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This paper is concerned with approximation on variable 𝐿
𝑝(⋅)

𝜌
spaces associated with a general exponent function 𝑝 and a general

bounded Borel measure 𝜌 on an open subset Ω of R𝑑. We mainly consider approximation by Bernstein type linear operators.
Under an assumption of log-Hölder continuity of the exponent function 𝑝, we verify a conjecture raised previously about the
uniform boundedness of Bernstein-Durrmeyer and Bernstein-Kantorovich operators on the 𝐿

𝑝(⋅)

𝜌
space. Quantitative estimates

for the approximation are provided for high orders of approximation by linear combinations of such positive linear operators.
Motivating connections to classification and quantile regression problems in learning theory are also described.

1. Introduction

Approximation by Bernstein type positive linear operators
has a long history and is an important topic in approximation
theory. It started with Bernstein operators [1] for proving
the Weierstrass theorem about the denseness of the set of
polynomials in the space 𝐶[0, 1] of continuous functions on
the interval [0, 1]. These classical operators are defined as
𝐵𝑛(𝑓, 𝑥) = ∑

𝑛

𝑘=0
𝑓(𝑘/𝑛)𝑝𝑛,𝑘(𝑥) for 𝑥 ∈ [0, 1] and 𝑓 ∈ 𝐶[0, 1]

with the Bernstein basis given by 𝑝𝑛,𝑘(𝑥) = (
𝑛
𝑘 ) 𝑥

𝑘
(1 − 𝑥)

𝑛−𝑘.
The Bernstein operators have been extended in various forms
for the purpose of approximating discontinuous functions, by
replacing the point evaluation functionals by some integrals.
The classical examples for approximation in 𝐿

𝑝
[0, 1] (with

1 ≤ 𝑝 < ∞), the Banach space of all integrable functions

𝑓 on [0, 1] with the norm ‖𝑓‖
𝐿𝑝

= (∫
1

0
|𝑓(𝑥)|

𝑝
𝑑𝑥)

1/𝑝

, are
Bernstein-Kantorovich operators [2]

𝐾𝑛 (𝑓, 𝑥)

=

𝑛

∑

𝑘=0

(𝑛 + 1) ∫

(𝑘+1)/(𝑛+1)

𝑘/(𝑛+1)

𝑓 (𝑡) 𝑑𝑡𝑝𝑛,𝑘 (𝑥) , 𝑥 ∈ [0, 1]
(1)

and Bernstein-Durrmeyer operators [3]

𝐷𝑛 (𝑓, 𝑥) =

𝑛

∑

𝑘=0

(𝑛 + 1) ∫

1

0

𝑝𝑛,𝑘 (𝑡) 𝑓 (𝑡) 𝑑𝑡𝑝𝑛,𝑘 (𝑥) ,

𝑥 ∈ [0, 1] .

(2)

Quantitative estimates for approximation by Bernstein type
positive linear operators in 𝐶[0, 1] or 𝐿

𝑝
[0, 1] have been

presented in a large literature (e.g., [4, 5]). See the book [6]
and references therein for details and extensions to infinite
intervals and linear combinations of positive operators for
achieving high orders of approximation.

In this paper we provide a general framework for approx-
imation by linear operators on variable 𝐿

𝑝(⋅)

𝜌
(Ω) spaces on an

open subset Ω of R𝑑. Here 𝑝 : Ω → [1, ∞) is a measurable
function called the exponent function and 𝜌 is a positive
bounded Borel measure on Ω. The variable space 𝐿

𝑝(⋅)

𝜌
(Ω) is

a generalization of the weighted 𝐿
𝑝 spaces with a constant

exponent 𝑝 ∈ [1, ∞]. It consists of all the measurable
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functions𝑓 onΩ such that∫
Ω

(|𝑓(𝑥)|/𝜆)
𝑝(𝑥)

𝑑𝜌 < ∞ for some
𝜆 > 0. The norm is defined by

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)𝜌

= inf {𝜆 > 0 : ∫
Ω

(

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝜆
)

𝑝(𝑥)

𝑑𝜌 ≤ 1} . (3)

The space 𝐿
𝑝(⋅)

𝜌
(Ω) is a Banach space [7]. The idea of

variable 𝐿
𝑝(⋅) spaces was introduced by Orlicz [8]. Motivated

by connections to variational integrals with nonstandard
growth related to modeling of electrorheological fluids [9],
these function spaces have been developed in analysis and
research topics include boundedness of maximal operators,
continuity of translates, and denseness of smooth functions.
We will not go into details which can be found in [7,
10] and references therein. Instead, we only mention the
following core condition on the log-Hölder continuity of the
exponent function which leads to the boundedness of Hardy-
Littlewood maximal operators and the rich theory of the
variable 𝐿

𝑝(⋅)

𝜌
(Ω) spaces.

Definition 1. We say that the exponent function 𝑝 : Ω →

[1, ∞) is log-Hölder continuous if there exist positive con-
stants 𝐴𝑝 > 0 such that

󵄨󵄨󵄨󵄨𝑝 (𝑥) − 𝑝 (𝑦)
󵄨󵄨󵄨󵄨 ≤

𝐴𝑝

− log 󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

, 𝑥, 𝑦 ∈ Ω,
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 <
1

2
.

(4)

We say that 𝑝 is log-Hölder continuous at infinity (when Ω is
unbounded) if there holds

󵄨󵄨󵄨󵄨𝑝 (𝑥) − 𝑝 (𝑦)
󵄨󵄨󵄨󵄨 ≤

𝐴𝑝

log (𝑒 + |𝑥|)
, 𝑥, 𝑦 ∈ Ω,

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 ≥ |𝑥| . (5)

Denote

𝑝− = inf
𝑥∈Ω

𝑝 (𝑥) , 𝑝+ = sup
𝑥∈Ω

𝑝 (𝑥) . (6)

The issue of approximation by Bernstein type positive
linear operators on variable 𝐿

𝑝(⋅)

𝜌
(Ω) spaces was raised by the

second author in [11]. It turned out that the variety of the
exponent function 𝑝 creates technical difficulty in the study
of approximation. In particular, the uniform boundedness
of the Bernstein-Kantorovich operators (1) and Bernstein-
Durrmeyer operators (2) is already a difficult problem. The
key analysis in [11] is to show that the Bernstein-Kantorovich
operators and Bernstein-Durrmeyer operators are uniformly
bounded when the exponent function 𝑝 is Lipschitz 𝛼 for
some 𝛼 ∈ (0, 1]. It was conjectured there that the uniform
boundedness still holds when 𝑝 is log-Hölder continuous.
The firstmain result of this paper is to confirm this conjecture
inTheorem 6 below.

Our second main result is to abandon the positivity and
present quantitative estimates for the high order approxi-
mation by linear operators including linear combinations of
Bernstein type positive linear operators, extending the results
in [11] for the first order approximation by positive operators.

2. Motivations from Learning Theory

Our main motivation for considering the approximation of
functions by linear operators on variable 𝐿

𝑝(⋅)

𝜌
(Ω) spaces is

from learning theory. Besides the example of extending the
Bernstein-Durrmeyer operators (2) to those associated with
a general probability measure 𝜌 on Ω in [12, 13] for the
multivariate case, we mention two learning theory settings
here. Since error analysis for concrete learning algorithms
in terms of the introduced noise conditions involves sample
error estimates which are out of the scope of this paper, we
leave the detailed error bounds to our further study.

