒A
𝑘

𝑢
0
) converges to 𝑢

0
in 𝐹�̇�

1−2𝛽+3/𝑝


𝑝,𝑞
. So

there exists some 𝑘 ∈ 𝑁+ such that


𝑢
0
−F

−1
(𝜒A
𝑘

𝑢
0
)
𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

<
𝜖

2
. (70)

Set

𝑢
0,𝑘

= F
−1
(𝜒A
𝑘

𝑢
0
) ,

𝑤
0,𝑘

= 𝑢
0
−F

−1
(𝜒A
𝑘

𝑢
0
) .

(71)

Thus 𝑢
0,𝑘

∈ 𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞
∩ 𝐿

2 and we have shown that
‖𝑤
0,𝑘
‖
𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

< 𝜖/2. Now we consider the following
equations:

𝑤
𝑡
+ 𝜇(−Δ)

𝛽
𝑤 + (𝑤 ⋅ ∇)𝑤

+ ∇𝜋 = 0, (𝑡, 𝑥) ∈ 𝑅
+
× 𝑅

3
;

∇ ⋅ 𝑤 = 0, (𝑡, 𝑥) ∈ 𝑅
+
× 𝑅

3
;

𝑤 (0, 𝑥) = 𝑤
0,𝑘
(𝑥) , 𝑥 ∈ 𝑅

3
.

(72)

Since 𝜖/2 ≤ 𝐶
0
𝜇/2 ≤ 𝐶

0
𝜇, byTheorem 5, there exists a unique

global solution 𝑤
𝑘
of (72) such that

𝑤
𝑘
∈ C([0,∞) ; 𝐹�̇�

1−2𝛽+3/𝑝


𝑝,𝑞
) ∩L

1
([0,∞) ; 𝐹�̇�

1+3/𝑝


𝑝,𝑞
) .

(73)

Moreover,
𝑤𝑘

L∞([0,∞);𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞
)

+ 𝜇
𝑤𝑘

L1([0,∞);𝐹�̇�
1+3/𝑝


𝑝,𝑞
)

≤ 𝐶
𝑤0,𝑘


𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

.

(74)

An easy computation gives 𝑤
𝑘
∈ 𝐶([0,∞); 𝐹�̇�

1−2𝛽+3/𝑝


𝑝,𝑞
) and

for all 𝑡 ∈ [0,∞), we have

𝑤𝑘 (𝑡)

𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

+ 𝜇
𝑤𝑘

L1([0,𝑡);𝐹�̇�
1+3/𝑝


𝑝,𝑞
)

≤ 𝐶
𝑤0,𝑘


𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

.

(75)

Now put 𝑢
𝑘
= 𝑢 − 𝑤

𝑘
. Then 𝑢

𝑘
∈ 𝐶([0,∞); 𝐹�̇�

1−2𝛽+3/𝑝


𝑝,𝑞
) and

it satisfies

𝜕
𝑡
𝑢
𝑘
+ 𝜇(−Δ)

𝛽
𝑢
𝑘
+ (𝑢

𝑘
⋅ ∇) 𝑢

𝑘
+ (𝑢

𝑘
⋅ ∇)𝑤

𝑘

+ (𝑤
𝑘
⋅ ∇) 𝑢

𝑘
+ ∇𝜋 − ∇𝜋

𝑘
= 0,

∇ ⋅ 𝑢
𝑘
= 0,

𝑢
𝑘
(0, 𝑥) = 𝑢

0,𝑘
(𝑥) ,

(76)

where 𝜋 and 𝜋
𝑘
are the correspond pressures to the solutions

𝑢 and 𝑤
𝑘
, respectively. Taking the 𝐿2 inner product with 𝑢

𝑘
,

we have

1

2

𝑑

𝑑𝑡

𝑢𝑘


2

𝐿
2 + 𝜇


(−Δ)

𝛽/2
𝑢
𝑘



2

𝐿
2

≤
⟨(𝑢𝑘 ⋅ ∇)𝑤𝑘 + (𝑤𝑘 ⋅ ∇) 𝑢𝑘, 𝑢𝑘⟩

 .

(77)

To estimate |⟨(𝑢
𝑘
⋅ ∇)𝑤

𝑘
, 𝑢
𝑘
⟩|, we have

⟨(𝑢𝑘 ⋅ ∇)𝑤𝑘, 𝑢𝑘⟩
 =

⟨∇ ⋅ (𝑢𝑘 ⊗ 𝑤𝑘) , 𝑢𝑘⟩


≤

(−Δ)

1/2−𝛽/2
(𝑢
𝑘
⊗ 𝑤

𝑘
)
𝐿2

×

(−Δ)

𝛽/2
𝑢
𝑘

𝐿2
.

