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We provide some conditions for 2 × 2 operator matrices whose diagonal entries are𝑀-hyponormal operators to be subscalar. As a
consequence, we obtain that Weyl type theorem holds for such operator matrices.

1. Introduction and Preliminaries

Let 𝐻 be a complex separable Hilbert space and let 𝐵(𝐻)
denote the algebra of all bounded linear operators on 𝐻. If
𝑇 ∈ 𝐵(𝐻), we write𝑁(𝑇), 𝑅(𝑇), 𝜎(𝑇), and 𝜎

𝑎
(𝑇) for the null

space, the range space, the spectrum, and the approximate
point spectrum of 𝑇, respectively. An operator 𝑇 is called
Fredholm if 𝑅(𝑇) is closed, 𝛼(𝑇) := dim𝑁(𝑇) < ∞, and
𝛽(𝑇) := dim𝑁(𝑇

∗

) < ∞. The index of a Fredholm operator
𝑇 is given by 𝑖(𝑇) = 𝛼(𝑇)−𝛽(𝑇). An operator𝑇 is calledWeyl
if it is Fredholm of index zero. The Weyl spectrum of 𝑇 [1] is
defined by 𝑤(𝑇) := {𝜆 ∈ C : 𝑇 − 𝜆 is not Weyl}.

We consider the sets
Φ
+
(𝐻)

:= {𝑇 ∈ 𝐵 (𝐻) : 𝑅 (𝑇) is closed, 𝛼 (𝑇) < ∞} ;

Φ
−

+
(𝐻) := {𝑇 ∈ 𝐵 (𝐻) : 𝑇 ∈ Φ

+
(𝐻) , 𝑖 (𝑇) ≤ 0}

(1)

and define
𝜎
𝑒𝑎
(𝑇) := {𝜆 ∈ C : 𝑇 − 𝜆 ∉ Φ

−

+
(𝐻)} ;

𝜋
00
(𝑇) := {𝜆 ∈ iso𝜎 (𝑇) : 0 < 𝛼 (𝑇 − 𝜆) < ∞} ;

𝜋
𝑎

00
(𝑇) := {𝜆 ∈ iso𝜎

𝑎
(𝑇) : 0 < 𝛼 (𝑇 − 𝜆) < ∞} ,

(2)

where iso 𝜎(𝑇) denotes the isolated points of 𝜎(𝑇).
Following [2], we say that Weyl’s theorem holds for 𝑇 if

𝜎(𝑇) \ 𝑤(𝑇) = 𝜋
00
(𝑇) and that 𝑎-Weyl’s theorem holds for 𝑇

if 𝜎
𝑎
(𝑇) \ 𝜎

𝑒𝑎
(𝑇) = 𝜋

𝑎

00
(𝑇).

Let 𝑇 ∈ 𝐵(𝐻). As an easy extension of normal oper-
ators, hyponormal operators have been studied by many
mathematicians. Though there are many unsolved interest-
ing problems for hyponormal operators (e.g., the invariant
subspace problem), one of recent trends in operator theory
is studying natural extensions of hyponormal operators. So
we introduce some of these nonhyponormal operators. An
operator 𝑇 is said to be 𝑀-hyponormal if there exists a real
positive number𝑀 such that

𝑀
2

(𝑇 − 𝜆)
∗

(𝑇 − 𝜆) ≥ (𝑇 − 𝜆) (𝑇 − 𝜆)
∗

∀𝜆 ∈ C. (3)

Evidently,

𝑇 is hyponormal 󳨐⇒ 𝑇 is 𝑀-hyponormal. (4)

There is a vast literature concerning 𝑀-hyponormal opera-
tors (see [3–5], etc.). We also note that an operator 𝑇 need
not be hyponormal even though 𝑇 and 𝑇

∗ are both 𝑀-
hyponormal. To see this, consider the operator

𝑇 = (
𝑈 𝐾

0 𝑈
∗) : 𝑙
2
⊕ 𝑙
2
󳨀→ 𝑙
2
⊕ 𝑙
2
, (5)

where 𝑈 is the unilateral shift on 𝑙
2
and 𝐾 : 𝑙

2
→ 𝑙
2
is given

by𝐾(𝑥
1
, 𝑥
2
, 𝑥
3
, . . .) = (2𝑥

1
, 0, 0, . . .).Then a direct calculation

shows that
1

2
‖(𝑇 − 𝑧) 𝑥‖ ≤

󵄩󵄩󵄩󵄩(𝑇 − 𝑧)
∗

𝑥
󵄩󵄩󵄩󵄩 ≤ 2 ‖(𝑇 − 𝑧) 𝑥‖

(6)
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for all 𝑧 ∈ C and for all 𝑥 ∈ 𝑙
2
⊕ 𝑙
2
, which says that 𝑇 and 𝑇∗

are both𝑀-hyponormal. But since

𝑇
∗

𝑇 = (

𝐼 0

0 𝐼 +
3

2
𝐾
) , (7)

while

𝑇𝑇
∗

= (
𝐼 +

3

2
𝐾 0

0 𝐼

) , (8)

𝑇 is not hyponormal.
Let 𝑧 be the coordinate in the complex plane C and let

𝑑𝜇(𝑧) denote the planar Lebesgue measure. Fix a complex
(separable) Hilbert space𝐻 and a bounded (connected) open
subset 𝑈 of C. We will denote by 𝐿2(𝑈,𝐻) the Hilbert space
of measurable functions 𝑓 : 𝑈 → 𝐻, such that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2,𝑈

