
Research Article
Cryptanalysis of Loiss Stream Cipher-Revisited

Lin Ding, Chenhui Jin, Jie Guan, and Qiuyan Wang

Information Science and Technology Institute, Zhengzhou 450000, China

Correspondence should be addressed to Lin Ding; dinglin cipher@163.com

Received 15 November 2013; Revised 5 May 2014; Accepted 5 May 2014; Published 27 May 2014

Academic Editor: Renat Zhdanov

Copyright © 2014 Lin Ding et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Loiss is a novel byte-oriented stream cipher proposed in 2011. In this paper, based on solving systems of linear equations, we propose
an improved Guess and Determine attack on Loiss with a time complexity of 2231 and a data complexity of 268, which reduces the
time complexity of the Guess and Determine attack proposed by the designers by a factor of 216. Furthermore, a related key chosen
IV attack on a scaled-down version of Loiss is presented. The attack recovers the 128-bit secret key of the scaled-down Loiss with a
time complexity of 280, requiring 264 chosen IVs.The related key attack is minimal in the sense that it only requires one related key.
The result shows that our key recovery attack on the scaled-down Loiss is much better than an exhaustive key search in the related
key setting.

1. Introduction

Many stream ciphers have been proposed over the past 20
years. Most of them are constructed using a linear feedback
shift register (LFSR), which is easily implemented in hard-
ware, but the software implementations are mostly slow. In
recent years, several word-oriented stream ciphers have been
proposed and standardized, such as ZUC [1], proposed for
use in the 4G mobile networks, SNOW3G [2] deployed in
the 3GPP networks, and also four software-oriented finalists
of eSTREAM project (i.e., SOSEMANUK [3], HC-128 [4],
Rabbit [5], and Salsa 20/12 [6]).

In 2011, the Loiss stream cipher [7] was proposed by a
team from the State Key Laboratory of Information Security
in China. Loiss is a novel byte-oriented stream cipher, which
takes a 128-bit secret key and a 128-bit initial vector as inputs
and outputs a keystream of bytes. Loiss is based on a linear
feedback shift register and utilizes a structure called byte-
oriented mixer with memory (BOMM) in the filter genera-
tor, which aims to improve the resistance against algebraic
attacks, linear distinguishing attacks, and fast correlation
attacks. The designers hope Loiss can enrich applications of
orthomorphic permutations in cryptography and motivate
the research on cryptographic properties of orthomorphic
permutations. By exploiting some differential properties of
the BOMM structure during the cipher initialization phase,

two related key attacks on Loiss were independently proposed
in [8, 9]. These results show that the additional design
complication, that is, the addition of the BOMMmechanism,
weakens the cipher instead of strengthening it. Naturally, an
open problem was left for future research, that is, whether
the scaled-down Loiss, obtained by getting rid of the BOMM
from Loiss and keeping other parts same as Loiss, is resistant
against related key attack.

No attack on Loiss has been published except for the
two related key attacks showed in [8, 9]. In the specification
of Loiss stream cipher, the designers present a Guess and
Determine attack on Loiss, which has a time complexity of
2
247 with a data complexity of 252. In fact, the time complexity
can be reduced at the cost of increased data complexity. In
this paper, based on solving systems of linear equations, we
propose an improved Guess and Determine attack on Loiss,
which has a time complexity of 2231 with a data complexity
of 268. Furthermore, by exploiting the weakness of a scaled-
down version of Loiss during its initialization phase, a related
key chosen IV attack on the scaled-down Loiss is given. The
attack recovers the 128-bit secret key of the scaled-down Loiss
with time complexity of 280, requiring one related key and 2

64

chosen IVs.The related key attack isminimal in the sense that
it only requires one related key. The result shows that our key
recovery attack on the scaled-down Loiss is much better than
an exhaustive key search in the related key setting.

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 457275, 7 pages
http://dx.doi.org/10.1155/2014/457275

http://dx.doi.org/10.1155/2014/457275


2 Journal of Applied Mathematics

The rest of the paper is organized as follows. A brief
description of Loiss stream cipher is given in Section 2. In
Section 3, an improved Guess and Determine attack on full
Loiss is presented. Section 4 gives a related key chosen IV
attack on scaled-down Loiss. Concluding remarks are given
in Section 5.

2. Brief Description of the Loiss Stream Cipher

In this section, we recall the Loiss stream cipher briefly;
for more details, refer to [7]. Loiss consists of three parts:
linear feedback shift register (LFSR), the nonlinear function
𝐹, and a structure called byte-oriented mixer with memories
(BOMM) as a part of the nonlinear filter generator; see Figure
1 [7].

2.1. Keystream Generator of Loiss. The LFSR contains 32-byte
registers. Denote by (𝑠(𝑡)

0
, 𝑠
(𝑡)

1
, . . . , 𝑠

(𝑡)

31
) the state of LFSR at time

𝑡 (𝑡 ⩾ 0). Then the state at time 𝑡 + 1 satisfies

𝑠
(𝑡+1)

31
= 𝑠
(𝑡)

29
⊕ 𝛼𝑠
(𝑡)

24
⊕ 𝛼
−1
𝑠
(𝑡)

17
⊕ 𝑠
(𝑡)

15

⊕ 𝑠
(𝑡)

11
⊕ 𝛼𝑠
(𝑡)

5
⊕ 𝑠
(𝑡)

2
⊕ 𝛼
−1
𝑠
(𝑡)

0
,

𝑠
(𝑡+1)

𝑖
= 𝑠
(𝑡)

𝑖+1
, 𝑖 = 0, 1, 2, . . . , 30,

(1)

where 𝛼 is a root of the primitive polynomial 𝜋(𝑥) = 𝑥
8
+𝑥
7
+

𝑥
5
+ 𝑥
3
+ 1 in 𝐹

2
8 .