2.1. Noise Conditions for Classification and Approximation.
The first learning theory setting related to approximation
on variable 𝐿

𝑝(⋅)

𝜌
(Ω) spaces is noise conditions for binary

classification. Here Ω is an input space consisting of possible
events while the output space is denoted as 𝑌 = {1, −1}.
A Borel probability measure 𝑃 on the product space Ω × 𝑌

can be decomposed into its marginal distribution 𝑃Ω on Ω

and conditional distributions 𝑃(⋅ | 𝑥) for 𝑥 ∈ Ω. A binary
classifier 𝑓 : Ω → 𝑌 makes predictions 𝑓(𝑥) ∈ 𝑌 for future
events 𝑥 ∈ Ω. The best classifier 𝑓𝑐, called Bayes rule, is given
by 𝑓𝑐(𝑥) = 1 if 𝑃(1 | 𝑥) > 1/2 and −1 otherwise. The
probability measure 𝑃 fits the binary classification problem
well if the conditional probabilities 𝑃(1 | 𝑥) and 𝑃(−1 | 𝑥)

are well separated from the boundary 1/2 for most events
𝑥. Their separations are equivalent to the separation of the
value 𝑓𝑃(𝑥) of the regression function 𝑓𝑃(𝑥) = ∫

𝑌
𝑦𝑑𝑃(𝑦 |

𝑥) = 𝑃(1 | 𝑥) − 𝑃(−1 | 𝑥) from 0 and can be measured in
various quantitative ways. The Tsybakov noise condition [14]
with noise exponent 𝑞 ∈ (0, ∞] asserts that for some constant
𝑐𝑞 > 0, there holds

𝑃Ω ({𝑥 ∈ Ω : 0 <
󵄨󵄨󵄨󵄨𝑓𝑃 (𝑥)

󵄨󵄨󵄨󵄨 ≤ 𝑐𝑞𝑡}) ≤ 𝑡
𝑞
, ∀𝑡 > 0. (7)

When 𝑞 = ∞, Tsybakov noise condition (7) means |𝑓𝑃(𝑥)| ≥

𝑐𝑞 almost surely, and 𝑓𝑃(𝑥) is well separated from 0. The
case 𝑞 < ∞ means the measure of the set of events 𝑥

with 𝑓𝑃(𝑥) not well separated from 0 decays polynomially
fast as the threshold 𝑐𝑞𝑡 tends to 0. More details about the
Tsybakov noise condition, the so-called Tsybakov function,
and its applications to the study of classification problems can
also be found in [15]. Here we introduce a noise condition
by allowing some noise situations measured by an exponent
function 𝑝.

Example 2. We say that the probability measure 𝑃 satisfies
the noise condition associated with an exponent function
𝑝 : Ω → [0, ∞) if for some 𝜆 > 0, there holds

∫
Ω

(

󵄨󵄨󵄨󵄨𝑓𝑃 (𝑥)
󵄨󵄨󵄨󵄨

𝜆
)

𝑝(𝑥)

𝑑𝑃Ω < ∞. (8)

Remark 3. The above condition can be applied to the regres-
sion setting for dealingwith unbounded regression functions.
When 𝑝 takes values on [1, ∞), the above condition is
equivalent to the requirement 𝑓𝑃 ∈ 𝐿

𝑝(⋅)

𝜌
(Ω) with 𝜌 = 𝑃Ω.
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When 𝑑 = 1 and Ω = R, we apply the classical identity
∫
R

𝑔(𝑥)𝑑𝑃Ω = ∫
∞

0
𝑃Ω({𝑥 ∈ Ω : 𝑔(𝑥) ≥ 𝑡})𝑑𝑡 to the

nonnegative function 𝑔(𝑥) = (|𝑓𝑃(𝑥)|/𝜆)
𝑝(𝑥) and find that the

above condition is equivalent to

∫

∞

0

𝑃Ω ({𝑥 ∈ Ω :
󵄨󵄨󵄨󵄨𝑓𝑃 (𝑥)

󵄨󵄨󵄨󵄨 ≥ 𝜆𝑡
1/𝑝(𝑥)

}) 𝑑𝑡 < ∞. (9)

This illustrates some similarity between the noise condition
(8) and Tsybakov noise condition (7).

The following is an example to show some differences.

Example 4. Let 𝑑 ∈ N and Ω = {𝑥 ∈ R𝑑
: |𝑥| ≤ 1/2}. If 𝑃Ω is

the normalized Lebesgue measure on Ω and 𝑓𝑃(𝑥) = 𝑒
−1/|𝑥|,

then the measure 𝑃 satisfies the noise condition associated
with the exponent function𝑝(𝑥) = |𝑥| but does not satisfy the
Tsybakov noise condition (7) with any 𝑞 ∈ (0, ∞]. In fact we
have ∫

Ω
|𝑓𝑃(𝑥)|

𝑝(𝑥)
𝑑𝑃Ω = 1/𝑒 < ∞ while for any 𝑞 ∈ (0, ∞)

and 𝑐𝑞 > 0, we have 𝑃Ω({𝑥 ∈ Ω : 0 < |𝑓𝑃(𝑥)| ≤ 𝑐𝑞𝑡}) =

(2/ − log(𝑐𝑞𝑡))
𝑑

> 𝑡
𝑞 for 𝑡 ∈ (0,min{𝑡

∗
, 1/𝑐𝑞𝑒

2
}) with 𝑡

∗ being
the positive solution to the equation 𝑡

𝑞/𝑑 log 1/𝑐𝑞𝑡 = 2.

2.2. Noise Conditions for Quantile Regression and Approxima-
tion. The second learning theory setting related to approx-
imation on variable 𝐿

𝑝(⋅)

𝜌
(Ω) spaces is noise conditions for

quantile regression. Here the output space is 𝑌 = R. Similar
to the least squares regression [16] for learning means of
conditional distributions 𝑃(⋅ | 𝑥) but providing richer
information [17] about response variables such as stretching
or compressing tails, the learning problem for quantile regres-
sion aims at estimating quantiles of conditional distributions.
With a quantile parameter 0 < 𝜏 < 1, the value of a quantile
regression function𝑓𝑃,𝜏 at𝑥 ∈ Ω is defined by its value𝑓𝑃,𝜏(𝑥)

as a 𝜏-quantile of 𝑃(⋅ | 𝑥), that is, a value 𝑡
∗

∈ 𝑌 satisfying

𝑃 ({𝑦 ∈ 𝑌 : 𝑦 ≤ 𝑡
∗
} | 𝑥) ≥ 𝜏,

𝑃 ({𝑦 ∈ 𝑌 : 𝑦 ≥ 𝑡
∗
} | 𝑥) ≥ 1 − 𝜏.

(10)

Quantile regression has been studied by kernel-based regu-
larization schemes in a learning theory literature (e.g., [18,
19]). For optimal error analysis of these learning algorithms,
asymptotic behaviors of the conditional distributions near the
𝜏-quantiles are needed. In particular, one is interested in how
slow the following function decays as 𝑡 decreases:

𝐹𝑃,𝜏 (𝑥) = min {𝑃 ({𝑦 ∈ 𝑌 : 𝑡
∗

− 𝑡 < 𝑦 < 𝑡
∗
} | 𝑥) ,

𝑃 ({𝑦 ∈ 𝑌 : 𝑡
∗

+ 𝑡 > 𝑦 > 𝑡
∗
} | 𝑥)} .

(11)

A noise condition was introduced in [18] by requiring lower
bounds 𝐹𝑃,𝜏(𝑥) ≥ 𝑏𝑥𝑡

𝑞−1 for every 𝑡 ∈ [0, 𝑎𝑥] and some
𝑞 ∈ (1, ∞), 𝑝 ∈ (0, ∞) and constants 𝑏𝑥, 𝑎𝑥 > 0

satisfying (𝑏𝑥𝑎
𝑞−1

𝑥
)
−1

∈ 𝐿
𝑝

𝑃Ω
. This condition was extended to

a logarithmic bound in [19] by replacing 𝑡
𝑞−1 by (log(1/𝑡))

−𝑞

and 𝑎
𝑞−1

𝑥
by (log(1/𝑎𝑥))

−𝑞. Here we introduce the following
noise condition which is more general than the one in [18] by
allowing the indices 𝑞, 𝑝 to depend on the events 𝑥 ∈ Ω.

Example 5. We say that the probabilitymeasure𝑃 satisfies the
quantile noise condition associated with exponent functions
𝑞 : Ω → (1, ∞) and 𝑝 : Ω → (0, ∞) if for every 𝑥 ∈ 𝑋,
there exist a 𝜏-quantile 𝑡

∗
∈ R and constants 𝑎𝑥 ∈ (0, 2], 𝑏𝑥 >

0 such that for each 𝑢 ∈ [0, 𝑎𝑥]

𝐹𝑃,𝜏 (𝑥) ≥ 𝑏𝑥𝑡
𝑞(𝑥)−1 (12)

and that for some 𝜆 > 0, there holds
∫
Ω

(1/𝜆𝑏𝑥𝑎
𝑞(𝑥)−1

𝑥
)
𝑝(𝑥)

𝑑𝑃Ω < ∞.

