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We establish the existence of positive solutions to a class of singular nonlocal fractional order differential system depending on two
parameters. Our methods are based on Schauder’s fixed point theorem.

1. Introduction

Differential equations of fractional order have recently
proved to be valuable tools in the modeling of many phe-
nomena in various fields of science and engineering. Particu-
larly, fractional derivatives provide an excellent tool for the
description of memory and hereditary properties of many
materials and processes.With this advantage, fractional order
models are more realistic and practical than the classical
integer-order models in physics, biology, economics, control
theory, signal and image processing, biophysics, blood flow
phenomena, fitting of experimental data, and so forth [1–16].
Recently, Rehman and Khan [17] studied the fractional order
multipoint boundary value problem:

𝐷
𝛼

𝑡
𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) , 𝐷

𝛽

𝑡
𝑦 (𝑡)) , 𝑡 ∈ (0, 1) ,

𝑦 (0) = 0, 𝐷
𝛽

𝑡
𝑦 (1) −

𝑚−2

∑

𝑖=1

𝜁
𝑖
𝐷
𝛽

𝑡
𝑦 (𝜉
𝑖
) = 𝑦
0
,

(1)

where 1 < 𝛼 ≤ 2, 0 < 𝛽 < 1, 𝜁
𝑖
∈ [0, +∞), 0 <

𝜉
𝑖
< 1, with ∑

𝑚−2

𝑖=1
𝜁
𝑖
𝜉
𝑖
< 1. By using the contraction

mapping principle, the existence and uniqueness of positive
solutions were established. In [18], Zhang et al. discussed

the existence and uniqueness of positive solutions for the
following fractional differential equation with derivatives:

−Dt
𝛼

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , −Dt
𝛽

𝑥 (𝑡)) , 𝑡 ∈ (0, 1) ,

Dt
𝛽

𝑥 (0) = 0, Dt
𝛾

𝑥 (1) =

𝑝−2

∑

𝑗=1

𝑎
𝑗
Dt
𝛾

𝑥 (𝜉
𝑗
) ,

(2)

where 1 < 𝛼 ≤ 2, 𝛼 − 𝛽 > 1, 0 < 𝛽 ≤ 𝛾 < 1, 0 < 𝜉
1
< 𝜉
2
<

⋅ ⋅ ⋅ < 𝜉
𝑝−2

< 1, 𝑎
𝑗
∈ [0, +∞) with 𝑐 = ∑

𝑝−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗
< 1,

and Dt is the standard Riemann-Liouville derivative. 𝑓 :

(0, 1) × [0, +∞) × (−∞, +∞) → [0, +∞) is continuous,
and 𝑓(𝑡, 𝑢, V) may be singular at 𝑡 = 0, 1. By means of
monotone iterative technique, the existence and uniqueness
of the positive solution for a fractional differential equation
with derivatives are established, and the iterative sequence of
the solution, an error estimation, and the convergence rate of
the positive solution are also given.

However, the research on the systems of fractional differ-
ential equations has not received much attention. So moti-
vated by the results mentioned above, in this paper, we study
the existence of positive solutions for the following singular
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nonlocal fractional order differential system depending on
two parameters:

−𝐷
𝛼

𝑡
𝑢 (𝑡) = 𝜆𝑓 (𝑡, 𝐷

𝛽
1

𝑡
V (𝑡)) ,

− 𝐷
𝛽

𝑡
V (𝑡) = 𝜇𝑔 (𝑡, 𝐷𝛼1

𝑡
𝑢 (𝑡)) ,

0 < 𝑡 < 1,

𝐷
𝛼
1

𝑡
𝑢 (0) = 0, 𝐷

𝛾
1

𝑡
𝑢 (1) =

𝑚−2

∑

𝑗=1

𝑏
𝑗
𝐷
𝛾
1

𝑡
𝑢 (𝜁
𝑗
) ,

𝐷
𝛽
1

𝑡
V (0) = 0, 𝐷

𝛿
1

𝑡
V (1) =

𝑚−2

∑

𝑗=1

𝑎
𝑗
𝐷
𝛿
1

𝑡
V (𝜉
𝑗
) ,

(3)

where 1 < 𝛼, 𝛽 ≤ 2, 𝛼 − 𝛾
1
≥ 1, 𝛽 − 𝛿

1
≥ 1, 0 ≤ 𝛽

1
≤ 𝛿
1
,

0 ≤ 𝛼
1
≤ 𝛾
1
, 𝑎
𝑗
, 𝑏
𝑗
∈ [0, +∞), 𝜉

𝑖
, 𝜁
𝑖
∈ (0, 1) with 0 <

∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝑗
, ∑𝑚−2
𝑗=1

𝑏
𝑗
𝜁
𝑗
< 1, 𝐷𝛼

𝑡
, 𝐷𝛽
𝑡
are the standard Riemann-

Liouville derivatives, and 𝜆 and 𝜇 are positive parameters.
𝑓 : (0, 1) × (0, +∞) → [0, +∞) and 𝑔 : [0, 1] × [0, +∞) →

(0, +∞) are continuous and𝑓(𝑡, 𝑥)may be singular at 𝑡 = 0, 1
and 𝑥 = 0. The system (3) is an abstract model arising from
biological dynamic system,whichwas introduced byPerelson
[5] to describe the primary infection with HIV in integer-
order version, and was extended to a fractional order version
of HIV-1 infection of CD4+ T-cells by Arafa et al. [11].

The present paper has several interesting features. Firstly,
the system depends on two parameters and the nonlinear
terms 𝑓 and 𝑔 are allowed to have different nonlinear
character; that is, 𝑓 is decreasing on 𝑦 and 𝑔 is increasing
on 𝑥; secondly, 𝑓 may be singular at 𝑦 = 0 and 𝑡 = 0, 1; so
far fewer work was done when 𝑓 can be singular at 𝑦 = 0;
thirdly, the boundary conditions of the system are nonlocal
and involve fractional derivatives of the unknown functions.

2. Preliminaries and Lemmas

In this section, we firstly define an appropriate invariant set
and then make a change of variables for the system (3) so
that Schauder’s fixed point theorem can be applied. Our work
is based on fractional framework; for further background
knowledge of fractional calculus, we refer readers to the
monographs [1–4] or the papers [6, 8, 17, 18] and the
references therein.