The nonlinear function 𝐹 (the dotted rectangle in Figure
1) is a compressing function from 32 bits to 8 bits, which
contains a 32-bitmemory unit𝑅. Denote by𝑅(𝑡) and𝑅

(𝑡+1) the
values of the memory unit 𝑅 at times 𝑡 and 𝑡 + 1, respectively.
Let𝑤 be the output of𝐹.The output of the nonlinear function
is obtained as 𝑤

(𝑡)
= 𝑇(𝑅

(𝑡)
), where 𝑇(⋅) is a truncation

function which truncates the leftmost 8 bits from 𝑅
(𝑡) as

output. Then, the state of the memory unit 𝑅 is updated by

𝑅
(𝑡+1)

= 𝜃 (𝛾 (𝑋 ⊕ 𝑅
(𝑡)
)) , (2)

where𝑋 = 𝑠
(𝑡)

31
‖ 𝑠
(𝑡)

26
‖ 𝑠
(𝑡)

20
‖ 𝑠
(𝑡)

7
. 𝛾 is obtained by paralleling 4

𝑆-box 𝑆
1
of size 8 × 8; that is,

𝛾 (𝑥
1
‖ 𝑥
2
‖ 𝑥
3
‖ 𝑥
4
) = 𝑆
1
(𝑥
1
) ‖ 𝑆
1
(𝑥
2
) ‖ 𝑆
1
(𝑥
3
) ‖ 𝑆
1
(𝑥
4
) ,

(3)

where 𝑥
𝑖
(0 ⩽ 𝑖 ⩽ 3) is a byte. 𝜃 is a linear transformation on

32-bit strings defined as

𝜃 (𝑥) = 𝑥 ⊕ (𝑥 ⋘ 2) ⊕ (𝑥 ⋘ 10)

⊕ (𝑥 ⋘ 18) ⊕ (𝑥 ⋘ 24) ,

(4)

where ⋘ denotes the left cyclic shift on 32-bit strings. As
for the BOMM structure, it utilizes 16-byte memory units,
denoted by 𝑦

𝑖
, 0 ⩽ 𝑖 ⩽ 15. Let 𝑤(𝑡) and V(𝑡) be the input and

the output of BOMM at time t, respectively. BOMMworks as
follows:

ℎ
(𝑡)

= 𝑤
(𝑡)

≫ 4, 𝑙
(𝑡)

= 𝑤
(𝑡) mod 16, (5)

V(𝑡) = 𝑦
(𝑡)

ℎ
⊕ 𝑤
(𝑡)
, (6)

𝑦
(𝑡+1)

𝑙
= 𝑦
(𝑡)

𝑙
⊕ 𝑆
2
(𝑤
(𝑡)
) , (7)

𝑦
(𝑡+1)

ℎ
= {

𝑦
(𝑡)

ℎ
⊕ 𝑆
2
(𝑦
(𝑡+1)

𝑙
) , if ℎ ̸= 𝑙,

𝑦
(𝑡+1)

𝑙
⊕ 𝑆
2
(𝑦
(𝑡+1)

𝑙
) , if ℎ = 𝑙,

(8)

𝑦
(𝑡+1)

𝑖
= 𝑦
(𝑡)

𝑖
, for 𝑖 = 0, 1, . . . , 15, 𝑖 ̸= ℎ, 𝑙, (9)

where the symbol≫ denotes the right shift operator and 𝑆
2
is

an 𝑆-box of size 8 × 8.

2.2. Initialization and Keystream Generation

2.2.1. Initialization. The initialization process of Loiss con-
sists of two stages.

In the first stage, it initializes LFSR using a 128-bit secret
key and a 128-bit initial vector and then sets 𝑅(0) = 0.

Set

𝐼𝐾=𝐼𝐾
0
‖ 𝐼𝐾
1
‖ ⋅ ⋅ ⋅ ‖ 𝐼𝐾

15
, 𝐼𝑉=𝐼𝑉

0
‖ 𝐼𝑉
1
‖ ⋅ ⋅ ⋅ ‖ 𝐼𝑉

15
,

(10)

where both 𝐼𝐾
𝑖
and 𝐼𝑉

𝑖
are bytes, 0 ⩽ 𝑖 ⩽ 15.

Denote the initial states of LFSR by (𝑠
(0)

0
, 𝑠
(0)

1
, . . . , 𝑠

(0)

31
).

Then, for 0 ⩽ 𝑖 ⩽ 15,

𝑠
(0)

𝑖
= 𝐼𝐾
𝑖
, 𝑠

(0)

16+𝑖
= 𝐼𝐾
𝑖
⊕ 𝐼𝑉
𝑖
. (11)

After that, Loiss runs 64 times without the keystream
generated and the output of BOMMtakes part in the feedback
calculation of LFSR.

2.2.2. Keystream Generation. After the initialization process,
Loiss starts to generate keystream. Loiss generates one byte
of keystream when it runs one time. Let 𝑧(𝑡) be the output of
Loiss at time 𝑡 (𝑡 ⩾ 0). Then,

𝑧
(𝑡)

= 𝑠
(𝑡)

0
⊕ V(𝑡), (12)

where 𝑠(𝑡)
0

and V(𝑡) are the value of the register 𝑠
0
of LFSR and

the output of BOMM, respectively, at time 𝑡.

2.3. Scaled-Down Loiss. The scaled-down Loiss is obtained
by getting rid of the BOMM from Loiss and keeping other
parts same as Loiss. For convenience, the scaled-down Loiss
is denoted by SD-Loiss in the paper. SD-Loiss consists of two
parts: LFSR and the nonlinear function 𝐹; see Figure 2.

3. Improved Guess and Determine Attack on
Full Loiss

Guess and Determine attack is a common attack on stream
ciphers. Guess andDetermine attacks exploit the relationship



Journal of Applied Mathematics 3

R T

F

S31 S29 S26 S24 S20 S17 S15 S11 S7 S5 S2 S0

𝛼 𝛼 𝛼−1𝛼−1

z
𝛾𝜃

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕BOMM

Figure 1: The structure of Loiss stream cipher.