While the lower bounds (12) imply polynomial decays
of the conditional distributions near the 𝜏-quantiles with a
power index depending on the event, the finiteness of the
integral is equivalent to the requirement that the function
1/𝑏𝑥𝑎

𝑞(𝑥)−1

𝑥
lies in the variable 𝐿

𝑝(⋅)

𝑃Ω
(Ω) space (when 𝑝 takes

values in [1, ∞)).

3. Main Results for Approximation on 𝐿
𝑝(⋅)

𝜌

Our first theorem is about the uniform boundedness of a
sequence of linear operators on the variable𝐿

𝑝(⋅)

𝜌
spaces.These

operators take the form

𝐿𝑛 (𝑓, 𝑥) = ∫
Ω

𝐾𝑛 (𝑥, 𝑡) 𝑓 (𝑡) 𝑑𝜌 (𝑡) , 𝑥 ∈ Ω, 𝑓 ∈ 𝐿
𝑝(⋅)

𝜌 (13)

in terms of their kernels {𝐾𝑛(𝑥, 𝑡)}
∞

𝑛=1
defined on Ω × Ω. We

assume that the kernels satisfy the following three conditions
with some positive constants 𝐶0 ≥ 1, 𝑏, 𝐶𝑏, and 𝐶𝑟

(depending on 𝑟 ∈ N)

sup
𝑡∈Ω

∫
Ω

󵄨󵄨󵄨󵄨𝐾𝑛 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨 𝑑𝜌 (𝑥) ≤ 𝐶0,

sup
𝑥∈Ω

∫
Ω

󵄨󵄨󵄨󵄨𝐾𝑛 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨 𝑑𝜌 (𝑡) ≤ 𝐶0,

(14)

sup
𝑥,𝑡∈Ω

󵄨󵄨󵄨󵄨𝐾𝑛 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝐶𝑏𝑛

𝑏
, ∀𝑛 ∈ N, (15)

∫
Ω

∫
Ω

󵄨󵄨󵄨󵄨𝐾𝑛 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨 |𝑡 − 𝑥|

2𝑟
𝑑𝜌 (𝑡) 𝑑𝜌 (𝑥) ≤ 𝐶𝑟𝑛

−𝑟
,

∀𝑛 ∈ N, 𝑟 ∈ N.

(16)

Then the uniform boundedness follows, which will be
proved in Section 5.

Theorem 6. Let Ω ⊆ R𝑑 be an open set, and an exponent
function 𝑝 : Ω → (1, ∞) satisfy 1 < 𝑝− < 𝑝+ < ∞ and the
log-Hölder continuity condition (4). If the kernels {𝐾𝑛(𝑥, 𝑡)}

∞

𝑛=1

satisfy conditions (14), (15), and (16), then the operators {𝐿𝑛}
∞

𝑛=1

on 𝐿
𝑝(⋅)

𝜌
defined by (13) are uniformly bounded as

󵄩󵄩󵄩󵄩𝐿𝑛

󵄩󵄩󵄩󵄩 ≤ 𝑀𝑝,𝑏, ∀𝑛 ∈ N (17)

by a positive constant 𝑀𝑝,𝑏 (depending on 𝑝 and the constants
in (14), (15), and (16), given explicitly in the proof).
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Our second theorem gives orders of approximation when
the approximated function has some smoothness stated in
terms of a K-functional. Define a Hölder space with index
𝑟 ∈ N on Ω by

𝑊
𝑟,∞

𝑝
= {𝑔 ∈ 𝐿

𝑝(⋅)

𝜌
:
󵄩󵄩󵄩󵄩𝑔

󵄩󵄩󵄩󵄩𝑝,𝑟,∞ < ∞} , (18)

where ‖𝑔‖
𝑝,𝑟,∞

is the norm given by ‖𝑔‖
𝑝,𝑟,∞

= ‖𝑔‖
𝐿
𝑝(⋅)

𝜌

+

∑|𝛼|1≤𝑟
‖𝐷

𝛼
𝑔‖

∞
with 𝐷

𝛼
𝑔 = 𝜕

|𝛼|1/𝜕𝑥
𝛼1
1

⋅ ⋅ ⋅ 𝜕𝑥
𝛼𝑑

𝑑
and |𝛼|1 =

∑
𝑑

𝑗=1
𝛼𝑗 for 𝛼 = (𝛼1, . . . , 𝛼𝑑) ∈ Z𝑑

+
. The K-functional

K𝑟(𝑓, 𝑡)𝑝(⋅) is defined by

K𝑟(𝑓, 𝑡)
𝑝(⋅)

= inf
𝑔∈𝑊
𝑟,∞
𝑝

{
󵄩󵄩󵄩󵄩𝑓 − 𝑔

󵄩󵄩󵄩󵄩𝐿𝑝(⋅)𝜌
+ 𝑡

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝑝,𝑟,∞} , 𝑡 > 0.

(19)

Denote 𝐶
∞

0
(Ω) as the space of all compactly supported

𝐶
∞ functions on Ω. From [7], we know that when 𝑝

+
<

∞, 𝐶
∞

0
(Ω) is dense in 𝐿

𝑝(⋅)

𝜌
(Ω). Hence for any 𝑓 ∈ 𝐿

𝑝(⋅)

𝜌
(Ω),

there holdsK𝑟(𝑓, 𝑡)𝑝(⋅) → 0 as 𝑡 → 0.
The following theorem, to be proved in Section 5 and

extending the results for 𝑟 = 1 in [11], gives orders of
approximation by linear operators on 𝐿

𝑝(⋅)

𝜌
(Ω) when the K-

functional has explicit decay rates.

Theorem 7. Under the assumption of Theorem 6, if Ω is
convex, 𝑟 ∈ N and the kernels satisfy 𝑟𝑝− ≥ 2, and

∫
Ω

𝐾𝑛 (𝑥, 𝑡) (𝑡 − 𝑥)
𝛼
𝑑𝜌 (𝑡) = 𝛿𝛼,0, ∀𝛼 ∈ Z

𝑑
𝑤𝑖𝑡ℎ |𝛼|1 < 𝑟

(20)

for almost every 𝑥 ∈ Ω, then there holds for any 𝑓 ∈ 𝐿
𝑝(⋅)

𝜌
,

󵄩󵄩󵄩󵄩𝐿𝑛(𝑓) − 𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)𝜌

≤ 𝐴𝑝,𝑏,𝑑K𝑟(𝑓, 𝑛
−𝑟−/𝑝+)

𝑝(⋅)
, (21)

where 𝑟− is the integer part of 𝑟𝑝−/2 and the constant 𝐴𝑝,𝑏,𝑑 is
independent of 𝑓 ∈ 𝐿

𝑝(⋅)

𝜌
(given explicitly in the proof).

The vanishing moment assumption (20) corresponds to
Strang-Fix type conditions in the literature of shift-invariant
spaces, for example [20, 21]. It has appeared in the literature
of Bernstein type operators when linear combinations are
considered, as described by (34) in the next section.

4. Approximation by Bernstein Type Operators

In this section we apply our main results to Bernstein type
positive linear operators and give high orders of approxima-
tion by linear combinations of these operators on variable
𝐿
𝑝(⋅)

𝜌
(Ω) spaces. We demonstrate the analysis for the general

Bernstein-Durrmeyer operators in detail and describe briefly
results for the general Bernstein-Kantorovich operators as an
example of other families of operators.

The Bernstein-Durrmeyer operators on an open simplex

Ω = 𝑆 = {𝑥 ∈ R
𝑑

+
: |𝑥|1 < 1} (22)

associated with a general positive Borel measure 𝜌 on 𝑆 are
defined as

𝐷𝑛 (𝑓, 𝑥) = ∑

|𝛼|1≤𝑛

∫
𝑆

𝑓 (𝑡) 𝑝𝑛,𝛼 (𝑡) 𝑑𝜌 (𝑡)

∫
𝑆

𝑝𝑛,𝛼 (𝑡) 𝑑𝜌 (𝑡)
𝑝𝑛,𝛼 (𝑥) ,

𝑓 ∈ 𝐿
1

𝜌
, 𝑥 ∈ 𝑆,

(23)

where for 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ 𝑆 ⊂ R𝑑, 𝛼 = (𝛼1, . . . , 𝛼𝑑) ∈ Z𝑑

+
,

we denote

𝑝𝑛,𝛼 (𝑥) =
𝑛!