= (∫

𝑈

󵄩󵄩󵄩󵄩𝑓 (𝑧)
󵄩󵄩󵄩󵄩

2

𝑑𝜇(𝑧))

1/2

< ∞. (9)

TheBergman space for𝑈 is defined by𝐴2(𝑈,𝐻) = 𝐿2(𝑈,𝐻)∩
𝑂(𝑈,𝐻), where 𝑂(𝑈,𝐻) denotes the Fréchet space of 𝐻-
valued analytic functions on 𝑈 with respect to uniform
topology. Note that 𝐴2(𝑈,𝐻) is a Hilbert space. Let us define
now a special Sobolev type space. Let 𝑈 be again a bounded
open subset ofC and let𝑚 be a fixed nonnegative integer.The
vector valued Sobolev space𝑊𝑚(𝑈,𝐻) with respect to 𝜕 and
of order 𝑚 will be the space of those functions 𝑓 ∈ 𝐿

2

(𝑈,𝐻)

whose derivatives 𝜕𝑓, . . . , 𝜕
𝑚

𝑓 in the sense of distributions
still belong to 𝐿2(𝑈,𝐻). Endowed with the norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

𝑊
𝑚 =

𝑚

∑

𝑖=0

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
𝑖

𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

2

2,𝑈

(10)

𝑊
𝑚

(𝑈,𝐻) becomes a Hilbert space contained continuously
in 𝐿2(𝑈,𝐻). A bounded linear operator 𝑆 on𝐻 is called scalar
of order 𝑚 if it possesses a spectral distribution of order 𝑚,
that is, if there is a continuous unitalmorphism of topological
algebras

Φ : 𝐶
𝑚

0
(C) 󳨀→ 𝐵 (𝐻) (11)

such that Φ(𝑧) = 𝑆, where 𝑧 stands for the identity function
onC, and𝐶𝑚

0
(C) stands for the space of compactly supported

functions on C, continuously differentiable of order 𝑚, 0 ≤

𝑚 ≤ ∞. An operator is subscalar if it is similar to the
restriction of a scalar operator to an invariant subspace.
Let 𝑈 be a (connected) bounded open subset of C and
let 𝑚 be a nonnegative integer. The linear operator 𝑀

𝑓
of

multiplication by 𝑓 on 𝑊
𝑚

(𝑈,𝐻) is continuous and it has
a spectral distribution of order 𝑚, defined by the functional
calculus

Φ
𝑀
: 𝐶
𝑚

0
(C) 󳨀→ 𝐵 (𝑊

𝑚

(𝑈,𝐻)) , Φ
𝑀
(𝑓) = 𝑀

𝑓
. (12)

Therefore,𝑀
𝑧
is a scalar operator of order𝑚.

An operator 𝑇 ∈ 𝐵(𝐻) is said to have the single-valued
extension property (or SVEP) if for every open subset 𝐺 of C

and any analytic function𝑓 : 𝐺 → 𝐻 such that (𝑇−𝑧)𝑓(𝑧) ≡
0 on 𝐺, we have 𝑓(𝑧) ≡ 0 on 𝐺.

An operator 𝑇 ∈ 𝐵(𝐻) is said to have Bishop’s property
(𝛽) if for every open subset 𝐺 of C and every sequence 𝑓

𝑛
:

𝐺 → 𝐻 of𝐻-valued analytic functions such that (𝑇−𝑧)𝑓
𝑛
(𝑧)

converges uniformly to 0 in norm on compact subsets of 𝐺,
𝑓
𝑛
(𝑧) converges uniformly to 0 in norm on compact subsets

of 𝐺. It is well known that

Bishop’s property (𝛽) 󳨐⇒ SVEP. (13)

In 1984, Putinar showed in [6] that every hyponormal
operator is subscalar, and then in 1987, Brown used this result
to prove that a hyponormal operator with rich spectrum has
a nontrivial invariant subspace (see [7]). There have been
a lot of generalizations of such beautiful consequences (see
[8–11]). In this paper, we provide some conditions for 2 × 2
operator matrices whose diagonal entries are𝑀-hyponormal
operators to be subscalar. As a consequence, we obtain that
Weyl type theorem holds for such operator matrices.

2. Subscalarity

Lemma 1 (see [6, Proposition 2.1]). For a bounded open disk
𝐷 in the complex plane C, there is a constant 𝐶

𝐷
such that for

an arbitrary operator 𝑇 ∈ 𝐵(𝐻) and 𝑓 ∈ 𝑊
2

(𝐷,𝐻) we have

󵄩󵄩󵄩󵄩(𝐼 − 𝑃) 𝑓
󵄩󵄩󵄩󵄩2,𝐷

≤ 𝐶
𝐷
(
󵄩󵄩󵄩󵄩󵄩
(𝑇 − 𝑧)

∗

𝜕𝑓
󵄩󵄩󵄩󵄩󵄩2,𝐷

+
󵄩󵄩󵄩󵄩󵄩󵄩
(𝑇 − 𝑧)

∗

𝜕
2

𝑓
󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷

) ,

(14)

where𝑃 denotes the orthogonal projection of 𝐿2(𝐷,𝐻) onto the
Bergman space 𝐴2(𝐷,𝐻).