R T

F

S31 S29 S26 S24 S20 S17 S15 S11 S7 S5 S2 S0

𝛼 𝛼 𝛼−1𝛼−1

z
𝛾𝜃

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕

Figure 2: The structure of SD-Loiss stream cipher.

between internal and the keystream values. In Guess and
Determine attacks, some internal values are guessed, and
then other internal values are determined using keystream
values. Guess and Determine attacks generally consist of
three phases, that is, guessing, determining, and the test
phase. The efficiency of Guess and Determine attacks can be
discussed in terms of two complexities, namely, a time and
a data complexity. Guess and Determine attack is one of the
general attacks which have been effective on some stream
ciphers, for example, A5/1 [10], SNOW 1.0 [11], Sober-t32 [12],
SOSEMANUK [13], Rabbit [14], ZUC [15], and so forth.

In the specification of Loiss stream cipher [7], the design-
ers present aGuess andDetermine attack onLoisswhich has a
time complexity of 2247 with a data complexity of 252. In fact,
the time complexity can be reduced at the cost of increased
data complexity.

Here, we assume that the attacker has observed a portion
of keystream words {𝑧

𝑡
}, 𝑡 = 1, 2, . . . , 𝑁, where 𝑁 is large

enough for the attack to succeed. For convenience, we denote

by 𝐴
(∗)

⇒ 𝐵 the deduction of 𝐵 from 𝐴 by equation (∗).
For convenience, we denote by (𝑠

(𝑡)
, 𝑠
(𝑡+1)

, . . . , 𝑠
(𝑡+31)

) the
state of LFSR in Loiss at time 𝑡 (𝑡 ⩾ 0). Then the state at time
𝑡 + 1 is (𝑠

(𝑡+1)
, 𝑠
(𝑡+2)

, . . . , 𝑠
(𝑡+32)

). The recurrence function of
LFSR is redefined as follows:

𝑠
(𝑡+32)

= 𝑠
(𝑡+29)

⊕ 𝛼𝑠
(𝑡+24)

⊕ 𝛼
−1
𝑠
(𝑡+17)

⊕ 𝑠
(𝑡+15)

⊕ 𝑠
(𝑡+11)

⊕ 𝛼𝑠
(𝑡+5)

⊕ 𝑠
(𝑡+2)

⊕ 𝛼
−1
𝑠
(𝑡)
.

(13)

Before the description of our attack, we make an assump-
tion as follows.

Assumption 1. The following conditions occur at nine succes-
sive times starting from time 𝑡:

(1) ℎ(𝑡) = 𝑙
(𝑡), where ℎ(𝑡) = 𝑤

(𝑡)
≫ 4, 𝑙(𝑡) = 𝑤

(𝑡) mod 16;
(2) 𝑤(𝑡) = 𝑤

(𝑡+1)
= ⋅ ⋅ ⋅ = 𝑤

(𝑡+8).

In the attack, the attacker guesses the values of ℎ(𝑡), 𝑠
(𝑡)
,

𝑠
(𝑡+12)

, 𝑠
(𝑡+13)

, 𝑠
(𝑡+21)

, 𝑠
(𝑡+25)

, 𝑠
(𝑡+26)

, 𝑠
(𝑡+27)

and the values of the
rightmost three bytes of each 𝑅

(𝑡+𝑖) (2 ⩽ 𝑖 ⩽ 5). The whole
description of our Guess and Determine attack on Loiss can
be divided into three phases as follows.

Phase One. For a given guess, all the bits of the following
components can be immediately determined by exploiting
the relationships in the cipher:

(i) 𝑧(𝑡), 𝑠
(𝑡)

(12)

⇒ V(𝑡);

(ii) V(𝑡), 𝑤(𝑡)
(6)

⇒ 𝑦
(𝑡)

ℎ
(𝑡)
;

(iii) 𝑦(𝑡)
ℎ
(𝑡)

(7,8)

⇒ 𝑦
(𝑡+1)

ℎ
(𝑡)

;

(iv) 𝑦(𝑡+1)
ℎ
(𝑡+1)

, 𝑤
(𝑡+1)
(6)

⇒ V(𝑡+1);

(v) 𝑧(𝑡+1), V(𝑡+1)
(12)

⇒ 𝑠
(𝑡+1)

.



4 Journal of Applied Mathematics

The last three steps above can be repeated for 𝑖 = 1, . . . , 7

to determine more components:

(i) 𝑦(𝑡+𝑖)
ℎ
(𝑡)

(7,8)

⇒ 𝑦
(𝑡+𝑖+1)

ℎ
(𝑡)

;

(ii) 𝑦(𝑡+𝑖+1)
ℎ
(𝑡+𝑖+1)

, 𝑤
(𝑡+𝑖+1)

(6)

⇒ V(𝑡+𝑖+1);

(iii) 𝑧(𝑡+𝑖+1), V(𝑡+𝑖+1)
(12)

⇒ 𝑠
(𝑡+𝑖+1)

.

After that, we deduce more components as follows:

(i) 𝑅(𝑡+2), 𝑅(𝑡+3)
(1)

⇒ 𝑠
(𝑡+33)

, 𝑠
(𝑡+28)

, 𝑠
(𝑡+22)

, 𝑠
(𝑡+9)

;

(ii) 𝑅(𝑡+3), 𝑅(𝑡+4)
(1)

⇒ 𝑠
(𝑡+34)

, 𝑠
(𝑡+29)

, 𝑠
(𝑡+23)

, 𝑠
(𝑡+10)

;

(iii) 𝑅(𝑡+4), 𝑅(𝑡+5)
(1)

⇒ 𝑠
(𝑡+35)

, 𝑠
(𝑡+30)

, 𝑠
(𝑡+24)

, 𝑠
(𝑡+11)

.

Phase Two. Then, we can determine more components as
follows.

We know that

𝑅
(𝑡+2)

= 𝜃 (𝛾 (𝑠
(𝑡+32)

⊕ 𝑅
(𝑡+1)

3
‖ 𝑠
(𝑡+27)

⊕ 𝑅
(𝑡+1)

2
‖

𝑠
(𝑡+21)

⊕𝑅
(𝑡+1)

1
‖ 𝑠
(𝑡+8)

⊕ 𝑅
(𝑡+1)

0
)) ,

(14)

where 𝑅
(𝑡+𝑖) are divided into four bytes as 𝑅

(𝑡+𝑖)
= 𝑅
(𝑡+𝑖)

3
‖

𝑅
(𝑡+𝑖)

2
‖ 𝑅
(𝑡+𝑖)

1
‖ 𝑅
(𝑡+𝑖)

0
.