Π𝑑
𝑗=1

𝛼𝑗! (𝑛 − |𝛼|1)!

𝑑

∏

𝑗=1

𝑥
𝛼𝑗

𝑗
(1 − |𝑥|1)

𝑛−|𝛼|1
. (24)

The classical Bernstein-Durrmeyer operators (2) on Ω =

(0, 1) (𝑑 = 1) with 𝑑𝜌(𝑥) = 𝑑𝑥 have been well studied (e.g.,
[22]) and extended to a multivariate form with respect to
Jacobi weights 𝑑𝜌(𝑥) = Π

𝑑

𝑗=1
𝑥
𝑞𝑗

𝑗
𝑑𝑥 (e.g., [23]). Bernstein-

Durrmeyer operators on Ω = (0, 1) with respect to an
arbitrary Borel probability measure were introduced in [12]
and applied to error analysis of learning algorithms for
support vectormachine classifications.Themultidimensional
version of such linear operators (23)was introduced in [13]. In
[24], the first author showed for a constant exponent function
𝑝(𝑥) ≡ 𝑝 ∈ [1, ∞) that lim𝑛→∞‖𝑓 − 𝐷𝑛(𝑓)‖

𝐿
𝑝

𝜌
= 0 for any

𝑓 ∈ 𝐿
𝑝

𝜌
. The case 𝑝 ≡ ∞ was studied in [25, 26]. Here we

consider the case with a general exponent function satisfying
1 < 𝑝− < 𝑝+ < ∞ and the log-Hölder continuity condition
(4).

By applyingTheorem 6,we can prove the uniformbound-
edness of the Bernstein-Durrmeyer operators (23).

Proposition 8. LetΩ = 𝑆, 𝜌 be a Borel probability measure on
𝑆, and an exponent function 𝑝 : 𝑆 → (1, ∞) satisfy 1 < 𝑝− <

𝑝+ < ∞ and the log-Hölder continuity condition (4). If there
exist positive constants 𝑏 and 𝐶

∗

𝑏
such that ∫

𝑆
𝑝𝑛,𝛼(𝑡)𝑑𝜌(𝑡) ≥

𝐶
∗

𝑏
𝑛
−𝑏 for 𝑛 ∈ N and |𝛼|1 ≤ 𝑛, then for the Bernstein-

Durrmeyer operators defined on 𝐿
𝑝(⋅)

𝜌
(Ω) by (23), there exists

a positive constant 𝑀𝑝,𝑏 depending only on 𝑝, 𝑏, 𝐶
∗

𝑏
such that

󵄩󵄩󵄩󵄩𝐷𝑛

󵄩󵄩󵄩󵄩 ≤ 𝑀𝑝,𝑏, ∀𝑛 ∈ N. (25)

Proof. Define a sequence of kernels {Ψ𝑛} on 𝑆 × 𝑆 by

Ψ𝑛 (𝑥, 𝑡) = ∑

|𝛼|1≤𝑛

𝑝𝑛,𝛼 (𝑡) 𝑝𝑛,𝛼 (𝑥)

∫
𝑆

𝑝𝑛,𝛼 (𝑡) 𝑑𝜌 (𝑡)
. (26)

Then the Bernstein-Durrmeyer operators (23) can be written
as

𝐷𝑛 (𝑓, 𝑥) = ∫
𝑆

Ψ𝑛 (𝑥, 𝑡) 𝑓 (𝑡) 𝑑𝜌 (𝑡) . (27)

So we only need to check the three conditions (14), (15), and
(16) of Theorem 6.
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Since Ψ𝑛(𝑥, 𝑡) ≥ 0, we know that

∫
𝑆

󵄨󵄨󵄨󵄨Ψ𝑛 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨 𝑑𝜌 (𝑥) = ∫

𝑆

Ψ𝑛 (𝑥, 𝑡) 𝑑𝜌 (𝑥)

= ∑

|𝛼|1≤𝑛

𝑝𝑛,𝛼 (𝑡) ∫
𝑆

𝑝𝑛,𝛼 (𝑥) 𝑑𝜌 (𝑥)

∫
𝑆

𝑝𝑛,𝛼 (𝑡) 𝑑𝜌 (𝑡)

= ∑

|𝛼|1≤𝑛

𝑝𝑛,𝛼 (𝑡) ≡ 1.

(28)

The same is true for ∫
𝑆

|Ψ𝑛(𝑥, 𝑡)|𝑑𝜌(𝑡) ≡ 1. So we know that
condition (14) holds with the constant 𝐶0 = 1.

Applying the lower bound ∫
𝑆

𝑝𝑛,𝛼(𝑡)𝑑𝜌(𝑡) ≥ 𝐶
∗

𝑏
𝑛
−𝑏 and

the inequality 𝑝𝑛,𝛼(𝑡) ≤ 1, we see that for any 𝑛 ∈ N, and
𝑥, 𝑡 ∈ 𝑆

󵄨󵄨󵄨󵄨Ψ𝑛 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨 ≤ ∑

|𝛼|1≤𝑛

𝑝𝑛,𝛼 (𝑥)

𝐶∗

𝑏
𝑛−𝑏

=
1

𝐶∗

𝑏

𝑛
𝑏
. (29)

Hence condition (15) holds with 𝐶𝑏 = 1/𝐶
∗

𝑏
.

As for the last condition, we separate 𝑡 − 𝑥 into 𝑡 − (𝛼/𝑛) +

(𝛼/𝑛) − 𝑥 and find that for any 𝑟 ∈ N and 𝑛 ∈ N

∫
𝑆

∫
𝑆

󵄨󵄨󵄨󵄨Ψ𝑛 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨|𝑡 − 𝑥|

2𝑟
𝑑𝜌 (𝑡) 𝑑𝜌 (𝑥)

≤ 2
2𝑟

{

{

{

∫
𝑆

∫
𝑆

∑

|𝛼|1≤𝑛

𝑝𝑛,𝛼 (𝑡) 𝑝𝑛,𝛼 (𝑥)

∫
𝑆

𝑝𝑛,𝛼 (𝑡) 𝑑𝜌 (𝑡)

×
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑡 −

𝛼

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝑟

𝑑𝜌 (𝑡) 𝑑𝜌 (𝑥)

+ ∫
𝑆

∫
𝑆

∑

|𝛼|1≤𝑛

𝑝𝑛,𝛼 (𝑡) 𝑝𝑛,𝛼 (𝑥)

∫
𝑆

𝑝𝑛,𝛼 (𝑡) 𝑑𝜌 (𝑡)

×
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼

𝑛
− 𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝑟

𝑑𝜌 (𝑡) 𝑑𝜌 (𝑥)
}

}

}

= 2
2𝑟

{

{

{

∫
𝑆

∑

|𝛼|1≤𝑛

𝑝𝑛,𝛼 (𝑡)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑡 −

𝛼

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝑟

𝑑𝜌 (𝑡)

+ ∫
𝑆

∑

|𝛼|1≤𝑛

𝑝𝑛,𝛼 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼

𝑛
− 𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝑟

𝑑𝜌 (𝑥)
}

}

}

= 2
2𝑟+1

∫
𝑆

𝐵𝑛 ((⋅ − 𝑥)
2𝑟

, 𝑥) 𝑑𝜌 (𝑥) ,

(30)

where 𝐵𝑛 is the multidimensional Bernstein operators on the
closure 𝑆 of 𝑆 defined by

𝐵𝑛 (𝑓, 𝑥) = ∑

|𝛼|1≤𝑛

𝑓 (
𝛼

𝑛
) 𝑝𝑛,𝛼 (𝑥) , 𝑥 ∈ 𝑆, 𝑓 ∈ 𝐶 (𝑆) . (31)

It is well known [6] for the multidimensional Bernstein
operators that there exists a constant 𝐶𝑑,𝑟 depending only on
𝑑 and 𝑟 such that

𝐵𝑛 ((⋅ − 𝑥)
2𝑟

, 𝑥) ≤ 𝐶𝑑,𝑟𝑛
−𝑟

, ∀𝑥 ∈ 𝑆. (32)

It follows that

∫
𝑆

∫
𝑆

󵄨󵄨󵄨󵄨Ψ𝑛 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨 |𝑡 − 𝑥|

2𝑟
𝑑𝜌 (𝑡) 𝑑𝜌 (𝑥) ≤ 2

2𝑟+1
𝐶𝑑,𝑟𝑛

−𝑟 (33)

and condition (16) holds true with 𝐶𝑟 = 2
2𝑟+1

𝐶𝑑,𝑟.
With all the three conditions verified, the desired uniform

bound (25) for the Bernstein-Durrmeyer operators follows
fromTheorem 6. This proves the proposition.