Corollary 2. Let 𝐷 be as in Lemma 1. If 𝑇 ∈ 𝐵(𝐻) is an𝑀-
hyponormal operator, then there exists a constant𝐶

𝐷
such that

for all 𝑧 ∈ C and 𝑓 ∈ 𝑊
2

(𝐷,𝐻)

󵄩󵄩󵄩󵄩(𝐼 − 𝑃) 𝑓
󵄩󵄩󵄩󵄩2,𝐷

≤ 𝑀𝐶
𝐷

× (
󵄩󵄩󵄩󵄩󵄩
(𝑇 − 𝑧) 𝜕𝑓

󵄩󵄩󵄩󵄩󵄩2,𝐷
+
󵄩󵄩󵄩󵄩󵄩󵄩
(𝑇 − 𝑧) 𝜕

2

𝑓
󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷

) ,

(15)

where𝑃 denotes the orthogonal projection of 𝐿2(𝐷,𝐻) onto the
Bergman space 𝐴2(𝐷,𝐻).

Proof. This follows from Lemma 1 and the definition of 𝑀-
hyponormal operator.

Lemma 3. Let 𝑇 ∈ 𝐵(𝐻) be an 𝑀-hyponormal operator
and let 𝐷 be a bounded disk in C. If {𝑓

𝑛
} is a sequence in

𝑊
𝑚

(𝐷,𝐻)(𝑚 > 2) such that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑧 − 𝑇) 𝜕

𝑖

𝑓
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
= 0 (16)

for 𝑖 = 1, 2, . . . , 𝑚, then lim
𝑛→∞

‖𝜕
𝑖

𝑓
𝑛
‖
2,𝐷
0

= 0 for 𝑖 = 1, 2, . . . ,
𝑚 − 2, where𝐷

0
is a disk strictly contained in𝐷.
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Proof. Since 𝑇 is an𝑀-hyponormal operator, it follows from
Corollary 2 that there exists a constant 𝐶

𝐷
such that

󵄩󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑃) 𝜕

𝑖

𝑓
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
≤ 𝑀𝐶

𝐷
(
󵄩󵄩󵄩󵄩󵄩󵄩
(𝑇 − 𝑧) 𝜕

𝑖+1

𝑓
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷

+
󵄩󵄩󵄩󵄩󵄩󵄩
(𝑇 − 𝑧) 𝜕

𝑖+2

𝑓
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
)

(17)

for 𝑖 = 0, 1, 2, . . . , 𝑚 − 2. From (17), we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑃) 𝜕

𝑖

𝑓
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
= 0 (18)

for 𝑖 = 0, 1, 2, . . . , 𝑚 − 2. Hence,

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑇 − 𝑧) 𝑃𝜕

𝑖

𝑓
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
= 0 (19)

for 𝑖 = 1, 2, . . . , 𝑚 − 2. Since 𝑇 has Bishop’s property (𝛽) [12],
we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑃𝜕
𝑖

𝑓
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
0

= 0 (20)

for 𝑖 = 1, 2, . . . , 𝑚 − 2, where 𝐷
0
denotes a disk with 𝜎(𝑇) ⫋

𝐷
0
⫋ 𝐷. From (18) and (20), we get that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
𝑖

𝑓
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
0

= 0 (21)

for 𝑖 = 1, 2, . . . , 𝑚 − 2.

Lemma 4. Let 𝑇 = (
𝑇
1
𝑇
2

𝑇
3
𝑇
4

) ∈ 𝐵(𝐻 ⊕ 𝐻), where 𝑇
𝑖
are

mutually commuting, and both 𝑇
1
and 𝑇

4
are𝑀-hyponormal

operators. For any positive integer 𝑚 and any bounded disk 𝐷
in C containing 𝜎(𝑇), define the map 𝑉

𝑚
: 𝐻 ⊕ 𝐻 → 𝐻(𝐷)

by

𝑉
𝑚
ℎ = 1 ⊗ ℎ

+ (𝑇 − 𝑧)𝑊
𝑚
(𝐷,𝐻) ⊕𝑊

𝑚
(𝐷,𝐻) (= 1̃ ⊗ ℎ) ,

(22)

where

𝐻(𝐷) :=
𝑊
𝑚

(𝐷,𝐻) ⊕𝑊
𝑚

(𝐷,𝐻)

(𝑇 − 𝑧)𝑊
𝑚
(𝐷,𝐻) ⊕𝑊

𝑚
(𝐷,𝐻)

(23)

and 1 ⊗ ℎ denotes the constant function sending any 𝑧 ∈ 𝐷 to
ℎ ∈ 𝐻 ⊕ 𝐻. Then the following statements hold.

(i) If𝑇𝑟
2
𝑇
𝑠

3
= 0 for some nonnegative integer 𝑟 and 𝑠, where

𝑇
0

2
= 𝑇
0

3
= 𝐼, then 𝑉

4𝑁+2
is one-to-one and has closed

range, where𝑁 := max{𝑟, 𝑠}.
(ii) If 𝑇

1
= 𝑇
4
, 𝑇
2
= 𝑇
3
, and 𝑇

2
is algebraic of order 𝑘, then

𝑉
4𝑘+2

is one-to-one and has closed range.
(iii) If 𝑇

1
+ 𝑇
4
is an 𝑀-hyponormal operator and 𝑇

1
𝑇
4
=

𝑇
2
𝑇
3
, then 𝑉

6
is one-to-one and has closed range.