Thus,

(i) 𝑅(𝑡+2)
(1)

⇒ 𝑠
(𝑡+32)

⊕ 𝑅
(𝑡+1)

3
, 𝑠
(𝑡+27)

⊕ 𝑅
(𝑡+1)

2
, 𝑠
(𝑡+21)

⊕

𝑅
(𝑡+1)

1
, 𝑠
(𝑡+8)

⊕ 𝑅
(𝑡+1)

0
;

(ii) 𝑅(𝑡+1)
3

, 𝑠
(𝑡+27)

, 𝑠
(𝑡+21)

, 𝑠
(𝑡+8)

(1)

⇒

𝑠
(𝑡+32)

, 𝑅
(𝑡+1)

2
, 𝑅
(𝑡+1)

1
, 𝑅
(𝑡+1)

0
.

Since 𝑅(𝑡+1) has been recovered, then

(i) 𝑅(𝑡+1)
(1)

⇒ 𝑠
(𝑡+31)

⊕𝑅
(𝑡)

3
, 𝑠
(𝑡+26)

⊕𝑅
(𝑡)

2
, 𝑠
(𝑡+20)

⊕𝑅
(𝑡)

1
, 𝑠
(𝑡+7)

⊕

𝑅
(𝑡)

0
,

(ii) 𝑅(𝑡)
3
, 𝑠
(𝑡+31)

⊕ 𝑅
(𝑡)

3

(1)

⇒ 𝑠
(𝑡+31)

,

(iii) 𝑠
(𝑡+26)

, 𝑠
(𝑡+26)

⊕ 𝑅
(𝑡)

2

(1)

⇒ 𝑅
(𝑡)

2
,

(iv) 𝑠
(𝑡+7)

, 𝑠
(𝑡+7)

⊕ 𝑅
(𝑡)

0

(1)

⇒ 𝑅
(𝑡)

0
.

We know that

𝑅
(𝑡+6)

= 𝜃 (𝛾 (𝑠
(𝑡+36)

⊕ 𝑅
(𝑡+5)

3
‖ 𝑠
(𝑡+31)

⊕ 𝑅
(𝑡+5)

2
‖

𝑠
(𝑡+25)

⊕𝑅
(𝑡+5)

1
‖ 𝑠
(𝑡+12)

⊕ 𝑅
(𝑡+5)

0
))

= 𝜃 (𝑆
1
(𝑠
(𝑡+36)

⊕ 𝑅
(𝑡+5)

3
) ‖ 𝑆
1
(𝑠
(𝑡+31)

⊕ 𝑅
(𝑡+5)

2
) ‖

𝑆
1
(𝑠
(𝑡+25)

⊕ 𝑅
(𝑡+5)

1
) ‖ 𝑆
1
(𝑠
(𝑡+12)

⊕ 𝑅
(𝑡+5)

0
)) .

(15)

In this equation, the values of 𝑠
(𝑡+31)

, 𝑠
(𝑡+25)

, and 𝑠
(𝑡+12)

have been obtained and the values of 𝑅(𝑡+5)
2

, 𝑅
(𝑡+5)

1
, and 𝑅

(𝑡+5)

0

have been guessed, and 𝑅
(𝑡+6)

3
is also known. Thus, we can

easily recover the value of 𝑆
1
(𝑠
(𝑡+36)

⊕ 𝑅
(𝑡+5)

3
) by solving a

system of eight bitwise linear equations. After that, we can
recover the value of 𝑠

(𝑡+36)
, since 𝑅

(𝑡+5)

3
is known. At last, we

can recover the value of 𝑅(𝑡+6).
Similarly, we can recover the values of 𝑠

(𝑡+37)
and 𝑅

(𝑡+7).

Phase Three. Then, we can determine the remaining compo-
nents as follows. In this phase, we have to solve two systems
of three byte-wise linear equations.

The first system is described as follows:

𝛼
−1
𝑠
(𝑡+17)

⊕ 𝑠
(𝑡+15)

= 𝑠
(𝑡+32)

⊕ 𝑠
(𝑡+29)

⊕ 𝛼𝑠
(𝑡+24)

⊕ 𝑠
(𝑡+11)

⊕ 𝛼𝑠
(𝑡+5)

⊕ 𝑠
(𝑡+2)

⊕ 𝛼
−1
𝑠
(𝑡)
,

𝛼
−1
𝑠
(𝑡+19)

⊕ 𝑠
(𝑡+17)

= 𝑠
(𝑡+34)

⊕ 𝑠
(𝑡+31)

⊕ 𝛼𝑠
(𝑡+26)

⊕ 𝑠
(𝑡+13)

⊕ 𝛼𝑠
(𝑡+7)

⊕ 𝑠
(𝑡+4)

⊕ 𝛼
−1
𝑠
(𝑡+2)

,

𝑠
(𝑡+19)

⊕ 𝑠
(𝑡+15)

= 𝑠
(𝑡+36)

⊕ 𝑠
(𝑡+33)

⊕ 𝛼𝑠
(𝑡+28)

⊕ 𝛼
−1
𝑠
(𝑡+21)

⊕ 𝛼𝑠
(𝑡+9)

⊕ 𝑠
(𝑡+6)

⊕ 𝛼
−1
𝑠
(𝑡+4)

.

(16)

In this system, only three variables are unknown, that is,
𝑠
(𝑡+19)

, 𝑠
(𝑡+17)

, and 𝑠
(𝑡+15)

. Obviously, this system can be easily
solved. Thus, we can recover the values of 𝑠

(𝑡+19)
, 𝑠
(𝑡+17)

, and
𝑠
(𝑡+15)

by solving this system.
Then, we deduce 𝑠

(𝑡+38)
as follows:

(i) 𝑠
(𝑡+35)

, 𝑠
(𝑡+30)

, 𝑠
(𝑡+23)

, 𝑠
(𝑡+21)

, 𝑠
(𝑡+17)

, 𝑠
(𝑡+11)

, 𝑠
(𝑡+8)

, 𝑠
(𝑡+6)

(13)

⇒ 𝑠
(𝑡+38)

.