The Bernstein-Durrmeyer operators (23) are positive,
which prevent from achieving high order approximation due
to a saturation phenomenon. Linear combinations of such
operators can be used to get high orders of approximation.
The idea and literature review of this method can be found in
[6] while further developments will not be mentioned here.
The linear combinations are defined as

𝐿𝑛,𝑟 (𝑓, 𝑥) =

𝑚𝑑,𝑟

∑

𝑖=0

𝐶𝑖 (𝑛) 𝐷𝑛𝑖
(𝑓, 𝑥) , (34)

where 𝑚𝑑,𝑟 = (𝑑 + 𝑟 − 1)!/𝑑!(𝑟 − 1)! is the dimension of the
space of polynomials of degree at most 𝑟 − 1, and with two
positive constants 𝐵1, 𝐵2 independent of 𝑛, we have

𝑛 = 𝑛0 < 𝑛1 < ⋅ ⋅ ⋅ < 𝑛𝑚𝑑,𝑟
≤ 𝐵1𝑛,

𝑚𝑑,𝑟

∑

𝑖=0

󵄨󵄨󵄨󵄨𝐶𝑖 (𝑛)
󵄨󵄨󵄨󵄨 ≤ 𝐵2,

𝑚𝑑,𝑟

∑

𝑖=0

𝐶𝑖 (𝑛) 𝐷𝑛𝑖
((⋅ − 𝑥)

𝛼
, 𝑥) = 𝛿𝛼,0, ∀0 ≤ |𝛼|1 ≤ 𝑟 − 1.

(35)

For the classical Bernstein-Durrmeyer operators with respect
to the Lebesgue measure (or even the Jacobi weights), the
existence of the above linear combinations can be seen
and found in the literature. The existence of such linear
combinations with respect to the arbitrary measure 𝜌 is
a nontrivial problem and deserves intensive study. This
technical question is out of the scope of this paper and will
be discussed in our further work. Here we concentrate on the
variable 𝐿

𝑝(⋅)

𝜌
(Ω) spaces and state the following result for the

high orders of approximation under the condition (35) which
is an immediate consequence of Theorem 7.

Proposition 9. Under the assumption of Proposition 8, if 2 ≤

𝑟 ∈ 𝑁 and the operators {𝐿𝑛,𝑟}𝑛∈N defined by (34) satisfy (35),
then for any 𝑓 ∈ 𝐿

𝑝(⋅)

𝜌
, we have

󵄩󵄩󵄩󵄩𝐿𝑛,𝑟(𝑓) − 𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)𝜌

≤ 𝐴𝑝,𝑏,𝑑K𝑟(𝑓, 𝑛
−𝑟−/𝑝+)

𝑝(⋅)
, (36)

where 𝑟− is the integer part of 𝑟𝑝−/2 and the constant 𝐴𝑝,𝑏,𝑑 is
independent of 𝑓 ∈ 𝐿

𝑝(⋅)

𝜌
.

Let us now briefly describe approximation results for the
Bernstein-Kantorovich operators on 𝑆 defined [27] as

𝐵𝐾𝑛 (𝑓, 𝑥) = ∑

|𝛼|1≤𝑛

∫
𝑆𝑛,𝛼

𝑓 (𝑡) 𝑑𝜌 (𝑡)

𝜌 (𝑆𝑛,𝛼)
𝑝𝑛,𝛼 (𝑥) , 𝑓 ∈ 𝐿

1

𝜌
, 𝑥 ∈ 𝑆,

(37)
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where {𝑆𝑛,𝛼}𝛼 are subdomains of 𝑆 defined by

𝑆𝑛,𝛼 = {𝑥 ∈ 𝑆 : 𝑥 ∈

𝑑

∏

𝑖=1

[
𝛼𝑖

𝑛 + 1
,

𝛼𝑖

𝑛 + 1
) , |𝑥|1 ≤

|𝛼|1 + 1

𝑛 + 1
} ,

|𝛼|1 ≤ 𝑛.

(38)

In the same way as for the Bernstein-Durrmeyer oper-
ators, we have the following results for the Bernstein-
Kantorovich operators.

Proposition 10. Under the assumption of Proposition 8 for 𝑝,
if there exist positive constants 𝑏 and 𝐶

∗

𝑏
such that 𝜌(𝑆𝑛,𝛼) ≥

𝐶
∗

𝑏
𝑛
−𝑏 for 𝑛 ∈ N and |𝛼|1 ≤ 𝑛, then for the Bernstein-

Kantorovich operators defined on 𝐿
𝑝(⋅)

𝜌
(Ω) by (37), there exists

a positive constant 𝑀𝑝,𝑏 depending only on 𝑝, 𝑏, 𝐶
∗

𝑏
such that

󵄩󵄩󵄩󵄩𝐵𝐾𝑛

󵄩󵄩󵄩󵄩 ≤ 𝑀𝑝,𝑏, ∀𝑛 ∈ N. (39)

If 2 ≤ 𝑟 ∈ 𝑁 and, with 𝐷𝑛𝑖
replaced by 𝐵𝐾𝑛𝑖

, the operators
{𝐿𝑛,𝑟}𝑛∈N defined by (34) satisfy (35), then

󵄩󵄩󵄩󵄩𝐿𝑛,𝑟(𝑓) − 𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)𝜌

≤ 𝐴𝑝,𝑏,𝑑K𝑟(𝑓, 𝑛
−𝑟−/𝑝+)

𝑝(⋅)
, ∀𝑓 ∈ 𝐿

𝑝(⋅)

𝜌
.

(40)

5. Proof of Main Results

In this section we give detailed proof of our main results. Let
us first proveTheorem 6.

Proof of Theorem 6. Let 𝑓 ∈ 𝐿
𝑝(⋅) have norm 1, which implies

∫
Ω

|𝑓(𝑡)|
𝑝(𝑡)

𝑑𝜌(𝑡) ≤ 1. Choose 𝛾 = 𝑏/(𝑝− − 1) > 0.
For 𝑥 ∈ Ω, we define two subsets Ω𝑛,𝑥 and Ω

󸀠

𝑛,𝑥
of Ω as

Ω𝑛,𝑥 = {𝑡 ∈ Ω :
󵄨󵄨󵄨󵄨𝑓 (𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝑛
𝛾
, |𝑡 − 𝑥| ≤ 𝑛

−1/4
} ,

Ω
󸀠

𝑛,𝑥
= {𝑡 ∈ Ω :

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑛

𝛾
, |𝑡 − 𝑥| > 𝑛

−1/4
} .

(41)

Set

𝐿𝑛,1 (𝑓, 𝑥) = ∫
Ω\(Ω𝑛,𝑥∪Ω

󸀠
𝑛,𝑥
)

𝐾𝑛 (𝑥, 𝑡) 𝑓 (𝑡) 𝑑𝜌 (𝑡) ,

𝐿𝑛,2 (𝑓, 𝑥) = ∫
Ω𝑛,𝑥

𝐾𝑛 (𝑥, 𝑡) 𝑓 (𝑡) 𝑑𝜌 (𝑡) ,

𝐿𝑛,3 (𝑓, 𝑥) = ∫
Ω󸀠
𝑛,𝑥

𝐾𝑛 (𝑥, 𝑡) 𝑓 (𝑡) 𝑑𝜌 (𝑡) .

(42)

Then the value 𝐿𝑛(𝑓, 𝑥) can be decomposed into three parts
as

𝐿𝑛 (𝑓, 𝑥) = 𝐿𝑛,1 (𝑓, 𝑥) + 𝐿𝑛,2 (𝑓, 𝑥) + 𝐿𝑛,3 (𝑓, 𝑥) , 𝑥 ∈ Ω,

(43)

and we have

∫
Ω

󵄨󵄨󵄨󵄨𝐿𝑛 (𝑓, 𝑥)
󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑑𝜌 (𝑥) ≤ 3
𝑝+

3

∑

𝑗=1

∫
Ω

󵄨󵄨󵄨󵄨󵄨
𝐿𝑛,𝑗 (𝑓, 𝑥)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑥)

𝑑𝜌 (𝑥) .