(78)

By Lemma 17, we have

⟨(𝑢𝑘 ⋅ ∇)𝑤𝑘, 𝑢𝑘⟩


≤ 𝐶
𝑤𝑘


𝐹�̇�
1−𝛽+3/𝑝



𝑝,𝑞

𝑢𝑘
𝐿2
𝑢𝑘

�̇�
𝛽

+ 𝐶
𝑤𝑘


𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

𝑢𝑘


2

�̇�
𝛽 .

(79)

By (75), we have ‖𝑤
𝑘
‖
𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

≤ 𝐶𝜖/2. We further assume 𝜖

small enough such that 𝐶2𝜖 ≤ 𝜇/4. Using 𝑎𝑏 ≤ 𝑎
2
/2 + 𝑏

2
/2,

we have


⟨(𝑢

𝑘
⋅ ∇)𝑤

𝑘
, 𝑢
𝑘

⟩

≤
2𝐶

2

𝜇

𝑤𝑘


2

𝐹�̇�
1−𝛽+3/𝑝



𝑝,𝑞

𝑢𝑘


2

𝐿
2

+
𝜇

4

𝑢𝑘


2

�̇�
𝛽 .

(80)

Thus we conclude that

𝑑

𝑑𝑡

𝑢𝑘


2

𝐿
2 + 𝜇

𝑢𝑘


2

�̇�
𝛽 ≤

8𝐶
2

𝜇

𝑤𝑘


2

𝐹�̇�
1−𝛽+3/𝑝



𝑝,𝑞

𝑢𝑘


2

𝐿
2 . (81)
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Gronwall lemma gives

𝑢𝑘


2

𝐿
2 + 𝜇∫

𝑡

0

𝑢𝑘


2

�̇�
𝛽 ≤

𝑢0,𝑘


2

𝐿
2

× exp{8𝐶
2

𝜇
∫

𝑡

0

𝑤𝑘


2

𝐹�̇�
1−𝛽+3/𝑝



𝑝,𝑞

} .

(82)

Since 𝑞 ≤ 2, by Minkowski’s inequality, we get

∫

𝑡

0

𝑤𝑘


2

𝐹�̇�
1−𝛽+3/𝑝



𝑝,𝑞

≤ (∑

𝑗∈𝑍

2
𝑗(1−𝛽+3/𝑝


)𝑞

×(∫

𝑡

0


𝜑
𝑗
𝑤
𝑘



2

𝐿
𝑝
)

𝑞/2

)

2/𝑞

≤ (∑

𝑗∈𝑍

2
𝑗(1−2𝛽+3/𝑝


)𝑞/2

𝜑
𝑗
𝑤
𝑘



𝑞/2

𝐿
∞
([0,𝑡);𝐿

𝑝
)

× 2
𝑗(1+3/𝑝


)𝑞/2 

𝜑
𝑗
𝑤
𝑘



𝑞/2

𝐿
1
([0,𝑡);𝐿

𝑝
)
)

2/𝑞

≤
𝑤𝑘

L∞([0,𝑡);𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞
)

𝑤𝑘
L1([0,𝑡);𝐹�̇�

1+3/𝑝


𝑝,𝑞
)

.

(83)

Thus, combining with (74) we can obtain

𝑢𝑘


2

𝐿
2 + 𝜇∫

𝑡

0

𝑢𝑘


2

�̇�
𝛽

≤
𝑢0,𝑘



2

𝐿
2 exp{

8𝐶
4

𝜇2

𝑤0,𝑘


2

𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

} .

(84)

Using Lemma 16 with 𝑠 = 𝛽 and (75), we know that 𝑢
𝑘
∈

𝐿
4𝛽/(5−4𝛽)

([0, +∞); 𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞
) and

∫

∞

0

𝑢𝑘


4𝛽/(5−4𝛽)

𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

≤ 𝐶
4𝛽/(5−4𝛽)

𝜇
−1𝑢0,𝑘



4𝛽/(5−4𝛽)

𝐿
2

× exp{
16𝐶

4
𝛽

𝜇2 (5 − 4𝛽)

𝑤0,𝑘


2

𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

} .

(85)

So by continuity, there is a time 𝑡
0

such that
‖𝑢
𝑘
(𝑡
0
)‖
𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

≤ 𝜖/2. Then we have

𝑢 (𝑡0)

𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

≤
𝑢𝑘 (𝑡0)


𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

+
𝑤𝑘 (𝑡0)


𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

≤
𝜖

2
+
𝜖

2
≤ 𝜖.

(86)

Finally, we consider the fractional Navier-Stokes equations
starting at 𝑡 = 𝑡

0
; by Theorem 5 and using a method as

estimating (75) we conclude that

‖𝑢 (𝑡)‖
𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

+ 𝜇‖𝑢‖
L1([𝑡

0
,𝑡);𝐹�̇�

1+3/𝑝


𝑝,𝑞
)

≤ 𝐶
𝑢(𝑡0)


𝐹�̇�
1−2𝛽+3/𝑝



𝑝,𝑞

≤ 𝐶𝜖.

(87)

for all 𝑡 > 𝑡
0
. Thus we finish our proof.
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