We know that

𝑅
(𝑡+8)

= 𝜃 (𝛾 (𝑠
(𝑡+38)

⊕ 𝑅
(𝑡+7)

3
‖ 𝑠
(𝑡+33)

⊕ 𝑅
(𝑡+7)

2
‖

𝑠
(𝑡+27)

⊕𝑅
(𝑡+7)

1
‖ 𝑠
(𝑡+14)

⊕ 𝑅
(𝑡+7)

0
))

= 𝜃 (𝑆
1
(𝑠
(𝑡+38)

⊕ 𝑅
(𝑡+7)

3
) ‖ 𝑆
1
(𝑠
(𝑡+33)

⊕ 𝑅
(𝑡+7)

2
) ‖

𝑆
1
(𝑠
(𝑡+27)

⊕ 𝑅
(𝑡+7)

1
) ‖ 𝑆
1
(𝑠
(𝑡+14)

⊕ 𝑅
(𝑡+7)

0
)) .

(17)

In this equation, the values of 𝑠
(𝑡+38)

, 𝑠
(𝑡+33)

, and 𝑠
(𝑡+27)

have been obtained and the value of 𝑅(𝑡+7) has been deter-
mined, and 𝑅

(𝑡+8)

3
is also known. Thus, we can easily recover

the value of 𝑆
1
(𝑠
(𝑡+14)

⊕ 𝑅
(𝑡+7)

0
) by solving a system of eight

bitwise linear equations. After that, we can recover the value
of 𝑠
(𝑡+14)

, since 𝑅
(𝑡+7)

0
is known. At last, we can recover the

value of 𝑅(𝑡+8).



Journal of Applied Mathematics 5

Then, we should solve another system of three linear
equations, which is described as follows:

𝛼
−1
𝑠
(𝑡+18)

⊕ 𝑠
(𝑡+16)

= 𝑠
(𝑡+33)

⊕ 𝑠
(𝑡+30)

⊕ 𝛼𝑠
(𝑡+25)

⊕ 𝑠
(𝑡+12)

⊕ 𝛼𝑠
(𝑡+6)

⊕ 𝑠
(𝑡+3)

⊕ 𝛼
−1
𝑠
(𝑡+1)

,

𝛼
−1
𝑠
(𝑡+20)

⊕ 𝑠
(𝑡+18)

= 𝑠
(𝑡+35)

⊕ 𝑠
(𝑡+32)

⊕ 𝛼𝑠
(𝑡+27)

⊕ 𝑠
(𝑡+14)

⊕ 𝛼𝑠
(𝑡+8)

⊕ 𝑠
(𝑡+5)

⊕ 𝛼
−1
𝑠
(𝑡+3)

,

𝑠
(𝑡+20)

⊕ 𝑠
(𝑡+16)

= 𝑠
(𝑡+37)

⊕ 𝑠
(𝑡+34)

⊕ 𝛼𝑠
(𝑡+29)

⊕ 𝛼
−1
𝑠
(𝑡+23)

⊕ 𝛼𝑠
(𝑡+10)

⊕ 𝑠
(𝑡+7)

⊕ 𝛼
−1
𝑠
(𝑡+5)

.

(18)

In this system, only three variables are unknown, that is,
𝑠
(𝑡+20)

, 𝑠
(𝑡+18)

, and 𝑠
(𝑡+16)

. Obviously, this system can be easily
solved. Thus, we can recover the values of 𝑠

(𝑡+20)
, 𝑠
(𝑡+18)

, and
𝑠
(𝑡+16)

by solving this system.
Finally, we deduce 𝑅(𝑡) as follows, since the value of 𝑠

(𝑡+20)

has been recovered:

(i) 𝑅(𝑡+1), 𝑠
(𝑡+31)

, 𝑠
(𝑡+26)

, 𝑠
(𝑡+20)

, 𝑠
(𝑡+7)

(1)

⇒ 𝑅
(𝑡).

Thus, all internal states of LFSR and 𝐹, that is,
𝑠
(𝑡)
, 𝑠
(𝑡+1)

, . . . , 𝑠
(𝑡+31)

, 𝑅
(𝑡), have been recovered. After all the

internal states of LFSR and 𝐹 are recovered, the attacker runs
Loiss for about another 128 times and then can recover the
values of all memory units of BOMM.

Up to now, all internal states of LFSR,𝐹, and BOMMhave
been recovered. And then the attacker has to check the cor-
rectness of those values by producing a keystream using the
above recovered values and comparing it with the observed
keystream. If the keystreams agree, it shows that the recovered
states are correct. If the keystreams do not agree, then we
will repeat the above process until the correct internal state
is found. Since the probability that the assumption satisfies
is 2−68 and the attacker has to guess 156-bit internal state in
the guessing stage, so the time complexity of our Guess and
Determine attack on Loiss is 268 ⋅ 2156 ⋅ 27 = 2

231 with a data
complexity of 268. Compared with the Guess and Determine
attack proposed by the designers, the time complexity of our
attack on Loiss has been reduced by a factor of 216.

4. Related Key Chosen IV Attack on
Scaled-Down Loiss

By exploiting some differential properties of the BOMM
structure during the cipher initialization phase, two related
key attacks on Loiss were independently proposed in [8, 9].
These results show that the additional design complication,
that is, the addition of the BOMM mechanism, weakens the
cipher instead of strengthening it. Naturally, an open problem
was left for future research, that is, whether the scaled-down
Loiss, obtained by getting rid of the BOMM from Loiss and
keeping other parts same as Loiss, is resistant against related
key attack. In this section, based on the idea of slide (key, IV)
pairs, a related key chosen IV attack on scaled-down Loiss is
presented.