Throughout this paper, we mean by 𝐶[0, 1] the Banach
space of all continuous functions on [0, 1] with the usual
norm ‖𝑥‖ = max

0≤𝑡≤1
|𝑥(𝑡)|. Let

𝑃 = {𝑥 ∈ 𝐶 [0, 1] : 𝑥 (𝑡) ≥ 0, 𝑡 ∈ [0, 1]} ; (4)

then𝑃 is a normal cone in the Banach space𝐸.Thus the space
𝐶[0, 1] can be equipped with a partial order given by

𝑥, 𝑦 ∈ 𝐶 [0, 1] , 𝑥 − 𝑦 ∈ 𝑃 ⇐⇒ 𝑥 (𝑡) ≥ 𝑦 (𝑡) , for 𝑡 ∈ [0, 1] .
(5)

Now define a subcone of 𝑃 as follows:

𝐵 = {𝑥 (𝑡) ∈ 𝑃 : there exist two

positive numbers 𝐿
𝑥
> 1 > 𝑙

𝑥

such that 𝑙
𝑥
𝑡
𝛼−𝛼
1
−1

≤ 𝑥 (𝑡) ≤ 𝐿
𝑥
𝑡
𝛼−𝛼
1
−1

, 𝑡 ∈ [0, 1]} .

(6)

Obviously, 𝐵 is nonempty since 𝑡𝛼−𝛼1−1 ∈ 𝐵.

Lemma 1. Let 𝑢(𝑡) = 𝐼𝛼1𝑥(𝑡), V(𝑡) = 𝐼𝛽1𝑦(𝑡), 𝑥(𝑡), and 𝑦(𝑡) ∈
𝐶[0, 1]. Then system (3) is turned into the equivalent one:

−𝐷
𝛼−𝛼
1

𝑡
𝑥 (𝑡) = 𝜆𝑓 (𝑡, 𝑦 (𝑡)) ,

− 𝐷
𝛽−𝛽
1

𝑡
𝑦 (𝑡) = 𝜇𝑔 (𝑡, 𝑥 (𝑡)) ,

0 < 𝑡 < 1,

𝑥 (0) = 0, 𝐷
𝛾
1
−𝛼
1

𝑡
𝑥 (1) =

𝑚−2

∑

𝑗=1

𝑏
𝑗
𝐷
𝛾
1
−𝛼
1

𝑡
𝑥 (𝜁
𝑗
) ,

𝑦 (0) = 0, 𝐷
𝛿
1
−𝛽
1

𝑡
𝑦 (1) =

𝑚−2

∑

𝑗=1

𝑎
𝑗
𝐷
𝛿
1
−𝛽
1

𝑡
𝑦 (𝜉
𝑗
) ,

(7)

and if (𝑥, 𝑦) ∈ 𝐶[0, 1] × 𝐶[0, 1] is a solution of the problem
(7), then (𝐼𝛼1𝑥(𝑡), 𝐼𝛽1𝑦(𝑡)) is a solution of the system (3).

Proof. By using semigroup property of the fractional integra-
tion operator (see [1] page 73, Lemma 2.3 or [4] Sections 2.3
and 2.5), one has

𝐷
𝛼

𝑡
𝑢 (𝑡) =

𝑑
𝑛

𝑑𝑡𝑛
(𝐼
𝑛−𝛼

𝐼
𝛼
1𝑥 (𝑡))

=
𝑑
𝑛

𝑑𝑡𝑛
𝐼
𝑛−𝛼+𝛼

1𝑥 (𝑡) = 𝐷
𝛼−𝛼
1

𝑡
𝑥 (𝑡) ,

𝐷
𝛾
1

𝑡
𝑢 (𝑡) =

𝑑
𝑛

𝑑𝑡𝑛
(𝐼
𝑛−𝛾
1𝐼
𝛼
1𝑥 (𝑡))

=
𝑑
𝑛

𝑑𝑡𝑛
𝐼
𝑛−𝛾
1
+𝛼
1𝑥 (𝑡) = 𝐷

𝛾
1
−𝛼
1

𝑡
𝑥 (𝑡) ,

𝐷
𝛼
1

𝑡
𝑢 (𝑡) = 𝐷

𝛼
1

𝑡
𝐼
𝛼
1𝑥 (𝑡) = 𝑥 (𝑡) .

(8)

And then, it follows from (8) that

𝐷
𝛼
1

𝑡
𝑢 (0) = 𝑥 (0) = 0,

𝐷
𝛾
1
−𝛼
1

𝑡
𝑥 (1) = 𝐷

𝛾
1

𝑡
𝑢 (1)

=

𝑚−2

∑

𝑗=1

𝑏
𝑗
𝐷
𝛾
1

𝑡
𝑢 (𝜁
𝑗
) =

𝑚−2

∑

𝑗=1

𝑏
𝑗
𝐷
𝛾
1
−𝛼
1

𝑡
𝑥 (𝜁
𝑗
) .

(9)

In the same way, we also have

𝑦 (0) = 0, 𝐷
𝛿
1
−𝛽
1

𝑡
𝑦 (1) =

𝑚−2

∑

𝑗=1

𝑎
𝑗
𝐷
𝛿
1
−𝛽
1

𝑡
𝑦 (𝜉
𝑗
) . (10)
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It follows from 𝑢(𝑡) = 𝐼
𝛼
1𝑥(𝑡) and V(𝑡) = 𝐼

𝛽
1𝑦(𝑡) that

𝑥(𝑡) = 𝐷
𝛼
1

𝑡
𝑢(𝑡) and 𝑦(𝑡) = 𝐷𝛽1

𝑡
V(𝑡). So substituting the above

formulas into (3), we obtain (7).
On the other hand, if (𝑥, 𝑦) is a solution of (7), (8) yields

−𝐷
𝛼

𝑡
𝑢 (𝑡) = −

𝑑
𝑛

𝑑𝑡𝑛
𝐼
𝑛−𝛼

𝐼
𝛼
1𝑥 (𝑡) = −

𝑑
𝑛

𝑑𝑡𝑛
𝐼
𝑛−𝛼−𝛼

1𝑥 (𝑡)

= −𝐷
𝛼−𝛼
1

𝑡
𝑥 (𝑡) = 𝜆𝑓 (𝑡, 𝑦 (𝑡)) = 𝜆𝑓 (𝑡, 𝐷

𝛽
1

𝑡
V (𝑡)) ,

−𝐷
𝛽

𝑡
V (𝑡) = −𝐷𝛽−𝛽1

𝑡
𝑦 (𝑡) = 𝜇𝑔 (𝑡, 𝑥 (𝑡)) = 𝜇𝑔 (𝑡, 𝐷

𝛼
1

𝑡
𝑢 (𝑡)) ,

𝐷
𝛼
1

𝑡
𝑢 (𝑡) = 𝐷

𝛼
1

𝑡
𝐼
𝛼
1𝑥 (𝑡) = 𝑥 (𝑡) , 𝐷

𝛾
1

𝑡
𝑢 (𝑡) = 𝐷

𝛾
1
−𝛼
1

𝑡
𝑥 (𝑡) ,

𝐷
𝛽
1

𝑡
V (𝑡) = 𝐷𝛽1

𝑡
𝐼
𝛽
1𝑦 (𝑡) = 𝑦 (𝑡) , 𝐷

𝛿
1

𝑡
V (𝑡) = 𝐷𝛿1−𝛽1

𝑡
𝑦 (𝑡) .