Proof. Let ℎ
𝑛
= ℎ
1

𝑛
⊕ ℎ
2

𝑛
∈ 𝐻 ⊕ 𝐻 and

𝑓
𝑛
= 𝑓
1

𝑛
⊕ 𝑓
2

𝑛
∈ 𝑊
𝑚

(𝐷,𝐻) ⊕𝑊
𝑚

(𝐷,𝐻) (24)

be sequences such that

lim
𝑛→∞

󵄩󵄩󵄩󵄩(𝑧 − 𝑇) 𝑓𝑛 + 1 ⊗ ℎ𝑛
󵄩󵄩󵄩󵄩𝑊𝑚⊕𝑊𝑚

= 0. (25)

Then (25) implies that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
(𝑧 − 𝑇

1
) 𝑓
1

𝑛
+ 𝑇
2
𝑓
2

𝑛
+ 1 ⊗ ℎ

1

𝑛

󵄩󵄩󵄩󵄩󵄩𝑊𝑚
= 0,

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑇
3
𝑓
1

𝑛
+ (𝑧 − 𝑇

4
) 𝑓
2

𝑛
+ 1 ⊗ ℎ

2

𝑛

󵄩󵄩󵄩󵄩󵄩𝑊𝑚
= 0.

(26)

By the definition of the norm of Sobolev space and (26) we
get

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑧 − 𝑇

1
) 𝜕
𝑖

𝑓
1

𝑛
+ 𝑇
2
𝜕
𝑖

𝑓
2

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
= 0,

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
3
𝜕
𝑖

𝑓
1

𝑛
+ (𝑧 − 𝑇

4
) 𝜕
𝑖

𝑓
2

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
= 0

(27)

for 𝑖 = 1, 2, . . . , 𝑚.

(i) Set 𝑚 = 4𝑁 + 2, where 𝑁 := max{𝑟, 𝑠}. We may
assume that 𝑠 ≤ 𝑟. Then𝑚 = 4𝑟 + 2.

We prove that for every 𝑗 = 0, 1, 2, . . . , 𝑠, the following
equations hold

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝑟−𝑗

2
𝑇
𝑠−𝑗+1

3
𝜕
𝑖

𝑓
1

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
𝑗

= 0,

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝑟−𝑗

2
𝑇
𝑠−𝑗

3
𝜕
𝑖

𝑓
2

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
𝑗

= 0

(28)

for 𝑖 = 1, 2, . . . , 4(𝑟 − 𝑗) + 2, where 𝜎(𝑇) ⫋ 𝐷
𝑠
⫋ ⋅ ⋅ ⋅ ⫋ 𝐷

2
⫋

𝐷
1
⫋ 𝐷.
To prove (28), wewill use the induction on 𝑗. Since𝑇𝑟

2
𝑇
𝑠

3
=

0, then (28) holds when 𝑗 = 0. Suppose that (28) is true for
some 𝑗 < 𝑠. From (27) and the inductions hypothesis, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑇
1
− 𝑧) 𝑇

𝑟−𝑗−1

2
𝑇
𝑠−𝑗

3
𝜕
𝑖

𝑓
1

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
𝑗

= 0,

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝑟−𝑗−1

2
𝑇
𝑠−𝑗

3
𝜕
𝑖

𝑓
1

𝑛
+ (𝑇
4
− 𝑧) 𝑇

𝑟−𝑗−1

2
𝑇
𝑠−𝑗−1

3
𝜕
𝑖

𝑓
2

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
𝑗

= 0

(29)

for 𝑖 = 1, 2, . . . , 4(𝑟 − 𝑗) + 2. Since 𝑇
1
is an 𝑀-hyponormal

operator, by Lemma 3 we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝑟−𝑗−1

2
𝑇
𝑠−𝑗

3
𝜕
𝑖

𝑓
1

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷󸀠
𝑗

= 0 (30)

for 𝑖 = 1, 2, . . . , 4(𝑟 − 𝑗), where 𝜎(𝑇) ⫋ 𝐷
󸀠

𝑗
⫋ 𝐷
𝑗
. From

(30) and the second equation of (27),

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑇
4
− 𝑧) 𝑇

𝑟−𝑗−1

2
𝑇
𝑠−𝑗−1

3
𝜕
𝑖

𝑓
2

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷󸀠
𝑗

= 0 (31)

for 𝑖 = 1, 2, . . . , 4(𝑟 − 𝑗). Since 𝑇
4
is an 𝑀-hyponormal

operator, by Lemma 3 we derive

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝑟−𝑗−1

2
𝑇
𝑠−𝑗−1

3
𝜕
𝑖

𝑓
2

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
𝑗+1

= 0 (32)
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for 𝑖 = 1, 2, . . . , 4(𝑟 − 𝑗 − 1) + 2, where 𝜎(𝑇) ⫋ 𝐷
𝑗+1

⫋ 𝐷
󸀠

𝑗
.

Therefore, the proof of (28) is completed. Let 𝑗 = 𝑠 in (28);
we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝑟−𝑠

2
𝑇
3
𝜕
𝑖

𝑓
1

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
𝑠

= 0,

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝑟−𝑠

2
𝜕
𝑖

𝑓
2

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
𝑠

= 0

(33)

for 𝑖 = 1, 2, . . . , 4(𝑟 − 𝑠) + 2. From (27) and (33), it follows that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑇
1
− 𝑧) 𝑇

𝑟−𝑠−1

2
𝜕
𝑖

𝑓
1

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
𝑠

= 0 (34)

for 𝑖 = 1, 2, . . . , 4(𝑟 − 𝑠) + 2. Since 𝑇
1
is an 𝑀-hyponormal

operator, from Lemma 3 we obtain that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝑟−𝑠−1

2
𝜕
𝑖

𝑓
1

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
𝑠
󸀠

= 0 (35)

for 𝑖 = 1, 2, . . . , 4(𝑟 − 𝑠), where 𝜎(𝑇) ⫋ 𝐷󸀠
𝑠
⫋ 𝐷
𝑠
, and hence

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑇
4
− 𝑧) 𝑇

𝑟−𝑠−1

2
𝜕
𝑖

𝑓
2

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
𝑠
󸀠

= 0 (36)

for 𝑖 = 1, 2, . . . , 4(𝑟 − 𝑠). Since 𝑇
4
is an 𝑀-hyponormal

operator, Lemma 3 implies that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝑟−𝑠−1

2
𝜕
𝑖

𝑓
2

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
𝑠+1

= 0 (37)

for 𝑖 = 1, 2, . . . , 4(𝑟 − 𝑠 − 1) + 2, where 𝜎(𝑇) ⫋ 𝐷
𝑠+1

⫋ 𝐷
󸀠

𝑠
.