4.1. Some Properties of SD-Loiss. In this subsection, we will
present some properties of SD-Loiss. Let 𝐼(𝑡) be the internal
state of SD-Loiss at time 𝑡. Denote by 𝐼(0) and 𝐼

(64) the internal
state of SD-Loiss just after the first stage of initialization
and the full initialization, respectively. Let 𝐼𝐾 and 𝐼𝑉 be
the 128-bit secret key and a 128-bit initial vector into the
memory units of LFSR. Let (𝐼𝐾󸀠, 𝐼𝑉󸀠) pair be the related pair
of (𝐼𝐾, 𝐼𝑉). The relation between them is defined as follows:

𝐼𝐾
󸀠
= 𝐼𝐾 ⋘ 16 = 𝐼𝐾

2
‖ 𝐼𝐾
3
‖ ⋅ ⋅ ⋅ ‖ 𝐼𝐾

15
‖ 𝐼𝐾
0
‖ 𝐼𝐾
1

𝐼𝑉
󸀠
= 𝐼𝑉 ⋘ 16 = 𝐼𝑉

2
‖ 𝐼𝑉
3
‖ ⋅ ⋅ ⋅ ‖ 𝐼𝑉

15
‖ 𝐼𝑉
0
‖ 𝐼𝑉
1

(19)

Let 𝐼󸀠(𝑡) be the internal state of SD-Loiss at time 𝑡 using
(𝐼𝐾
󸀠
, 𝐼𝑉
󸀠
) pair. Then, we can get the following proposition

which discusses the probability that 𝐼(2) = 𝐼
󸀠(0) holds.

Proposition 2. For the fixed key IK and 248 chosen IVs where
𝐼𝑉
0
= 𝐼𝑉
1
= 0, (𝐼𝑉

4
, 𝐼𝑉
5
, 𝐼𝑉
11
, 𝐼𝑉
13
, 𝐼𝑉
14
, 𝐼𝑉
15
) are all 48-bit

values and the remaining bytes are fixed to 𝑐 ∈ {0, 1, . . . , 255};
there exactly exists one IV satisfying 𝐼(2) = 𝐼

󸀠(0).

Proof. According to the structure of SD-Loiss, we know 𝐼
(2)

=

𝐼
󸀠(0) can be written as the following system of 33 equations:

𝑠
(2)

𝑖
= 𝑠
󸀠(0)

𝑖
, 𝑖 = 0, 1, 2, . . . , 31,

𝑅
(2)

= 𝑅
󸀠(0)

.

(20)

Since there are 29 equations which always hold in system
(20), we can simplify the system (20) as follows:

𝐼𝑉
0
= 𝐼𝑉
1
= 0,

𝑠
(2)

30
= 𝑠
(1)

31
= (𝐼𝐾

13
⊕ 𝐼𝑉
13
) ⊕ 𝛼 (𝐼𝐾

8
⊕ 𝐼𝑉
8
)

⊕ 𝛼
−1

(𝐼𝐾
1
⊕ 𝐼𝑉
1
) ⊕ 𝐼𝐾

15
⊕ 𝐼𝐾
11

⊕ 𝛼 (𝐼𝐾
5
)

⊕ 𝐼𝐾
2
⊕ 𝛼
−1

(𝐼𝐾
0
) ⊕ 𝑤
(0)

= 𝐼𝐾
0
⊕ 𝐼𝑉
0
,

𝑠
(2)

31
= (𝐼𝐾

14
⊕ 𝐼𝑉
14
) ⊕ 𝛼 (𝐼𝐾

9
⊕ 𝐼𝑉
9
) ⊕ 𝛼
−1

(𝐼𝐾
2
⊕ 𝐼𝑉
2
)

⊕ 𝐼𝐾
1
⊕ 𝐼𝑉
1
⊕ 𝐼𝐾
12

⊕ 𝛼 (𝐼𝐾
6
) ⊕ 𝐼𝐾

3
⊕ 𝛼
−1

(𝐼𝐾
1
)

⊕ 𝑤
(1)

= 𝐼𝐾
1
⊕ 𝐼𝑉
1
𝑅
(2)

= 𝜃 (𝛾 (𝑋
(1)

⊕ 𝑅
(1)

)) = 0,

(21)

where 𝑤(0) = 0 and 𝑤
(1)

= 𝑇(𝑅
(1)

).
Since 𝜃 is a linear transformation on 32-bit strings, we can

simplify the equation 𝑅
(2)

= 0 as

𝛾 (𝑋
(1)

⊕ 𝑅
(1)

) = 0. (22)

That is,

𝛾 [(𝑠
(1)

31
‖ 𝐼𝐾
11

⊕ 𝐼𝑉
11

‖ 𝐼𝐾
5
⊕ 𝐼𝑉
5
‖ 𝐼𝐾
8
)

⊕ 𝜃 (𝛾 (‖ 𝐼𝐾
15

⊕ 𝐼𝑉
15

‖ 𝐼𝐾
10

⊕ 𝐼𝑉
10

‖ 𝐼𝐾
4
⊕ 𝐼𝑉
4
‖ 𝐼𝐾
7
)) ]

= 0.

(23)



6 Journal of Applied Mathematics

Let 𝑌 = 𝑌
0
‖ 𝑌
1
‖ 𝑌
2
‖ 𝑌
3
= 𝜃(𝛾(𝐼𝐾

15
⊕ 𝐼𝑉
15

‖ 𝐼𝐾
10

⊕

𝐼𝑉
10

‖ 𝐼𝐾
4
⊕ 𝐼𝑉
4
‖ 𝐼𝐾
7
)) be a 32-bit string, where 𝑌

𝑖
(0 ⩽ 𝑖 ⩽

3) is a byte. According to the 𝑆-box 𝑆
1
in Loiss, we know that

𝑆
−1

1
(0) = 0𝑥17.
Then, we know

𝑠
(1)

31
⊕ 𝑌
0
= 0𝑥17,

𝐼𝐾
11

⊕ 𝐼𝑉
11

⊕ 𝑌
1
= 0𝑥17,

𝐼𝐾
5
⊕ 𝐼𝑉
5
⊕ 𝑌
2
= 0𝑥17,

𝐼𝐾
8
⊕ 𝑌
3
= 0𝑥17.