(11)

So from (11), we have

𝐷
𝛼
1

𝑡
𝑢 (0) = 0, 𝐷

𝛾
1

𝑡
𝑢 (1) =

𝑚−2

∑

𝑗=1

𝑏
𝑗
𝐷
𝛾
1

𝑡
𝑢 (𝜁
𝑗
) ,

𝐷
𝛽
1

𝑡
V (0) = 0, 𝐷

𝛿
1

𝑡
V (1)
𝑚−2

∑

𝑗=1

𝑎
𝑗
𝐷
𝛿
1
−𝛽
1

𝑡
V (𝜉
𝑗
) .

(12)

Moreover

𝐼
𝛼
1𝑥 (𝑡) , 𝐼

𝛽
1𝑦 (𝑡) ∈ 𝐶 [0, 1] . (13)

Consequently, (𝐼𝛼1𝑥(𝑡), 𝐼𝛽1𝑦(𝑡)) is a positive solution of (3).

Now we recall some useful lemmas by [18], which are
important to the proof of our main results.

Lemma 2 (see [18]). Let ℎ ∈ 𝐿1[0, 1], if 1 < 𝛼 − 𝛼
1
≤ 2; then

the unique solution of the linear problem

−𝐷
𝛼−𝛼
1

𝑡
𝑥 (𝑡) = ℎ (𝑡) , 𝑡 ∈ (0, 1) ,

𝑥 (0) = 0, 𝐷
𝛾
1
−𝛼
1

𝑡
𝑥 (1) =

𝑚−2

∑

𝑗=1

𝑏
𝑗
𝐷
𝛾
1
−𝛼
1

𝑡
𝑥 (𝜁
𝑗
) ,

(14)

is given by

𝑥 (𝑡) = ∫

1

0

𝐾
𝛼
(𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠, (15)

where

𝐾
𝛼
(𝑡, 𝑠)

= 𝐾
𝛼1
(𝑡, 𝑠) +

𝑡
𝛼−𝛼
1
−1

1 − ∑
𝑚−2

𝑗=1
𝑏
𝑗
𝜁
𝛼−𝛾
1
−1

𝑗

𝑚−2

∑

𝑗=1

𝑏
𝑗
𝐾
𝛼2
(𝜁
𝑗
, 𝑠) ,

𝐾
𝛼1
(𝑡, 𝑠)

=
1

Γ (𝛼 − 𝛼
1
)

{{{{

{{{{

{

𝑡
𝛼−𝛼
1
−1

(1 − 𝑠)
𝛼−𝛾
1
−1

− (𝑡 − 𝑠)
𝛼−𝛼
1
−1

,

0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝑡
𝛼−𝛼
1
−1

(1 − 𝑠)
𝛼−𝛾
1
−1

,

0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

𝐾
𝛼2
(𝑡, 𝑠)

=
1

Γ (𝛼 − 𝛼
1
)

{{{{

{{{{

{

(𝑡 (1 − 𝑠))
𝛼−𝛾
1
−1

− (𝑡 − 𝑠)
𝛼−𝛾
1
−1

,

0 ≤ s ≤ 𝑡 ≤ 1,
(𝑡 (1 − 𝑠))

𝛼−𝛾
1
−1

,

0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(16)

Moreover, for any 𝑡, 𝑠 ∈ [0, 1],

𝐾
𝛼𝑖
(𝑡, 𝑠) ≤

(1 − 𝑠)
𝛼−𝛾
1
−1

Γ (𝛼 − 𝛼
1
)
, 𝑖 = 1, 2. (17)

By Lemma 2, similar results are valid for the problem

−𝐷
𝛽−𝛽
1

𝑡
𝑦 (𝑡) = ℎ (𝑡) , 𝑡 ∈ [0, 1] ,

𝑦 (0) = 0, 𝐷
𝛿
1
−𝛽
1

𝑡
𝑦 (1) =

𝑚−2

∑

𝑗=𝑖

𝑎
𝑗
𝐷
𝛿
1
−𝛽
1

𝑡
𝑦 (𝜉
𝑗
) .

(18)

For convenience, we adopt the following corresponding
notations:

𝐾
𝛽
(𝑡, 𝑠)

= 𝐾
𝛽1
(𝑡, 𝑠) +

𝑡
𝛽−𝛽
1
−1

1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛽−𝛿
1
−1

𝑗

𝑚−2

∑

𝑗=1

𝑎
𝑗
𝐾
𝛽2
(𝜉
𝑗
, 𝑠) ,

𝐾
𝛽1
(𝑡, 𝑠)

=
1

Γ (𝛽 − 𝛽
1
)

{{{{

{{{{

{

𝑡
𝛽−𝛽
1
−1

(1 − 𝑠)
𝛽−𝛿
1
−1

− (𝑡 − 𝑠)
𝛽−𝛽
1
−1

,

0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝑡
𝛽−𝛽
1
−1

(1 − 𝑠)
𝛽−𝛿
1
−1

,

0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

𝐾
𝛽2
(𝑡, 𝑠)

=
1

Γ (𝛽 − 𝛽
1
)

{{{{

{{{{

{

(𝑡 (1 − 𝑠))
𝛽−𝛿
1
−1

− (𝑡 − 𝑠)
𝛽−𝛿
1
−1

,

0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

(𝑡 (1 − 𝑠))
𝛽−𝛿
1
−1

,

0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(19)

Lemma 3 (see [18]). TheGreen functions𝐾
𝛼
(𝑡, 𝑠) and𝐾

𝛽
(𝑡, 𝑠)

have the following properties:

(1) 𝐾
𝛼
(𝑡, 𝑠) > 0 and 𝐾

𝛽
(𝑡, 𝑠) > 0 for 𝑡, 𝑠 ∈ (0, 1),
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(2) there exist functions 𝑚
𝛼
(𝑠), 𝑚

𝛽
(𝑠),𝑀

𝛼
(𝑠), and𝑀

𝛽
(𝑠)

such that
𝑚
𝛼
(𝑠) 𝑡
𝛼−𝛼
1
−1

≤ 𝐾
𝛼
(𝑡, 𝑠) ≤ 𝑀

𝛼
(𝑠) 𝑡
𝛼−𝛼
1
−1

, 𝑡, 𝑠 ∈ (0, 1) ,

𝑚
𝛽
(𝑠) 𝑡
𝛽−𝛽
1
−1

≤ 𝐾
𝛽
(𝑡, 𝑠) ≤ 𝑀

𝛽
(𝑠) 𝑡
𝛽−𝛽
1
−1

, 𝑡, 𝑠 ∈ (0, 1) ,

(20)

where

𝑚
𝛼
(𝑠) =

∑
𝑚−2

𝑗=1
𝑏
𝑗
𝐾
𝛼2
(𝜁
𝑗
, 𝑠)