(44)

In the followingwe estimate the three terms in (44) separately.

Step 1. Estimating the First Term of (44). By the definition of
𝑝−, we have 𝑝(𝑡) ≥ 𝑝− > 1. For 𝑡 ∈ Ω \ (Ω𝑛,𝑥 ∪ Ω

󸀠

𝑛,𝑥
), we have

|𝑓(𝑡)| > 𝑛
𝛾 and thereby

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨 (

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨 𝑛

−𝛾
)
𝑝(𝑡)−1

=
󵄨󵄨󵄨󵄨𝑓 (𝑡)

󵄨󵄨󵄨󵄨
𝑝(𝑡)

𝑛
𝛾(1−𝑝(𝑡))

≤
󵄨󵄨󵄨󵄨𝑓 (𝑡)

󵄨󵄨󵄨󵄨
𝑝(𝑡)

𝑛
𝛾(1−𝑝−) = 𝑛

−𝑏󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨
𝑝(𝑡)

.

(45)

It follows from condition (15) that

󵄨󵄨󵄨󵄨𝐿𝑛,1 (𝑓, 𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝑛

−𝑏
∫
Ω\(Ω𝑛,𝑥∪Ω

󸀠
𝑛,𝑥
)

󵄨󵄨󵄨󵄨𝐾𝑛 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓 (𝑡)

󵄨󵄨󵄨󵄨
𝑝(𝑡)

𝑑𝜌 (𝑡)

≤ 𝑛
−𝑏

𝐶𝑏𝑛
𝑏

∫
Ω\(Ω𝑛,𝑥∪Ω

󸀠
𝑛,𝑥
)

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨
𝑝(𝑡)

𝑑𝜌 (𝑡) .

(46)

So by the assumption ∫
Ω

|𝑓(𝑡)|
𝑝(𝑡)

𝑑𝜌(𝑡) ≤ 1,

󵄨󵄨󵄨󵄨𝐿𝑛,1 (𝑓, 𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝐶𝑏 ∫

Ω

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨
𝑝(𝑡)

𝑑𝜌 (𝑡) ≤ 𝐶𝑏. (47)

Consequently,

∫
Ω

󵄨󵄨󵄨󵄨𝐿𝑛,1 (𝑓, 𝑥)
󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑑𝜌 (𝑥) ≤ 𝜌 (Ω) (𝐶𝑏

𝑝−
+ 𝐶𝑏

𝑝+
) . (48)

Step 2. Estimating the Second Term of (44). By the condition
∫
Ω

|𝐾𝑛(𝑥, 𝑡)|𝑑𝜌(𝑡) ≤ 𝐶0 in (14) with 𝐶0 ≥ 1, we know by the
Hölder inequality

∫
Ω

󵄨󵄨󵄨󵄨𝐿𝑛,2 (𝑓, 𝑥)
󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑑𝜌 (𝑥)

≤ ∫
Ω

{∫
Ω𝑛,𝑥

󵄨󵄨󵄨󵄨𝐾𝑛 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓 (𝑡)

󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑑𝜌 (𝑡)

× (∫
Ω𝑛,𝑥

󵄨󵄨󵄨󵄨𝐾𝑛 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨 𝑑𝜌 (𝑡))

𝑝(𝑥)−1

} 𝑑𝜌 (𝑥)

≤ 𝐶
𝑝+−1

0
∫
Ω

∫
Ω𝑛,𝑥

󵄨󵄨󵄨󵄨𝐾𝑛 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓 (𝑡)

󵄨󵄨󵄨󵄨
𝑝(𝑡)󵄨󵄨󵄨󵄨𝑓 (𝑡)

󵄨󵄨󵄨󵄨
𝑝(𝑥)−𝑝(𝑡)

× 𝑑𝜌 (𝑡) 𝑑𝜌 (𝑥)

= 𝐶
𝑝+−1

0
∫
Ω

∫
Ω𝑛,𝑥

𝐽𝑛 (𝑓, 𝑥, 𝑡)
󵄨󵄨󵄨󵄨𝑓 (𝑡)

󵄨󵄨󵄨󵄨
𝑝(𝑡)

𝑑𝜌 (𝑡) 𝑑𝜌 (𝑥) ,

(49)

where

𝐽𝑛 (𝑓, 𝑥, 𝑡) :=
󵄨󵄨󵄨󵄨𝐾𝑛 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓 (𝑡)

󵄨󵄨󵄨󵄨
𝑝(𝑥)−𝑝(𝑡)

, 𝑡 ∈ Ω𝑛,𝑥, 𝑥 ∈ Ω.

(50)

For 𝑡 ∈ Ω𝑛,𝑥, we have a bound |𝑓(𝑡)| ≤ 𝑛
𝛾 and the

restriction |𝑥 − 𝑡| ≤ 𝑛
−1/4. From the log-Hölder continuity

of the exponent function 𝑝, there exists a constant 𝐴𝑝 only
dependent on 𝑝 such that

𝑝 (𝑥) − 𝑝 (𝑡) ≤
𝐴𝑝

− log 𝑛−1/4
=

4𝐴𝑝

log 𝑛
. (51)
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When |𝑓(𝑡)| ≥ 1, we find

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨
𝑝(𝑥)−𝑝(𝑡)

≤ (𝑛
𝛾
)
4𝐴𝑝/ log 𝑛

≤ 𝑛
4𝛾𝐴𝑝/ log 𝑛 ≤ 𝑀̂𝑝, (52)

where the constant number 𝑀̂𝑝 defined by

𝑀̂𝑝 = sup
𝑛∈N

𝑛
4𝛾𝐴𝑝/ log 𝑛, (53)

is finite because

log 𝑛
4𝛾𝐴𝑝/ log 𝑛 =

4𝛾𝐴𝑝 log 𝑛

log 𝑛
󳨀→ 4𝛾𝐴𝑝, as 𝑛 󳨀→ ∞.

(54)

When |𝑓(𝑡)| < 1, we simply use |𝑓(𝑡)|
𝑝(𝑥)−𝑝(𝑡)

≤

|𝑓(𝑡)|
−𝑝(𝑡). Applying these bounds, we can estimate the core

part of Step 2 as

∫
Ω

∫
Ω𝑛,𝑥

𝐽𝑛 (𝑓, 𝑥, 𝑡)
󵄨󵄨󵄨󵄨𝑓 (𝑡)

󵄨󵄨󵄨󵄨
𝑝(𝑡)

𝑑𝜌 (𝑡) 𝑑𝜌 (𝑥)

≤ ∫
Ω

∫
Ω𝑛,𝑥

󵄨󵄨󵄨󵄨𝐾𝑛 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓 (𝑡)

󵄨󵄨󵄨󵄨
𝑝(𝑡)

(𝑀̂𝑝 +
󵄨󵄨󵄨󵄨𝑓 (𝑡)

󵄨󵄨󵄨󵄨
−𝑝(𝑡)

)

× 𝑑𝜌 (𝑡) 𝑑𝜌 (𝑥)

= 𝑀̂𝑝 ∫
Ω

∫
Ω𝑛,𝑥

󵄨󵄨󵄨󵄨𝐾𝑛 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓 (𝑡)

󵄨󵄨󵄨󵄨
𝑝(𝑡)

𝑑𝜌 (𝑡) 𝑑𝜌 (𝑥)

+ ∫
Ω

∫
Ω𝑛,𝑥

󵄨󵄨󵄨󵄨𝐾𝑛 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨 𝑑𝜌 (𝑡) 𝑑𝜌 (𝑥)

≤ 𝑀̂𝑝𝐶0 ∫
Ω

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨
𝑝(𝑡)

𝑑𝜌 (𝑡)

+ 𝐶0𝜌 (Ω) ≤ 𝐶0𝑀̂𝑝 + 𝐶0𝜌 (Ω) .