By repeating the process from (33) to (37), it holds for all 𝑗 =
0, 1, 2, . . . , 𝑟 − 𝑠 that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝑟−𝑠−𝑗

2
𝜕
𝑖

𝑓
2

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
𝑠+𝑗

= 0 (38)

for 𝑖 = 1, 2, . . . , 4(𝑟 − 𝑠 − 𝑗) + 2, where 𝜎(𝑇) ⫋ 𝐷
𝑟+1

⫋ 𝐷
𝑟
⫋

𝐷
𝑟−1

⫋ ⋅ ⋅ ⋅ ⫋ 𝐷
𝑠+1

⫋ 𝐷
𝑠
. In particular, let 𝑟 = 𝑠 + 𝑗,

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
𝑖

𝑓
2

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
𝑟

= 0 (39)

for 𝑖 = 1, 2. Hence, from the first equation of (27), we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑇
1
− 𝑧) 𝜕

𝑖

𝑓
1

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
𝑟

= 0 (40)

for 𝑖 = 1, 2. Applying Corollary 2, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑃) 𝑓

1

𝑛

󵄩󵄩󵄩󵄩󵄩2,𝐷󸀠
𝑟

= 0, (41)

where 𝑃 denotes the orthogonal projection of 𝐿2(𝐷󸀠
𝑟
, 𝐻) onto

𝐴
2

(𝐷
󸀠

𝑟
, 𝐻) and 𝜎(𝑇) ⫋ 𝐷󸀠

𝑟
⫋ 𝐷
𝑟
. By combining (26) with (39)

and (41), we obtain that

lim
𝑛→∞

󵄩󵄩󵄩󵄩(𝑧 − 𝑇) 𝑃𝑓𝑛 + 1 ⊗ ℎ𝑛
󵄩󵄩󵄩󵄩2,𝐷󸀠
𝑟

= 0, (42)

where 𝑃𝑓
𝑛
:= (
𝑃𝑓
1

𝑛

𝑃𝑓
2

𝑛

).
Let Γ be a curve in𝐷󸀠

𝑟
surrounding 𝜎(𝑇). Then for 𝑧 ∈ Γ

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑃𝑓
𝑛
(𝑧) + (𝑧 − 𝑇)

−1

(1 ⊗ ℎ
𝑛
) (𝑧)

󵄩󵄩󵄩󵄩󵄩
= 0 (43)

uniformly. Hence, by the Riesz functional calculus,

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

2𝜋𝑖
∫

Γ

𝑃𝑓
𝑛
(𝑧) 𝑑𝑧 + ℎ

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= 0. (44)

But (1/2𝜋𝑖) ∫
Γ

𝑃𝑓
𝑛
(𝑧)𝑑𝑧 = 0 by Cauchy’s theorem. Hence,

lim
𝑛→∞

ℎ
𝑛
= 0, and so 𝑉

4𝑟+2
is one-to-one and has closed

range.

(ii) Set𝑚 = 4𝑘 + 2. By the hypothesis and (27), we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑇
1
− 𝑧) 𝜕

𝑖

𝑓
1

𝑛
+ 𝑇
2
𝜕
𝑖

𝑓
2

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
= 0,

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
2
𝜕
𝑖

𝑓
1

𝑛
+ (𝑇
1
− 𝑧) 𝜕

𝑖

𝑓
2

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
= 0

(45)

for 𝑖 = 1, 2, . . . , 4𝑘+2. Since𝑇
2
is algebraic with order 𝑘, there

exists a nonconstant polynomial𝑝(𝑧) = (𝑧−𝑧
1
)(𝑧−𝑧

2
) ⋅ ⋅ ⋅ (𝑧−

𝑧
𝑘
) such that 𝑝(𝑇

2
) = 0. Set 𝑞

𝑗
(𝑧) = (𝑧 − 𝑧

𝑗+1
) ⋅ ⋅ ⋅ (𝑧 − 𝑧

𝑘
) for

𝑗 = 0, 1, 2, . . . , 𝑘 − 1 and 𝑞
𝑘
(𝑧) = 1.