1 − ∑
𝑚−2

𝑗=1
𝑏
𝑗
𝜁
𝛼−𝛾
1
−1

𝑗

,

𝑀
𝛼
(𝑠) =

1

Γ (𝛼 − 𝛼
1
)
+

∑
𝑚−2

𝑗=1
𝑏
𝑗
𝐾
𝛼2
(𝜁
𝑗
, 𝑠)

1 − ∑
𝑚−2

𝑗=1
𝑏
𝑗
𝜁
𝛼−𝛾
1
−1

𝑗

,

𝑚
𝛽
(𝑠) =

∑
𝑚−2

𝑗=1
𝑎
𝑗
𝐾
𝛽2
(𝜉
𝑗
, 𝑠)

1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛽−𝛿
1
−1

𝑗

,

𝑀
𝛽
(𝑠) =

1

Γ (𝛽 − 𝛽
1
)
+

∑
𝑚−2

𝑗=1
𝑎
𝑗
𝐾
𝛽2
(𝜉
𝑗
, 𝑠)

1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛽−𝛿
1
−1

𝑗

.

(21)

Clearly, the followingmaximumprinciple is direct conclusion
of Lemma 2.

Lemma 4. If 1 < 𝛼 − 𝛼
1
≤ 2 and 𝑥 ∈ 𝐶([0, 1], 𝑅) satisfies

𝑥 (0) = 0, 𝐷
𝛾
1
−𝛼
1

𝑡
𝑥 (1) =

𝑚−2

∑

𝑗=1

𝑏
𝑗
𝐷
𝛾
1
−𝛼
1

𝑡
𝑥 (𝜁
𝑗
) , (22)

and −𝐷𝛼−𝛼1
𝑡

𝑥(𝑡) ≥ 0 for any 𝑡 ∈ (0, 1), then 𝑥(𝑡) ≥ 0 for 𝑡 ∈
(0, 1).

It is well known that (𝑥, 𝑦) ∈ 𝐶(0, 1) × 𝐶[0, 1] is a solution
of the system (7) if and only if (𝑥, 𝑦) is a solution of the
nonlinear integral system of equations

𝑥 (𝑡) = 𝜆∫

1

0

𝐾
𝛼
(𝑡, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠,

𝑦 (𝑡) = 𝜇∫

1

0

𝐾
𝛽
(𝑡, 𝑠) 𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠,

(23)

and the system (23) is equivalent to the following nonlinear
integral equation

𝑥 (𝑡) = 𝜆∫

1

0

𝐾
𝛼
(𝑡, 𝑠) 𝑓 (𝑠, 𝜇∫

1

0

𝐾
𝛽
(𝑠, 𝜏) 𝑔 (𝜏, 𝑥 (𝜏)) 𝑑𝜏) 𝑑𝑠,

𝑡 ∈ [0, 1] .

(24)

Let us define a nonlinear operator (𝐹𝑥)(𝑡) by

(𝐹𝑥) (𝑡)

= 𝜆∫

1

0

𝐾
𝛼
(𝑡, 𝑠) 𝑓 (𝑠, 𝜇∫

1

0

𝐾
𝛽
(𝑠, 𝜏) 𝑔 (𝜏, 𝑥 (𝜏)) 𝑑𝜏) 𝑑𝑠,

𝑡 ∈ [0, 1] .

(25)

Then the existence of solutions to the system of (7) is
equivalent to the existence of fixed point of the nonlinear
operator 𝐹; that is, if 𝑥∗(𝑡) is a fixed point of 𝐹 in𝐶[0, 1], then
system (7) has at least one solution (𝑥∗(𝑡), 𝑦∗(𝑡)) which can
be written by

𝑥 (𝑡) = 𝑥
∗

(𝑡) ,

𝑦
∗

(𝑡) = 𝜇∫

1

0

𝐾
𝛽
(𝑡, 𝑠) 𝑔 (𝑠, 𝑥

∗

(𝑠)) 𝑑𝑠,

(26)

and then system (3) has at least one solution:

(𝐼
𝛼
1𝑥
∗

(𝑡) , 𝐼
𝛽
1𝑦
∗

(𝑡)) . (27)

In order to find the fixed point of 𝐹, we need the
definitions of the upper solution and lower solution for the
following integrodifferential equation:

−𝐷
𝛼−𝛼
1

𝑡
𝑥 (𝑡) = 𝜆𝑓(𝑡, 𝜇∫

1

0

𝐾
𝛽
(𝑡, 𝑠) 𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠) ,

𝑥 (0) = 0, 𝐷
𝛾
1
−𝛼
1

𝑡
𝑥 (1) =

𝑚−2

∑

𝑗=1

𝑏
𝑗
𝐷
𝛾
1
−𝛼
1

𝑡
𝑥 (𝜁
𝑗
) .

(28)

Definition 5. A continuous function 𝜙(𝑡) is called a lower
solution of the problem (28), if it satisfies

−𝐷
𝛼−𝛼
1

𝑡
𝜙 (𝑡) ≤ 𝜆𝑓(𝑡, 𝜇∫

1

0

𝐾
𝛽
(𝑡, 𝑠) 𝑔 (𝑠, 𝜙 (𝑠)) 𝑑𝑠) ,

𝜙 (0) ≥ 0, 𝐷
𝛾
1
−𝛼
1

𝑡
𝜙 (1) ≥

𝑚−2

∑

𝑗=1

𝑏
𝑗
𝐷
𝛾
1
−𝛼
1

𝑡
𝜙 (𝜁
𝑗
) .

(29)

Definition 6. A continuous function 𝜑(𝑡) is called an upper
solution of the problem (28), if it satisfies

−𝐷
𝛼−𝛼
1

𝑡
𝜑 (𝑡) ≥ 𝜆𝑓(𝑡, 𝜇∫

1

0

𝐾
𝛽
(𝑡, 𝑠) 𝑔 (𝑠, 𝜑 (𝑠)) 𝑑𝑠) ,

𝜑 (0) ≤ 0, 𝐷
𝛾
1
−𝛼
1

𝑡
𝜑 (1) ≤

𝑚−2

∑

𝑗=1

𝑏
𝑗
𝐷
𝛾
1
−𝛼
1

𝑡
𝜑 (𝜁
𝑗
) .

(30)

3. Main Result

For the convenience in presentation, we now present some
assumptions to be used in the rest of the paper.