(55)

Here we have used the assumption ∫
Ω

|𝑓(𝑡)|
𝑝(𝑡)

𝑑𝜌(𝑡) ≤ 1 and
(14). So the second term of (44) can be estimated as

∫
Ω

󵄨󵄨󵄨󵄨𝐿𝑛,2 (𝑓, 𝑥)
󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑑𝜌 (𝑥) ≤ 𝐶
𝑝+
0

(𝑀̂𝑝 + 𝜌 (Ω)) . (56)

Step 3. Estimating the Third Term of (44). For 𝑡 ∈ Ω
󸀠

𝑛,𝑥
, we

have |𝑓(𝑡)| ≤ 𝑛
𝛾 and |𝑥 − 𝑡| > 𝑛

−1/4 yielding 𝑛
1/4

|𝑥 − 𝑡| > 1. It
follows that

󵄨󵄨󵄨󵄨𝐿𝑛,3 (𝑓, 𝑥)
󵄨󵄨󵄨󵄨 ≤ ∫

Ω󸀠
𝑛,𝑥

󵄨󵄨󵄨󵄨𝐾𝑛 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨 𝑛

𝛾
(𝑛

1/4
|𝑥 − 𝑡|)

2𝑟/𝑝(𝑥)

𝑑𝜌 (𝑡) ,

(57)

where 𝑟 is the integer part of 2𝛾𝑝+ + 1. Applying the Hölder
inequality and (14), we see that

󵄨󵄨󵄨󵄨𝐿𝑛,3(𝑓, 𝑥)
󵄨󵄨󵄨󵄨
𝑝(𝑥)

≤ ∫
Ω󸀠
𝑛,𝑥

𝑛
𝛾𝑝(𝑥)+(𝑟/2) 󵄨󵄨󵄨󵄨𝐾𝑛 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨 |𝑥 − 𝑡|
2𝑟

𝑑𝜌 (𝑡) 𝐶
𝑝(𝑥)−1

0
.

(58)

So by the bound 𝑝(𝑥) ≤ 𝑝+ and condition (16), the third term
of (44) can be bounded as

∫
Ω

󵄨󵄨󵄨󵄨𝐿𝑛,3 (𝑓, 𝑥)
󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑑𝜌 (𝑥) ≤ 𝐶
𝑝+−1

0
𝑛
𝛾𝑝++(𝑟/2)𝐶𝑟𝑛

−𝑟

= 𝐶
𝑝+−1

0
𝐶𝑟𝑛

𝛾𝑝+−(𝑟/2) ≤ 𝐶
𝑝+−1

0
𝐶𝑟.

(59)

Finally, we put the estimates (48), (56), and (59) into (44)
to conclude

∫
Ω

󵄨󵄨󵄨󵄨𝐿𝑛 (𝑓, 𝑥)
󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑑𝜌 (𝑥)

≤ 3
𝑝+ (𝜌 (Ω) (𝐶

𝑝−

𝑏
+ 𝐶

𝑝+

𝑏
)

+𝐶
𝑝+
0

(𝑀̂𝑝 + 𝜌 (Ω)) + 𝐶
𝑝+−1

0
𝐶𝑟) .

(60)

Take

𝜆 = 𝑀𝑝,𝑏 := 1 + 3
𝑝+ (𝜌 (Ω) (𝐶

𝑝−

𝑏
+ 𝐶

𝑝+

𝑏
)

+𝐶
𝑝+
0

(𝑀̂𝑝 + 𝜌 (Ω)) + 𝐶
𝑝+−1

0
𝐶𝑟) ;

(61)

we find

∫
Ω

(

󵄨󵄨󵄨󵄨𝐿𝑛 (𝑓, 𝑥)
󵄨󵄨󵄨󵄨

𝜆
)

𝑝(𝑥)

𝑑𝜌 (𝑥)

≤ (
1

𝜆
)

𝑝−

∫
Ω

󵄨󵄨󵄨󵄨𝐿𝑛 (𝑓, 𝑥)
󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑑𝜌 (𝑥) ≤ 1.

(62)

This implies ‖𝐿𝑛(𝑓)‖
𝐿
𝑝(⋅)

𝜌

≤ 𝑀𝑝,𝑏. The bound 𝑀𝑝,𝑏 is
independent of 𝑓. So we have ‖𝐿𝑛‖ ≤ 𝑀𝑝,𝑏. The proof
Theorem 6 is complete.

We are now in a position to proveTheorem 7.

Proof of Theorem 7. We follow the standard procedure in
approximation theory and consider the error 𝐿𝑛(𝑔, 𝑥) − 𝑔(𝑥)

for 𝑔 ∈ 𝑊
𝑟,∞

𝑝
. Apply the Taylor expansion

𝑔 (𝑡) = 𝑔 (𝑥) + ∑

1≤|𝛼|1≤𝑟−1

𝐷
𝛼
𝑔 (𝑥)

𝛼!
(𝑡 − 𝑥)

𝛼

+ 𝑅𝑔,𝑟 (𝑥, 𝑡) , 𝑥, 𝑡 ∈ Ω,

(63)

where the remainder term 𝑅𝑔,𝑟(𝑥, 𝑡) is given by

𝑅𝑔,𝑟 (𝑥, 𝑡)

= ∫

1

0

(1 − 𝑢)
𝑟−1

∑

|𝛼|1=𝑟

𝐷
𝛼
𝑔 (𝑥 + 𝑢 (𝑡 − 𝑥))

𝛼!
(𝑡 − 𝑥)

𝛼
𝑑𝑢.

(64)
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We see from the vanishing moment condition (20) that

𝐿𝑛 (𝑔, 𝑥) − 𝑔 (𝑥)

= ∫
Ω

𝐾𝑛 (𝑥, 𝑡)
{

{

{

𝑔 (𝑥) + ∑

1≤|𝛼|1≤𝑟−1

𝐷
𝛼
𝑔 (𝑥)

𝛼!
(𝑡 − 𝑥)

𝛼

+ 𝑅𝑔,𝑟 (𝑥, 𝑡)} 𝑑𝜌 (𝑡) − 𝑔 (𝑥)

= ∫
Ω

𝐾𝑛 (𝑥, 𝑡)
{

{

{

∫

1

0

(1 − 𝑢)
𝑟−1

∑

|𝛼|1=𝑟

𝐷
𝛼
𝑔 (𝑥 + 𝑢 (𝑡 − 𝑥))

𝛼!

× (𝑡 − 𝑥)
𝛼
𝑑𝑢} 𝑑𝜌 (𝑡) .

(65)

SinceΩ is convex, 𝑥+𝑢(𝑡−𝑥) ∈ Ω for any 𝑢 ∈ [0, 1], 𝑥, 𝑡 ∈ Ω.
So |𝐷

𝛼
𝑔(𝑥 + 𝑢(𝑡 − 𝑥))| ≤ ‖𝑔‖

𝑝,𝑟,∞
and we have

󵄨󵄨󵄨󵄨𝐿𝑛 (𝑔, 𝑥) − 𝑔 (𝑥)
󵄨󵄨󵄨󵄨

≤ ∫

1

0

(1 − 𝑢)
𝑟−1

× ∑

|𝛼|1=𝑟

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝑝,𝑟,∞

𝛼!
{∫

Ω

󵄨󵄨󵄨󵄨𝐾𝑛 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨 |𝑡 − 𝑥|

|𝛼|
𝑑𝜌 (𝑡)} 𝑑𝑢

≤ 𝑑
𝑟󵄩󵄩󵄩󵄩𝑔

󵄩󵄩󵄩󵄩𝑝,𝑟,∞ ∫
Ω

󵄨󵄨󵄨󵄨𝐾𝑛 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨 |𝑡 − 𝑥|

𝑟
𝑑𝜌 (𝑡) .

(66)

By (14) and the Hölder inequality,

(∫
Ω

󵄨󵄨󵄨󵄨𝐾𝑛(𝑥, 𝑡)
󵄨󵄨󵄨󵄨 |𝑡 − 𝑥|

𝑟
𝑑𝜌(𝑡))

𝑝(𝑥)

≤ ∫
Ω

󵄨󵄨󵄨󵄨𝐾𝑛 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨 |𝑡 − 𝑥|

𝑟𝑝(𝑥)
𝑑𝜌 (𝑡) 𝐶

𝑝(𝑥)−1

0
.