Claim. For every 𝑗 = 0, 1, 2, . . . , 𝑘, the following equations
hold:

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑞
𝑗
(𝑇
2
) 𝜕
𝑖

𝑓
1

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
𝑗

= 0,

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑞
𝑗
(𝑇
2
) 𝜕
𝑖

𝑓
2

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
𝑗

= 0

(46)

for 𝑖 = 1, 2, . . . , 4(𝑘 − 𝑗) + 2, where 𝜎(𝑇) ⫋ 𝐷
𝑘
⫋ ⋅ ⋅ ⋅ ⫋ 𝐷

2
⫋

𝐷
1
⫋ 𝐷.
To prove the claim, we use the induction on 𝑗. Since

𝑞
0
(𝑇
2
) = 𝑝(𝑇

2
) = 0, thenwhen 𝑗 = 0 the claimholds. Suppose

that the claim is true for some 𝑗 = 𝑟, where 0 ≤ 𝑟 < 𝑘.
Multiplying (45) by 𝑞

𝑟+1
(𝑇
2
), we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑇
1
− 𝑧) 𝑞

𝑟+1
(𝑇
2
) 𝜕
𝑖

𝑓
1

𝑛
+ 𝑧
𝑟+1
𝑞
𝑟+1

(𝑇
2
) 𝜕
𝑖

𝑓
2

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
𝑟

= 0,

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑧
𝑟+1
𝑞
𝑟+1

(𝑇
2
) 𝜕
𝑖

𝑓
1

𝑛
+ (𝑇
1
− 𝑧) 𝑞

𝑟+1
(𝑇
2
) 𝜕
𝑖

𝑓
2

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
𝑟

= 0

(47)

for 𝑖 = 1, 2, . . . , 4(𝑘 − 𝑟) + 2. From (47), we derive

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑇
1
− (𝑧 − 𝑧

𝑟+1
)) 𝑞
𝑟+1

(𝑇
2
) (𝜕
𝑖

𝑓
1

𝑛
+ 𝜕
𝑖

𝑓
2

𝑛
)
󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
𝑟

= 0

(48)

for 𝑖 = 1, 2, . . . , 4(𝑘 − 𝑟) + 2. Since 𝑇
1
is an 𝑀-hyponormal

operator, from (48) and Lemma 3 we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑞
𝑟+1

(𝑇
2
) (𝜕
𝑖

𝑓
1

𝑛
+ 𝜕
𝑖

𝑓
2

𝑛
)
󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷󸀠
𝑟

= 0 (49)

for 𝑖 = 1, 2, . . . , 4(𝑘 − 𝑟), where 𝜎(𝑇) ⫋ 𝐷
󸀠

𝑟
⫋ 𝐷
𝑟
. Combining

(49) with the first equation of (47), we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑇
1
− (𝑧 + 𝑧

𝑟+1
)) 𝑞
𝑟+1

(𝑇
2
) 𝜕
𝑖

𝑓
1

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷󸀠
𝑟

= 0 (50)

for 𝑖 = 1, 2, . . . , 4(𝑘 − 𝑟). Since 𝑇
1
is an 𝑀-hyponormal

operator, we obtain from Lemma 3 and (50) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑞
𝑟+1

(𝑇
2
) 𝜕
𝑖

𝑓
1

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
𝑟+1

= 0 (51)
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for 𝑖 = 1, 2, . . . , 4(𝑘 − 𝑟 − 1) + 2, where 𝜎(𝑇) ⫋ 𝐷
𝑟+1

⫋ 𝐷
󸀠

𝑟
.

From (49) and (51), we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑞
𝑟+1

(𝑇
2
) 𝜕
𝑖

𝑓
2

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
𝑟+1

= 0 (52)

for 𝑖 = 1, 2, . . . , 4(𝑘 − 𝑟 − 1) + 2. Therefore, the proof of the
claim is completed.

From the claim with 𝑗 = 𝑘, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
𝑖

𝑓
1

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
𝑘

= lim
𝑛󳨀→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
𝑖

𝑓
2

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
𝑘

= 0 (53)

for 𝑖 = 1, 2. From Lemma 1 we derive that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑃) 𝑓

1

𝑛

󵄩󵄩󵄩󵄩󵄩2,𝐷
𝑘

= lim
𝑛󳨀→∞

󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑃) 𝑓

2

𝑛

󵄩󵄩󵄩󵄩󵄩2,𝐷
𝑘

= 0, (54)

where 𝑃 denotes the orthogonal projection of 𝐿2(𝐷
𝑘
, 𝐻) onto

𝐴
2

(𝐷
𝑘
, 𝐻). By applying the proof of (i), we obtain that 𝑉

4𝑘+2

is one-to-one and has closed range.

(iii) Set𝑚 = 6. By (27), we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑇
1
𝑇
3
− 𝑧𝑇
3
) 𝜕
𝑖

𝑓
1

𝑛
+ 𝑇
2
𝑇
3
𝜕
𝑖

𝑓
2

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
= 0,

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
1
𝑇
3
𝜕
𝑖

𝑓
1

𝑛
+ (𝑇
1
𝑇
4
− 𝑧𝑇
1
) 𝜕
𝑖

𝑓
2

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
= 0

(55)

for 𝑖 = 1, 2, . . . , 6. Since 𝑇
1
𝑇
4
= 𝑇
2
𝑇
3
, (55) implies that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑧 (𝑇
1
𝜕
𝑖

𝑓
2

𝑛
− 𝑇
3
𝜕
𝑖

𝑓
1

𝑛
)
󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷

= 0 (56)

for 𝑖 = 1, 2, . . . , 6. Since the zero operator is hyponormal
operator, it follows from Lemma 3 and (56) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
1
𝜕
𝑖

𝑓
2

𝑛
− 𝑇
3
𝜕
𝑖

𝑓
1

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
1

= 0 (57)

for 𝑖 = 1, 2, . . . , 4, where 𝜎(𝑇) ⫋ 𝐷
1
⫋ 𝐷. Using (57) and the

second equation of (27), we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑇
1
+ 𝑇
4
− 𝑧) 𝜕