(A1) 𝑓 : (0, 1) × (0, +∞) → [0, +∞) is continuous and
decreasing on 𝑦 in (0, +∞) and 𝑔 : [0, 1]×[0, +∞) →

(0, +∞) is continuous and increasing on 𝑥 in [0, +∞).
(A2) For any real numbers 𝑙, 𝜇 > 0,

∫

1

0

𝑀
𝛼
(𝑠) 𝑓 (𝑠, 𝜇∫

1

0

𝐾
𝛽
(𝑠, 𝜏) 𝑔 (𝜏, 𝑙𝜏

𝛼−𝛼
1
−1

) 𝑑𝜏) 𝑑𝑠 < +∞.

(31)

Theorem 7. Suppose (A1) and (A2) hold; then for any (𝜆, 𝜇) ∈
(0, +∞) × (0, +∞), the system (3) has at least one positive
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solution (𝑢∗, V∗), and there exist positive constants 𝑟∗
1
, 𝑟∗
2
, 𝑑∗
1
,

and 𝑑∗
2
such that

𝑟
∗

1
𝑡
𝛼−1

≤ 𝑢
∗

(𝑡) ≤ 𝑟
∗

2
𝑡
𝛼−1

,

𝑑
∗

1
𝑡
𝛽−1

≤ V∗ (𝑡) ≤ 𝑑∗
2
𝑡
𝛽−1

,

𝑡 ∈ [0, 1] .

(32)

Proof. We start by showing that (3) has at least one positive
solution (𝑢∗, V∗). For this purpose, we firstly prove that the
operator 𝐹 is well defined and 𝐹(𝐵) ⊂ 𝐵.

For any 𝑥 ∈ 𝐵, there exist two positive numbers 𝑙
𝑥
< 1 <

𝐿
𝑥
such that 𝑙

𝑥
𝑡
𝛼−𝛼
1
−1

≤ 𝑥(𝑡) ≤ 𝐿
𝑥
𝑡
𝛼−𝛼
1
−1, so it follows from

(25), (20), and (31) that

(𝐹𝑥) (𝑡)

= 𝜆∫

1

0

𝐾
𝛼
(𝑡, 𝑠)

× 𝑓(𝑠, 𝜇∫

1

0

𝐾
𝛽
(𝑠, 𝜏) 𝑔 (𝜏, 𝑥 (𝜏)) 𝑑𝜏) 𝑑𝑠

≤ 𝜆𝑡
𝛼−𝛼
1
−1

× ∫

1

0

𝑀
𝛼
(𝑠)

× 𝑓(𝑠, 𝜇∫

1

0

𝐾
𝛽
(𝑠, 𝜏) 𝑔 (𝜏, 𝑙

𝑥
𝜏
𝛼−𝛼
1
−1

) 𝑑𝜏) 𝑑𝑠

< +∞,

(𝐹𝑥) (𝑡)

≥ 𝜆𝑡
𝛼−𝛼
1
−1

∫

1

0

𝑚
𝛼
(𝑠) 𝑓(𝑠, 𝜇∫

1

0

𝐾
𝛽
(𝑠, 𝜏) 𝑔 (𝜏, 𝑥 (𝜏)) 𝑑𝜏) 𝑑𝑠

≥ 𝜆𝑡
𝛼−𝛼
1
−1

× ∫

1

0

𝑚
𝛼
(𝑠) 𝑓 (𝑠, 𝜇∫

1

0

𝐾
𝛽
(𝑠, 𝜏) 𝑔 (𝜏, 𝐿

𝑥
𝜏
𝛼−𝛼
1
−1

) 𝑑𝜏) 𝑑𝑠.

(33)

Take

𝑙
󸀠

𝑥

= min{1, 𝜆

× ∫

1

0

𝑚
𝛼
(𝑠)

×𝑓(𝑠, 𝜇∫

1

0

𝐾
𝛽
(𝑠, 𝜏) 𝑔 (𝜏, 𝐿

𝑥
𝜏
𝛼−𝛼
1
−1

) 𝑑𝜏) 𝑑𝑠} ,

𝐿
󸀠

𝑥

= max{1, 𝜆

× ∫

1

0

𝑀
𝛼
(𝑠)

×𝑓(𝑠, 𝜇∫

1

0

𝐾
𝛽
(𝑠, 𝜏) 𝑔 (𝜏, 𝑙

𝑥
𝜏
𝛼−𝛼
1
−1

) 𝑑𝜏) 𝑑𝑠} ;

(34)

then

𝑙
󸀠

𝑥
𝑡
𝛼−𝛼
1
−1

≤ (𝐹𝑥) (𝑡) ≤ 𝐿
󸀠

𝑥
𝑡
𝛼−𝛼
1
−1

. (35)

So (𝐹𝑥)(𝑡) is well defined and 𝐹(𝐵) ⊆ 𝐵. It follows from (A1)
that the operator (𝐹𝑥)(𝑡) is decreasing on 𝑥. Moreover, by
Lemma 2, we have

−𝐷
𝛼−𝛼
1

𝑡
(𝐹𝑥) (𝑡) = 𝜆𝑓(𝑡, 𝜇∫

1

0

𝐾
𝛽
(𝑡, 𝑠) 𝑔 (𝑠, 𝐹𝑥 (𝑠)) 𝑑𝑠) ,

(𝐹𝑥) (0) = 0, 𝐷
𝛾
1
−𝛼
1

𝑡
(𝐹𝑥) (1) =

𝑚−2

∑

𝑗=1

𝑏
𝑗
𝐷
𝛾
1
−𝛼
1

𝑡
𝐹𝑥 (𝜁
𝑗
) .

(36)

Let

𝑒 (𝑡) = min {𝑡𝛼−𝛼1−1, 𝐹 (𝑡𝛼−𝛼1−1)} ,

𝑒 (𝑡) = max {𝑡𝛼−𝛼1−1, 𝐹 (𝑡𝛼−𝛼1−1)} ;
(37)

if 𝑡𝛼−𝛼1−1 = 𝐹(𝑡𝛼−𝛼1−1), then

𝑥
∗

(𝑡) = 𝑡
𝛼−𝛼
1
−1

, 𝑦
∗

(𝑡) = 𝜇∫

1

0

𝐾
𝛽
(𝑡, 𝑠) 𝑔 (𝑠, 𝑠

𝛼−𝛼
1
−1

) 𝑑𝑠,

(38)

is positive solution of (7).Thus the system (3) has at least one
solution

(𝐼
𝛼
1𝑥
∗

(𝑡) , 𝐼
𝛽
1𝑦
∗

(𝑡)) (39)

which satisfies Theorem 7. If 𝑡𝛼−𝛼1−1 ̸= 𝐹(𝑡
𝛼−𝛼
1
−1

), we have

𝑒 (𝑡) , 𝑒 (𝑡) ∈ 𝐵, 𝑒 (𝑡) ≤ 𝑡
𝛼−𝛼
1
−1

≤ 𝑒 (𝑡) . (40)