(24)

Thus, when we try all 32-bit values of (𝐼𝑉
4
, 𝐼𝑉
5
, 𝐼𝑉
11
,

𝐼𝑉
15
), there exists exactly one IV satisfying the system (24).

Considering the second and third equations of system (21),
when we try 2

48 chosen IVs where 𝐼𝑉
0

= 𝐼𝑉
1

= 0,
(𝐼𝑉
4
, 𝐼𝑉
5
, 𝐼𝑉
11
, 𝐼𝑉
13
, 𝐼𝑉
14
, 𝐼𝑉
15
) are all 48-bit values and the

remaining bytes are fixed to 𝑐 ∈ {0, 1, . . . , 255}; there exactly
exists one IV satisfying 𝐼

(2)
= 𝐼
󸀠(0).

If 𝐼(2) = 𝐼
󸀠(0) holds, we easily know 𝐼

(𝑖)
= 𝐼
󸀠(𝑖−2) always

holds for 2 ⩽ 𝑖 ⩽ 64. Similarly, if IV satisfies 𝐼
(𝑖)

= 𝐼
󸀠(𝑖−2),

we say that the IV is valid. Otherwise, we say that the IV is
invalid.

Let 𝑍 and 𝑍
󸀠 be keystream sequences generated from

(𝐼𝐾, 𝐼𝑉) and (𝐼𝐾
󸀠
, 𝐼𝑉
󸀠
), respectively. Let 𝑍[𝑡, 𝐿] be the

keystream sequences generated from time t to 𝑡 + 𝐿; that is,
𝑍[𝑡, 𝐿] = (𝑧

(𝑡)
, 𝑧
(𝑡+1)

, . . . , 𝑧
(𝑡+𝐿−1)

). Similarly, let 𝑍
󸀠
[𝑡, 𝐿] be

the keystream sequences generated from time 𝑡 to 𝑡 + 𝐿; that
is, 𝑍󸀠[𝑡, 𝐿] = (𝑧

󸀠(𝑡)
, 𝑧
󸀠(𝑡+1)

, . . . , 𝑧
󸀠(𝑡+𝐿−1)

). Then, we know that
𝐼
(65) and 𝐼

(66) are updated by the keystream generationmode,
while 𝐼

󸀠(63) and 𝐼
󸀠(64) are updated by the initialization mode.

Thus, both 𝐼
(65)

= 𝐼
󸀠(63) and 𝐼

(66)
= 𝐼
󸀠(64) hold, if and only if

both 𝑤
󸀠(63)

= 0 and 𝑤
󸀠(64)

= 0 hold. If 𝑤󸀠(63) = 𝑤
󸀠(64)

= 0,
𝐼
(𝑖)

= 𝐼
󸀠(𝑖−2) always holds for 𝑖 ⩾ 65, and then 𝑍[2, 𝐿] =

𝑍
󸀠
[0, 𝐿] always holds, for 𝐿 ⩾ 1 (we call it IV-Test).
Theoretically, the probability that a valid IV passes the

IV-Test is equal to Pr(𝑤󸀠(63) = 𝑤
󸀠(64)

= 0) = 2
−16,

and then there exists one IV passing IV-Test among 2
16

valid IVs. Thus, we can find at least one IV passing IV-
Test with high probability among 2

64 chosen IVs where
𝐼𝑉
0

= 𝐼𝑉
1

= 0; (𝐼𝑉
4
, 𝐼𝑉
5
, 𝐼𝑉
10
, 𝐼𝑉
11
, 𝐼𝑉
12
, 𝐼𝑉
13
, 𝐼𝑉
14
, 𝐼𝑉
15
)

are all 64-bit values and the remaining bytes are fixed to 𝑐 ∈

{0, 1, . . . , 255}, while for an invalid IV, after the initialization
of SD-Loiss, 𝑧(𝑖+2) = 𝑧

󸀠(𝑖) is uniformly distributed for 0 ⩽ 𝑖 ⩽

𝐿−1.Thus, an invalid IV passes IV-Test with probability 2−8𝐿.
Obviously, when 𝐿 is large enough, the probability 2

−8𝐿 is
much smaller than 2

−16, whichmeans that we can distinguish
valid IV and invalid IVs with very high probability.

4.2. Related Key Chosen IVAttack on Scaled-Down Loiss. Our
attack on SD-Loiss can be divided into two phases. In the first
phase, we should find a valid IV. In the second phase, we will
recover the 128-bit secret key IK.

We choose 2
64 IVs where 𝐼𝑉

0
= 𝐼𝑉
1
= 0; (𝐼𝑉

4
, 𝐼𝑉
5
, 𝐼𝑉
10
,

𝐼𝑉
11
, 𝐼𝑉
12
, 𝐼𝑉
13
, 𝐼𝑉
14
, 𝐼𝑉
15
) are all 64-bit values and the

remaining bytes are fixed to 𝑐 ∈ {0, 1, . . . , 255}. Then, we can
find a valid IV among these 2

64 chosen IVs by the Finding
Valid IV algorithm for SD-Loisswhich is described as follows.

Finding Valid IV Algorithm for SD-Loiss
(1) For each IV in these 2

64 chosen IVs, repeat the
following:

(a) generate 𝐿 + 2 bytes of keystream 𝑍[2, 𝐿] by
using (𝐼𝐾, 𝐼𝑉);

(b) generate L bytes of keystream 𝑍
󸀠
[0, 𝐿] by using

(𝐼𝐾
󸀠
, 𝐼𝑉
󸀠
);

(c) check IV-Test for 𝑍[2, 𝐿] and 𝑍
󸀠
[0, 𝐿]; if they

pass IV-Test, go to Step (2); otherwise, return to
Step (1) and choose another IV.

(2) Return Valid IV and store this IV.
This algorithm requires 2

64 chosen IVs and runs the
encryption process of SD-Loiss 264 + 2

64
= 2
65 times. Thus,

the time complexity of this algorithm is 2
65. Then, for each

single key and IV, this algorithm only requires 𝐿 + 2 bytes of
keystream at most. Tomake the probability that an invalid IV
passes IV-Test negligible, we choose L to be 15, and then 2

−8𝐿

is equal to 2
−120 which is small enough to distinguish valid

IVs and invalid IVs with very high probability. Hence, our
attack requires 17 bytes of keystream at most for each single
key and IV.