𝑖

𝑓
2

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
1

= 0 (58)

for 𝑖 = 1, 2, 3, 4. Since 𝑇
1
+ 𝑇
4
is an𝑀-hyponormal operator,

from Lemma 3 we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
𝑖

𝑓
2

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
2

= 0 (59)

for 𝑖 = 1, 2, where 𝜎(𝑇) ⫋ 𝐷
2
⫋ 𝐷
1
. From (59) and the first

equation of (27) we obtain that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑇
1
− 𝑧) 𝜕

𝑖

𝑓
1

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩2,𝐷
2

= 0 (60)

for 𝑖 = 1, 2. Since 𝑇
1
is an 𝑀-hyponormal operator, from

Corollary 2 we get that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑃) 𝑓

1

𝑛

󵄩󵄩󵄩󵄩󵄩2,𝐷
3

= 0, (61)

where 𝑃 denotes the orthogonal projection of 𝐿2(𝐷
3
, 𝐻) onto

𝐴
2

(𝐷
3
, 𝐻) and 𝜎(𝑇) ⫋ 𝐷

3
⫋ 𝐷
2
. By applying the similar way

of (i), we obtain that 𝑉
6
is one-to-one and has closed range.

Theorem 5. Let 𝑇 = (
𝑇
1
𝑇
2

𝑇
3
𝑇
4

) ∈ 𝐵(𝐻 ⊕ 𝐻), where 𝑇
𝑖
are

mutually commuting, and both 𝑇
1
and 𝑇

4
are𝑀-hyponormal

operators. If {𝑇
𝑖
}
4

𝑖=1
satisfy one of the conditions in Lemma 4,

then 𝑇 is a subscalar operator of order 𝑚, where 𝑚 is the
appropriately chosen integer as in Lemma 4.

Proof. Let 𝐷 be a bounded disk in C containing 𝜎(𝑇) and
consider the quotient space

𝐻(𝐷) :=
𝑊
𝑚

(𝐷,𝐻) ⊕𝑊
𝑚

(𝐷,𝐻)

(𝑇 − 𝑧)𝑊
𝑚
(𝐷,𝐻) ⊕𝑊

𝑚
(𝐷,𝐻)

(62)

endowed with the Hilbert space norm, where 𝑚 = 4𝑁 + 2,
𝑁 := max{𝑟, 𝑠} for (i), 𝑚 = 4𝑘 + 2 for (ii), and 𝑚 = 6 for (iii)
in Lemma 4.The class of a vector𝑓 or an operator 𝑆 on𝐻(𝐷)
will be denoted by 𝑓, 𝑆, respectively. Let𝑀 be the operator of
multiplication by 𝑧 on𝑊𝑚(𝐷,𝐻) ⊕ 𝑊𝑚(𝐷,𝐻). Then𝑀 is a
scalar operator of order 𝑚 and has a spectral distribution Φ.
Since 𝑅(𝑇 − 𝑧) is invariant under𝑀, 𝑀̃ can be well defined.
Moreover, consider the spectral distribution Φ : 𝐶

𝑚

0
(C) →

𝐵(𝑊
𝑚

(𝐷,𝐻) ⊕𝑊
𝑚

(𝐷,𝐻)) defined by the following relation:
for 𝜑 ∈ 𝐶𝑚

0
(C) and𝑓 ∈ 𝑊

𝑚

(𝐷,𝐻)⊕𝑊
𝑚

(𝐷,𝐻),Φ(𝜙)𝑓 = 𝜙𝑓.
Then the spectral distribution Φ of 𝑀 commutes with 𝑇 −

𝑧, and so 𝑀̃ is still a scalar operator of order 𝑚 with Φ̃ as
a spectral distribution. As in Lemma 4, if we define the map
𝑉
𝑚
: 𝐻
1
⊕ 𝐻
2
→ 𝐻(𝐷) by

𝑉
𝑚
ℎ = 1 ⊗ ℎ

+ (𝑇 − 𝑧)𝑊
𝑚
(𝐷,𝐻) ⊕𝑊

𝑚
(𝐷,𝐻) (= 1̃ ⊗ ℎ) ,

(63)

then 𝑉
𝑚
is one-to-one and has closed range. Since

𝑉
𝑚
𝑇ℎ = 1̃ ⊗ 𝑇ℎ = 𝑧 ⊗ ℎ = 𝑀̃ (1̃ ⊗ ℎ) = 𝑀̃𝑉

𝑚
ℎ (64)

for all ℎ ∈ 𝐻 ⊕ 𝐻,𝑉
𝑚
𝑇 = 𝑀̃𝑉

𝑚
. In particular, 𝑅(𝑉

𝑚
) is

invariant under 𝑀̃ and𝑅(𝑉
𝑚
) is closed; it is a closed invariant

subspace of the scalar operator 𝑀̃. Since 𝑇 is similar to the
restriction 𝑀̃|

𝑅(𝑉
𝑚
)
and 𝑀̃ is scalar of order𝑚,𝑇 is a subscalar

operator of order𝑚.

Corollary 6. Let 𝑇 = (
𝑇
1
𝑇
2

𝑇
3
𝑇
4

) ∈ 𝐵(𝐻 ⊕ 𝐻), where 𝑇
𝑖

are mutually commuting, both 𝑇
1
and 𝑇

4
are 𝑀-hyponormal

operators, and {𝑇
𝑖
}
4

𝑖=1
satisfy one of the conditions in Lemma 4.

Then 𝑇 has property (𝛽) and the single-valued extension
property.