Let

𝜑 (𝑡) = (𝐹𝑒) (𝑡) , 𝜙 (𝑡) = (𝐹𝑒) (𝑡) . (41)

From (A1), we know that𝐹 is nonincreasing on 𝑥; thus by (37)
and (40), one gets

𝜙 (𝑡) = (𝐹𝑒) (𝑡) ≤ 𝐹𝑒 (𝑡) = 𝜑 (𝑡) ,

(𝐹𝑒) (𝑡) ≤ 𝐹 (𝑡
𝛼−𝛼
1
−1

) ≤ 𝑒 (𝑡) ,

(𝐹𝑒) (𝑡) ≥ 𝐹 (𝑡
𝛼−𝛼
1
−1

) ≥ 𝑒 (𝑡) ,

(42)
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and 𝜙(𝑡) and 𝜑(𝑡) ∈ 𝐵. Thus from (36)–(42), we have

𝐷
𝛼−𝛼
1

𝑡
𝜑 (𝑡) + 𝜆𝑓(𝑡, 𝜇∫

1

0

𝐾
𝛽
(𝑡, 𝑠) 𝑔 (𝑠, 𝜑 (𝑠)) 𝑑𝑠)

= 𝐷
𝛼−𝛼
1

𝑡
(𝐹𝑒) (𝑡) + 𝜆𝑓(𝑡, 𝜇∫

1

0

𝐾
𝛽
(𝑡, 𝑠) 𝑔 (𝑠, (𝐹𝑒) (𝑠)) 𝑑𝑠)

≤ 𝐷
𝛼−𝛼
1

𝑡
(𝐹𝑒) (𝑡)+ 𝜆𝑓(𝑡, 𝜇∫

1

0

𝐾
𝛽
(𝑡, 𝑠) 𝑔 (s, 𝑒 (𝑠)) 𝑑𝑠)= 0,

𝜑 (0) = 0, 𝐷
𝛾
1
−𝛼
1

𝑡
𝜑 (1) =

𝑚−2

∑

𝑗=1

𝑏
𝑗
𝐷
𝛾
1
−𝛼
1

𝑡
𝜑 (𝜁
𝑗
) ,

𝐷
𝛼−𝛼
1

𝑡
𝜙 (𝑡) + 𝜆𝑓(𝑡, 𝜇∫

1

0

𝐾
𝛽
(𝑡, 𝑠) 𝑔 (𝑠, 𝜙 (𝑠)) 𝑑𝑠)

= 𝐷
𝛼−𝛼
1

𝑡
(𝐹𝑒) (𝑡) + 𝜆𝑓(𝑡, 𝜇∫

1

0

𝐾
𝛽
(𝑡, 𝑠) 𝑔 (𝑠, (𝐹𝑒) (𝑠)) 𝑑𝑠)

≥ 𝐷
𝛼−𝛼
1

𝑡
(𝐹𝑒) (𝑡)+ 𝜆𝑓(𝑡, 𝜇∫

1

0

𝐾
𝛽
(𝑡, 𝑠) 𝑔 (𝑠, 𝑒 (𝑠)) 𝑑𝑠)= 0,

𝜙 (0) = 0, 𝐷
𝛾
1
−𝛼
1

𝑡
𝜙 (1) =

𝑚−2

∑

𝑗=1

𝑏
𝑗
𝐷
𝛾
1
−𝛼
1

𝑡
𝜙 (𝜁
𝑗
) .

(43)

So it follows from (42)-(43) that 𝜑(𝑡) and 𝜙(𝑡) are, respec-
tively, upper solution and lower solution of the problem (28)
and 𝜑(𝑡), 𝜙(𝑡) ∈ 𝐵.

Define a function𝑊: (0, 1) × 𝐸 → 𝐸 as follows:

𝑊(𝑡, 𝑥 (𝑡))

=

{{{{{{{{{

{{{{{{{{{

{

𝑓(𝑡, 𝜇∫

1

0

𝐾
𝛽
(𝑡, 𝑠) 𝑔 (𝑠, 𝜙 (𝑠)) 𝑑𝑠) , 𝑥 (𝑡) < 𝜙 (𝑡) ,

𝑓 (𝑡, 𝜇∫

1

0

𝐾
𝛽
(𝑡, 𝑠) 𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠) , 𝜙 (𝑡) ≤𝑥 (𝑡) ≤ 𝜑 (𝑡),

𝑓 (𝑡, 𝜇∫

1

0

𝐾
𝛽
(𝑡, 𝑠) 𝑔 (𝑠, 𝜑 (𝑠)) 𝑑𝑠) , 𝑥 (𝑡) > 𝜑 (𝑡) .

(44)

Obviously𝑊 ∈ 𝐶((0, 1) × [0, +∞)).
Next we define an operator 𝑇 in 𝐶[0, 1] by

(𝑇𝑥) (𝑡) = 𝜆∫

1

0

𝐾
𝛼
(𝑡, 𝑠)𝑊 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 (45)

and consider the following boundary value problem:

−𝐷
𝛼−𝛼
1

𝑡
𝑥 (𝑡) = 𝜆𝑊 (𝑡, 𝑥 (𝑡)) ,

𝑥 (0) = 0, 𝐷
𝛾
1
−𝛼
1

𝑡
𝑥 (1) =

𝑚−2

∑

𝑗=1

𝑏
𝑗
𝐷
𝛾
1
−𝛼
1

𝑡
𝑥 (𝜁
𝑗
) .

(46)

It is easy to see that the fixed point of𝑇 is the solution of (46).

Note that

(𝑇𝑥) (𝑡) ≤ 𝜆𝑡
𝛼−𝛼
1
−1

∫

1

0

𝑀
𝛼
(𝑠)𝑊 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

≤ 𝜆𝑡
𝛼−𝛼
1
−1

∫

1

0

𝑀
𝛼
(𝑠)

× 𝑓(𝑠, 𝜇∫

1

0

𝐾
𝛽
(𝑠, 𝜏) 𝑔 (𝜏, 𝜙 (𝜏)) 𝑑𝜏) 𝑑𝑠

≤ 𝜆𝑡
𝛼−𝛼
1
−1

∫

1

0

𝑀
𝛼
(𝑠)

× 𝑓(𝑠, 𝜇∫

1

0

𝐾
𝛽
(𝑠, 𝜏) 𝑔 (𝜏, 𝑙

𝜙
𝜏
𝛼−𝛼
1
−1

) 𝑑𝜏) 𝑑𝑠

< +∞;

(47)

then 𝑇 is uniformly bounded. From the uniform continuity
of 𝐾
𝛼
(𝑡, 𝑠) and Lebesgue dominated convergence theorem,

we get 𝑇 is equicontinuous. So 𝑇 is completely continuous.
It follows from Schauder’s fixed point theorem that 𝑇 has at
least one fixed point 𝑥∗(𝑡) such that 𝑥∗(𝑡) = (𝑇𝑥∗)(𝑡).