In the second phase, using the FindingValid IV algorithm
for SD-Loiss above, we can recover the 128-bit secret key
IK using a simple Guess and Determine attack. We guess
the values of 𝐼𝐾

1
, 𝐼𝐾
2
, 𝐼𝐾
3
, 𝐼𝐾
4
, 𝐼𝐾
6
, 𝐼𝐾
7
, 𝐼𝐾
9
, 𝐼𝐾
10
, 𝐼𝐾
12
,

and 𝐼𝐾
15

(a total of 80 bits). Then, we can determine the
remaining 48 bits of the secret key IK by system (21) easily.

Recall the two phases of our attack on SD-Loiss.The time
complexity of our attack on SD-Loiss is 2

65
+ 2
80

≈ 2
80,

requiring 264 chosen IVs.The result shows that slide (key, IV)
pairs can be also used for related key attack.

5. Conclusions

In this paper, an improved Guess and Determine attack
on Loiss is proposed, which reduces the time complexity
of the attack proposed by the designers by a factor of 216.
Furthermore, by exploiting the weakness of a scaled-down
version of Loiss during its initialization phase, a related key
chosen IV attack on the scaled-down Loiss is given. The
attack recovers the 128-bit secret key of the scaled-down
Loiss with time complexity of 280, requiring one related key
and 2

64 chosen IVs. We hope our results can be helpful in
evaluating the security of the Loiss stream cipher against
Guess and Determine attack and related key attack, and we
look forward to further works evaluating it against other
kinds of cryptanalytic attacks.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.



Journal of Applied Mathematics 7

Acknowledgments

The authors would like to thank the anonymous review-
ers for their valuable comments and suggestions. This
work is supported in part by the National Natural Sci-
ence Foundation of China (Grant nos. 61202491, 61272041,
and 61272488), the Foundation of Science and Technology
on Information Assurance Laboratory (Grant no. KJ-13-
007), and the Science and Technology on Communication
Security Laboratory Foundation of China under Grant no.
9140C110303140C11003.

References

[1] ETSI/SAGE Specification, “Specification of the 3GPP Confi-
dentiality and Integrity Algorithms 128-EEA3 & 128-EIA3,”
Document 2: ZUC Specification, Version: 1.6, 2011.

[2] ETSI/SAGE, “Specification of the 3GPP Confidentiality and
Integrity Algorithms UEA2 & UIA2,” Document 2: SNOW 3G
Specification, version 1.1, 2006.

[3] C. Berbain, O. Billet, A. Canteaut et al., “Sosemanuk, a fast
software-oriented stream cipher,” inNewStreamCipherDesigns,
vol. 4986 of Lecture Notes in Computer Science, pp. 98–118,
Springer, Heidelberg, Germany, 2008.

[4] H. J. Wu, “The stream cipher HC-128,” in New Stream Cipher
Designs, vol. 4986 of Lecture Notes in Computer Science, pp. 39–
47, Springer, Heidelberg, Germany, 2008.

[5] M. Boesgaard, M. Vesterager, and E. Zenner, “The rabbit stream
cipher,” inNew StreamCipherDesigns, vol. 4986 of LectureNotes
in Computer Science, pp. 69–83, Springer, Heidelberg, Germany,
2008.

[6] D. J. Bernstein, “The salsa 20 family of stream ciphers,” in New
Stream Cipher Designs, vol. 4986 of Lecture Notes in Computer
Science, pp. 84–97, Springer, Heidelberg, Germany, 2008.

[7] D. Feng, X. Feng, W. Zhang, X. Fan, and C. Wu, “Loiss: a byte-
oriented stream cipher,” in Coding and Cryptology, vol. 6639
of Lecture Notes in Computer Science, pp. 109–125, Springer,
Heidelberg, Germany, 2011.

[8] L. Ding and J. Guan, “Cryptanalysis of Loiss stream cipher,”The
Computer Journal, vol. 55, no. 10, pp. 1192–1201, 2012.

[9] A. Biryukov, A. Kircanski, and A. M. Youssef, “Cryptanalysis
of the Loiss stream cipher,” in Selected Areas in Cryptography
2012, vol. 7707 of Lecture Notes in Computer Science, pp. 119–
134, Springer, Heidelberg, Germany, 2012.

[10] J. Golić, “Cryptanalysis of allegedA5 streamcipher,” inAdvances
in Cryptology—EUROCRYPT ’97, vol. 1233 of Lecture Notes in
Computer Science, pp. 239–255, Springer, Heidelberg, Germany,
1997.

[11] P. Hawkes and G. G. Rose, “Guess-and-determine attacks on
SNOW,” in Selected Areas in Cryptography, vol. 2595 of Lecture
Notes in Computer Science, pp. 37–46, Springer, Heidelberg,
Germany, 2002.

[12] S. Babbage, C. de Cannière, J. Lano, B. Preneel, and J. Vande-
walle, “Cryptanalysis of SOBER-t32,” in Fast Software Encryp-
tion, vol. 2887 of Lecture Notes in Computer Science, pp. 111–128,
Springer, Heidelberg, Germany.

[13] X. Feng, J. Liu, Z. Zhou, C. Wu, and D. Feng, “A byte-based
guess and determine attack on SOSEMANUK,” in Advances in
Cryptology—ASIACRYPT 2010, vol. 6477 of Lecture Notes in
Computer Science, pp. 146–157, Springer, Heidelberg, Germany,
2010.

[14] X. Feng, Z. Shi, C. Wu, and D. Feng, “On guess and determine
analysis of Rabbit,” International Journal of Foundations of
Computer Science, vol. 22, no. 6, pp. 1283–1296, 2011.

[15] L. Ding, S. K. Liu, Z. Y. Zhang, and J. Guan, “Guess and deter-
mine attack on ZUC based on solving nonlinear equations,” in
Proceedings of the 1st InternationalWorkshop on ZUCAlgorithm,
2010, report 2010/007.