Proof. From section one, we need only to prove that 𝑇 has
property (𝛽). Since property (𝛽) is transmitted from an
operator to its restrictions to closed invariant subspaces, we
are reduced by Theorem 5 to the case of a scalar operator.
Since every scalar operator has property (𝛽) (see [6]), 𝑇 has
property (𝛽).

Define the quasi-nilpotent part of 𝜆𝐼 − 𝑇

𝐻
0
(𝜆𝐼 − 𝑇) := {𝑥 ∈ 𝐻 : lim

𝑛→∞

󵄩󵄩󵄩󵄩(𝜆𝐼 − 𝑇)
𝑛

𝑥
󵄩󵄩󵄩󵄩

1/𝑛

= 0} . (65)
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Definition 7. An operator 𝑇 ∈ 𝐵(𝐻) is said to belong to the
class 𝐻(𝑝) if there exists a natural number 𝑝 := 𝑝(𝜆) such
that

𝐻
0
(𝜆𝐼 − 𝑇) = 𝑁(𝜆𝐼 − 𝑇)

𝑝

∀𝜆 ∈ C. (66)

Theorem 8 (see [13]). Every subscalar operator 𝑇 ∈ 𝐵(𝐻) is
𝐻(𝑝).

Definition 9. An operator 𝑇 ∈ 𝐵(𝐻) is said to be polaroid if
every 𝜆 ∈ iso𝜎(𝑇) is a pole of the resolvent of 𝑇.

Note that

𝑇 is polaroid ⇐⇒ 𝑇
∗ is polaroid. (67)

The condition of being polaroid may be characterized by
means of the quasi-nilpotent part.

Theorem 10 (see [14]). An operator 𝑇 ∈ 𝐵(𝐻) is polaroid if
and only if there exists a natural number 𝑝 := 𝑝(𝜆) such that

𝐻
0
(𝜆𝐼 − 𝑇) = 𝑁(𝜆𝐼 − 𝑇)

𝑝

∀𝜆 ∈ 𝑖𝑠𝑜 𝜎 (𝑇) . (68)

Corollary 11. Every𝐻(𝑝) operator is polaroid.

Since a subscalar operator is𝐻(𝑝), we have the following.

Corollary 12. Every subscalar operator is polaroid.

Corollary 13. Let 𝑇 = (
𝑇
1
𝑇
2

𝑇
3
𝑇
4

) ∈ 𝐵(𝐻 ⊕ 𝐻), where 𝑇
𝑖

are mutually commuting, both 𝑇
1
and 𝑇

4
are 𝑀-hyponormal

operators, and {𝑇
𝑖
}
4

𝑖=1
satisfy one of the conditions in Lemma 4.

Then 𝑇 is polaroid.

If 𝑇 ∈ 𝐵(𝐻) has SVEP, then 𝑇 and 𝑇∗ satisfy Browder’s
theorem. A sufficient condition for an operator 𝑇 satisfying
Browder’s theorem to satisfy Weyl’s theorem is that 𝑇 is
polaroid. Then we have the following result.

Corollary 14. Let 𝑇 = (
𝑇
1
𝑇
2

𝑇
3
𝑇
4

) ∈ 𝐵(𝐻 ⊕ 𝐻), where 𝑇
𝑖

are mutually commuting, both 𝑇
1
and 𝑇

4
are 𝑀-hyponormal

operators, and {𝑇
𝑖
}
4

𝑖=1
satisfy one of the conditions in Lemma 4.

Then Weyl’s theorem holds for 𝑇 and 𝑇∗.

Observe that if 𝑇 ∈ 𝐵(𝐻) has SVEP, then 𝜎(𝑇) = 𝜎
𝑎
(𝑇
∗
).

Hence, if 𝑇 has SVEP and is polaroid, then 𝑇
∗ satisfies 𝑎-

Weyl’s theorem [15, Theorem 3.10].

Corollary 15. Let 𝑇 = (
𝑇
1
𝑇
2

𝑇
3
𝑇
4

) ∈ 𝐵(𝐻 ⊕ 𝐻), where 𝑇
𝑖

are mutually commuting, both 𝑇
1
and 𝑇

4
are 𝑀-hyponormal

operators, and {𝑇
𝑖
}
4

𝑖=1
satisfy one of the conditions in Lemma 4.

Then 𝑎-Weyl’s theorem holds for 𝑇∗.

Proof. Since 𝑇 is polaroid and has SVEP, then 𝑎-Weyl’s
theorem holds for 𝑇∗.

In the following, 𝑓 is an analytic function on 𝜎(𝑇) and 𝑓
is not constant on each connected component of the open set
𝑈 containing 𝜎(𝑇).

Corollary 16. Let 𝑇 = (
𝑇
1
𝑇
2

𝑇
3
𝑇
4

) ∈ 𝐵(𝐻 ⊕ 𝐻), where 𝑇
𝑖

are mutually commuting, both 𝑇
1
and 𝑇

4
are 𝑀-hyponormal

operators, and {𝑇
𝑖
}
4

𝑖=1
satisfy one of the conditions in Lemma 4.

Then the following assertions hold:
(i) Weyl’s theorem holds for 𝑓(𝑇);
(ii) 𝑎-Weyl’s theorem holds for 𝑓(𝑇∗).

Proof. (i) Since𝑇 is polaroid andhas SVEP, then𝑓(𝑇) satisfies
Weyl’s theorem by [15, Theorem 3.14].

(ii) Since 𝑇 is polaroid and has SVEP, then 𝑓(𝑇∗) satisfies
𝑎-Weyl’s theorem by [15, Theorem 3.12].
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