In what follows, we prove

𝜙 (𝑡) ≤ 𝑥
∗

(𝑡) ≤ 𝜑 (𝑡) , 𝑡 ∈ [0, 1] . (48)

In fact, as 𝑥∗(𝑡) is a fixed point of 𝑇, we have

𝑥
∗

(0) = 0, 𝐷
𝛾
1
−𝛼
1

𝑡
𝑥
∗

(𝑡) =

𝑚−2

∑

𝑗=1

𝑏
𝑗
𝐷
𝛾
1
−𝛼
1

𝑡
𝑥
∗

(𝜁
𝑗
) . (49)

We firstly prove 𝑥∗(𝑡) ≤ 𝜑(𝑡). Otherwise, suppose 𝑥∗(𝑡) >
𝜑(𝑡). According to the definition of𝑊, we have

−𝐷
𝛼−𝛼
1

𝑡
𝑥
∗

(𝑡) = 𝜆𝑊(𝑡, 𝑥
∗

(𝑡))

= 𝜆𝑓(𝑡, 𝜇∫

1

0

𝐾
𝛽
(𝑡, 𝑠) 𝑔 (𝑠, 𝜑 (𝑠)) 𝑑𝑠) .

(50)

On the other hand, as 𝜑 is an upper solution of (28), we have

−𝐷
𝛼−𝛼
1

𝑡
𝜑 (𝑡) ≥ 𝜆𝑓(𝑡, 𝜇∫

1

0

𝐾
𝛽
(𝑡, 𝑠) 𝑔 (𝑠, 𝜑 (𝑠)) 𝑑𝑠) . (51)

Letting 𝑧(𝑡) = 𝜑(𝑡) − 𝑥∗(𝑡), (50)-(51) imply that

𝐷
𝛼−𝛼
1

𝑡
𝑧 (𝑡) = 𝐷

𝛼−𝛼
1

𝑡
𝜑 (𝑡) − 𝐷

𝛼−𝛼
1

𝑡
𝑥
∗

(𝑡) ≤ 0,

𝑧 (0) = 0, 𝐷
𝛾
1
−𝛼
1

𝑡
𝑧 (𝑡) =

𝑚−2

∑

𝑗=1

𝑏
𝑗
𝐷
𝛾
1
−𝛼
1

𝑡
𝑧 (𝜁
𝑗
) .

(52)

It follows from Lemma 4 that

𝑧 (𝑡) ≥ 0; (53)

that is, 𝑥∗(𝑡) ≤ 𝜑(𝑡) on [0, 1], which contradicts 𝑥∗(𝑡) > 𝜑(𝑡).
Thus 𝜑(𝑡) ≥ 𝑥∗(𝑡), 𝑡 ∈ (0, 1). In the same way, 𝑥∗(𝑡) ≥ 𝜙(𝑡).
Consequently,

𝜙 (𝑡) ≤ 𝑥
∗

(𝑡) ≤ 𝜑 (𝑡) , (54)

and then 𝑥∗(𝑡) is a positive solution of the problem (28).
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It follows from𝜙(𝑡),𝜑(𝑡) ∈ 𝐵 that there exist four numbers
0 < 𝑙
𝜙
, 𝑙
𝜑
< 1, 𝐿

𝜙
, 𝐿
𝜑
> 1 such that

𝑙
𝜙
𝑡
𝛼−𝛼
1
−1

≤ 𝜙 (𝑡) ≤ 𝐿
𝜙
𝑡
𝛼−𝛼
1
−1

,

𝑙
𝜑
𝑡
𝛼−𝛼
1
−1

≤ 𝜑 (𝑡) ≤ 𝐿
𝜑
𝑡
𝛼−𝛼
1
−1

,

(55)

and (54)-(55) yield

𝑟
1
𝑡
𝛼−𝛼
1
−1

= 𝑙
𝜙
𝑡
𝛼−𝛼
1
−1

≤ 𝑥
∗

(𝑡) ≤ 𝐿
𝜑
𝑡
𝛼−𝛼
1
−1

= 𝑟
2
𝑡
𝛼−𝛼
1
−1

. (56)

Furthermore,

𝑑
1
𝑡
𝛽−𝛽
1
−1

≤ 𝜇𝑡
𝛽−𝛽
1
−1

∫

1

0

𝑚
𝛽
(𝑠) 𝑔 (𝑠, 𝑟

1
𝑠
𝛼−𝛼
1
−1

(𝑠)) 𝑑𝑠 ≤ 𝑦
∗

(𝑡)

≤ 𝜇𝑡
𝛽−𝛽
1
−1

∫

1

0

𝑀
𝛽
(𝑠) 𝑔 (𝑠, 𝑟

2
𝑠
𝛼−𝛼
1
−1

(𝑠)) 𝑑𝑠 ≤ 𝑑
2
𝑡
𝛽−𝛽
1
−1

,

(57)

where

𝑑
1
= min{1

2
, 𝜇∫

1

0

𝑚
𝛽
(𝑠) 𝑔 (𝑠, 𝑟

1
𝑠
𝛼−𝛼
1
−1

(𝑠)) 𝑑𝑠} ,

𝑑
2
= max{2, 𝜇∫

1

0

𝑀
𝛽
(𝑠) 𝑔 (𝑠, 𝑟

2
𝑠
𝛼−𝛼
1
−1

(𝑠)) 𝑑𝑠} .

(58)

By Lemma 1, (56), and (57), we obtain that the problem (3)
has a positive solution (𝑢∗(𝑡), V∗(𝑡)) = (𝐼

𝛼
1𝑥
∗

(𝑡), 𝐼
𝛽
1𝑦
∗

(𝑡)),
which satisfies

𝑟
∗

1
𝑡
𝛼−1

=
Γ (𝛼 − 𝛼

1
) 𝑟
1

Γ (𝛼)
𝑡
𝛼−1

≤ 𝑢
∗

(𝑡)

=
1

Γ (𝛼
1
)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼
1
−1

𝑥
∗

(𝑠) 𝑑𝑠

≤
Γ (𝛼 − 𝛼

1
) 𝑟
2

Γ (𝛼)
𝑡
𝛼−1

= 𝑟
∗

2
𝑡
𝛼−1

,

𝑑
∗

1
𝑡
𝛽−1

=
Γ (𝛽 − 𝛽

1
) 𝑑
1

Γ (𝛽)
𝑡
𝛽−1

≤ V∗ (𝑡)

=
1

Γ (𝛽
1
)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽
1
−1

𝑦
∗

(𝑠) 𝑑𝑠

≤
Γ (𝛽 − 𝛽

1
) 𝑑
2

Γ (𝛽)
𝑡
𝛽−1

= 𝑑
∗

2
𝑡
𝛽−1

.

(59)

The proof is completed.

Example 8. Consider the following singular fractional order
differential system

−𝐷
7/4

𝑡
𝑢 (𝑡) = 𝜆 [sin 𝑡 + (𝐷1/3

𝑡
V (𝑡))
−1/3

] ,

−𝐷
5/3

𝑡
V (𝑡) = 𝜇 [𝑡−1/2 + (𝐷1/2

𝑡
𝑢(𝑡))
2

] ,

𝐷
1/2

𝑡
𝑢 (0) = 0, 𝐷

2/3

𝑡
𝑢 (1) =

10

∑

𝑗=1

𝑏
𝑗
𝐷
2/3

𝑡
𝑢 (𝜁
𝑗
) ,

𝐷
1/3

𝑡
V (0) = 0, 𝐷

3/5

𝑡
V (1) =

10

∑

𝑗=1

𝑎
𝑗
𝐷
3/5

𝑡
V (𝜉
𝑗
) ,

(60)

where 𝜆 > 0 and 𝜇 > 0 are parameters, 𝜉
𝑗
= 𝑗/12, 𝑎

𝑗
=

1/15𝑗
1/15, 𝜁

𝑗
= 1/(𝑗 + 1), and 𝑏

𝑗
= (1/2)

𝑗, 𝑗 = 1, 2, . . . , 10.
Obviously,

0 <

10

∑

𝑗=1

𝑎
𝑗
𝜉
1/15

𝑗
=

10

∑

𝑗=1

1

15𝑗1/15
(
𝑗

12
)

1/15

=
1

15

10

∑

𝑗=1

1

121/15
< 1,

0 <

10

∑

𝑗=1

𝑏
𝑗
𝜁
1/12

𝑗
=

10

∑

𝑗=1

(
1

2
)

𝑗

(
1

𝑗 + 1
)

1/12

≤ (
1

2
)

1/13

< 1.

(61)

Letting 𝑢(𝑡) = 𝐼
1/2

𝑥(𝑡), V(𝑡) = 𝐼
1/3

𝑦(𝑡), then (60) is turned
into

−𝐷
5/4

𝑡
𝑥 (𝑡) = 𝜆 (sin 𝑡 + 𝑦−1/3 (𝑡)) ,

−𝐷
4/3

𝑡
𝑦 (𝑡) = 𝜇 (𝑡

−1/2

+ 𝑥
2

(𝑡)) ,

𝑥 (0) = 0, 𝐷
1/3

𝑡
𝑥 (1) =

10

∑

𝑗=1

𝑏
𝑗
𝐷
1/3

𝑡
𝑥 (𝜁
𝑗
) ,

𝑦 (0) = 0, 𝐷
1/10

𝑡
𝑦 (1) =

10

∑

𝑗=1

𝑎
𝑗
𝐷
1/10

𝑡
𝑦 (𝜉
𝑗
) ,

(62)

where 𝑓(𝑡, 𝑦) = sin 𝑡 + 𝑦−1/3 and 𝑔(𝑡, 𝑥) = 𝑡−1/2 +𝑥2; it is easy
to see that 𝑓(𝑡, 𝑦) is decreasing with respect to 𝑦 and 𝑔(𝑡, 𝑥)
is increasing with respect to 𝑥, and then (A1) is satisfied.

It follows from (20) and (21) that there exists a positive
number𝑚

0
< +∞ such that

𝐾
𝛽
(𝑡, 𝑠) ≥ 𝑚

𝛽
(𝑠) 𝑡
1/3

≥ 𝑚
0
𝑡
1/3

, (63)

and for any constants 𝜇, 𝑙 > 0, we have

𝑓(𝑡, 𝜇∫

1

0

𝐾
𝛽
(𝑡, 𝑠) 𝑔 (𝑠, 𝑙𝑠

𝛼−𝛼
1
−1

) 𝑑𝑠)

= sin 𝑡 + (𝜇∫
1

0

𝐾
𝛽
(𝑡, 𝑠) 𝑔 (𝑠, 𝑙𝑠

𝛼−𝛼
1
−1

) 𝑑𝑠)

−1/3

= sin 𝑡 + (𝜇∫
1

0

𝐾
𝛽
(𝑡, 𝑠) (𝑠

−1/2

+ 𝑙
2

𝑠
2

) 𝑑𝑠)

−1/3
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≤ sin 𝑡 + (𝜇𝑚
0
)
−1/3

(∫

1

0

𝑠
−1/2

+ 𝑙
2

𝑠
2

𝑑𝑠)

−1/3

≤ sin 1 + (𝜇𝑚
0
)
−1/3

(
1

2
+
1

3
𝑙
2

)

−1/3

< sin 1 + (1
2
𝜇𝑚
0
)

−1/3

,

𝑀
𝛼
(𝑠) =

1

Γ (5/4)
+

∑
10

𝑗=1
𝑏
𝑗
𝐾
𝛼2
(𝜁
𝑗
, 𝑠)

1 − 𝑐
2

≤
1

Γ (5/4)

+

((1 − 𝑠)
1/12

/Γ (5/4))∑
10

𝑗=1
(𝑗 + 1) (1/2)

𝑗

1 − 𝑐
2

≤
1

Γ (5/4)
(1 +

2
10

− 9

211 (1 − 𝑐
2
)
) ,

(64)

where 𝑐
2
= ∑
10

𝑗=1
𝑏
𝑗
𝜁
1/12

𝑗
. So

∫

1

0

𝑀
𝛼
(𝑠) 𝑓(𝑠, 𝜇∫

1

0

𝐾
𝛽
(𝑠, 𝜏) 𝑔 (𝜏, 𝑙𝜏

𝛼−𝛼
1
−1

) 𝑑𝜏) 𝑑𝑠

≤
1

Γ (5/4)
∫

1

0

(sin 1 + (1
2
𝜇𝑚
0
)

−1/3

)(1 +
2
10

− 9

211 (1 − 𝑐
2
)
) 𝑑𝑠

< +∞,

(65)

and thus (A2) is satisfied. So fromTheorem 7, for any (𝜆, 𝜇) ∈
(0, +∞) × (0, +∞), the system (60) has at least one positive
solution (𝑢∗, V∗), and there exist positive constants 𝑟∗

1
, 𝑟∗
2
, 𝑑∗
1
,

and 𝑑∗
2
such that

𝑟
∗

1
𝑡
3/4

≤ 𝑢
∗

(𝑡) ≤ 𝑟
∗

2
𝑡
3/4

, 𝑑
∗

1
𝑡
2/3

≤ V∗ (𝑡) ≤ 𝑑∗
2
𝑡
2/3

,

𝑡 ∈ [0, 1] .

(66)
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