(67)

If we denote the largest integer 𝑟− satisfying 2𝑟− ≤ 𝑟𝑝− as 𝑟−,
and the smallest integer 𝑟+ satisfying 2𝑟+ ≥ 𝑟𝑝+, we find

|𝑡 − 𝑥|
𝑟𝑝(𝑥)

≤ {
|𝑡 − 𝑥|

𝑟𝑝+ ≤ |𝑡 − 𝑥|
2𝑟+ , if |𝑡 − 𝑥| ≥ 1,

|𝑡 − 𝑥|
𝑟𝑝− ≤ |𝑡 − 𝑥|

2𝑟− , if |𝑡 − 𝑥| < 1.
(68)

We combine this with (16) and see that for 𝜆 = 𝑑
𝑟
‖𝑔‖

𝑝,𝑟,∞
,

∫
Ω

(

󵄨󵄨󵄨󵄨𝐿𝑛 (𝑔, 𝑥) − 𝑔 (𝑥)
󵄨󵄨󵄨󵄨

𝜆
)

𝑝(𝑥)

𝑑𝜌 (𝑥)

≤ 𝐶
𝑝+−1

0
∫
Ω

∫
Ω

󵄨󵄨󵄨󵄨𝐾𝑛 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨 {|𝑡 − 𝑥|

2𝑟+ + |𝑡 − 𝑥|
2𝑟−} 𝑑𝜌 (𝑡) 𝑑𝜌 (𝑥)

≤ 𝐶
𝑝+−1

0
(𝐶𝑟+

𝑛
−𝑟+ + 𝐶𝑟−

𝑛
−𝑟−) ≤ 𝐶

𝑝+−1

0
(𝐶𝑟+

+ 𝐶𝑟−
) 𝑛

−𝑟− .

(69)

When 𝑛 ≥ 𝐶
(𝑝+−1)/𝑟−
0

(𝐶𝑟+
+ 𝐶𝑟−

)
1/𝑟− , we take

𝜆̃ = 𝑑
𝑟󵄩󵄩󵄩󵄩𝑔

󵄩󵄩󵄩󵄩𝑝,𝑟,∞(𝐶
𝑝+−1

0
(𝐶𝑟+

+ 𝐶𝑟−
) 𝑛

−𝑟−)
1/𝑝+ (70)

and find

∫
Ω

(

󵄨󵄨󵄨󵄨𝐿𝑛 (𝑔, 𝑥) − 𝑔 (𝑥)
󵄨󵄨󵄨󵄨

𝜆̃
)

𝑝(𝑥)

𝑑𝜌 (𝑥) ≤ 1, (71)

which implies

󵄩󵄩󵄩󵄩𝐿𝑛(𝑔) − 𝑔
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)𝜌

≤ 𝜆̃ ≤ 𝑑
𝑟
𝐶
1−(1/𝑝+)

0
(𝐶𝑟+

+ 𝐶𝑟−
)
1/𝑝+

𝑛
−𝑟−/𝑝+󵄩󵄩󵄩󵄩𝑔

󵄩󵄩󵄩󵄩𝑝,𝑟,∞.

(72)

Thus by Theorem 6 and taking infimum over 𝑔 ∈ 𝑊
𝑟,∞

𝑝
, we

have
󵄩󵄩󵄩󵄩𝐿𝑛(𝑓) − 𝑓

󵄩󵄩󵄩󵄩𝐿𝑝(⋅)𝜌

≤ inf
𝑔∈𝑊
𝑟,∞
𝑝

{
󵄩󵄩󵄩󵄩𝐿𝑛(𝑓 − 𝑔)

󵄩󵄩󵄩󵄩𝐿𝑝(⋅)𝜌
+

󵄩󵄩󵄩󵄩𝐿𝑛(𝑔) − 𝑔
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)𝜌

+
󵄩󵄩󵄩󵄩𝑔 − 𝑓

󵄩󵄩󵄩󵄩𝐿𝑝(⋅)𝜌
}

≤ inf
𝑔∈𝑊
𝑟,∞
𝑝

{(𝑀𝑝,𝑏 + 1)
󵄩󵄩󵄩󵄩𝑓 − 𝑔

󵄩󵄩󵄩󵄩𝐿𝑝(⋅)𝜌

+𝑑
𝑟
𝐶
1−(1/𝑝+)

0
(𝐶𝑟+

+ 𝐶𝑟−
)
1/𝑝+

𝑛
−𝑟−/𝑝+󵄩󵄩󵄩󵄩𝑔

󵄩󵄩󵄩󵄩𝑝,𝑟,∞}

≤ 𝐴𝑝,𝑏,𝑑K𝑟(𝑓, 𝑛
−𝑟−/𝑝+)

𝑝(⋅)
,

(73)

where the constant 𝐴𝑝,𝑏,𝑑 is given by

𝐴𝑝,𝑏,𝑑 = 𝑀𝑝,𝑏 + 1 + 𝑑
𝑟
𝐶
1−(1/𝑝+)

0
(𝐶𝑟+

+ 𝐶𝑟−
)
1/𝑝+

. (74)

When 𝑛 < 𝐶
(𝑝+−1)/𝑟−
0

(𝐶𝑟+
+ 𝐶𝑟−

)
1/𝑟− , then from the

inequality ‖𝑓 − 𝑔‖
𝐿
𝑝(⋅)

𝜌

+ 𝑡‖𝑔‖
𝑝,𝑟,∞

≥ 𝑡‖𝑓‖
𝐿
𝑝(⋅)

𝜌

valid for 𝑡 ≤ 1

we observe

K𝑟(𝑓, 𝑛
−𝑟−/𝑝+)

𝑝(⋅)
≥ 𝑛

−𝑟−/𝑝+󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)𝜌

, (75)

and applyingTheorem 6 directly yields

󵄩󵄩󵄩󵄩𝐿𝑛(𝑓) − 𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)𝜌

≤ (𝑀𝑝,𝑏 + 1)
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿𝑝(⋅)𝜌

≤ (𝑀𝑝,𝑏 + 1) 𝑛
𝑟−/𝑝+K𝑟(𝑓, 𝑛

−𝑟−/𝑝+)
𝑝(⋅)

(76)

and thereby (21) by setting

𝐴𝑝,𝑏,𝑑 = (𝑀𝑝,𝑏 + 1) 𝐶
1−(1/𝑝+)

0
(𝐶𝑟+

+ 𝐶𝑟−
)
1/𝑝+

. (77)

The proof of Theorem 7 is complete.
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6. Further Topics and Discussion

Approximation by linear operators is an important topic
in approximation theory. It mainly consists of two families
of approximation schemes: Bernstein type positive linear
operators and quasi-interpolation type linear operators in
multivariate approximation.

In this paper, we mainly consider Bernstein type pos-
itive linear operators. We verified a conjecture in [11]
about the uniformboundedness of Bernstein-Durrmeyer and
Bernstein-Kantorovich operators with respect to an arbitrary
Borel measure on (0, 1) on the variable 𝐿

𝑝(⋅)

𝜌
space under

the assumption of log-Hölder continuity of the exponent
function 𝑝. We also provide quantitative estimates for high
orders of approximation on the variable 𝐿

𝑝(⋅)

𝜌
by linear

combinations of Bernstein type positive linear operators.
The study of quasi-interpolation type linear operators

started with the classical work of Schoenberg on cardinal
interpolation by B-splines. It has been developed significantly
due to important applications in the areas of finite element
methods, cardinal interpolation for multivariate approxima-
tion, and wavelet analysis. A large class of linear operators for
approximating functions on R𝑑 take the form

𝑇 (𝑓, 𝑥) = ∫
R𝑑

Φ (𝑥, 𝑡) 𝑓 (𝑡) 𝑑𝑡, 𝑥 ∈ R
𝑑
, (78)

where Φ : R𝑑
× R𝑑

→ R is a window function
satisfying ∫

R𝑑
Φ(𝑥, 𝑡)𝑑𝑡 = 1 and some conditions for decays

of |Φ(𝑥, 𝑡) as |𝑥 − 𝑡| increases. Quantitative estimates for the
approximation of functions in 𝐶(R𝑑

) ∩ 𝐿
∞

(R𝑑
) or 𝐿

𝑝
(R𝑑

)

with 1 ≤ 𝑝 < ∞ can be found in a large literature of
multivariate approximation (see, e.g., [20, 21, 28]). Establish-
ing analysis for approximation by quasi-interpolation type
linear operators on the variable 𝐿

𝑝(⋅)

𝜌
spaces would be an

interesting topic. An immediate barrier we meet with such
analysis is the boundedness assumption of the measure 𝜌

(𝜌(Ω) < ∞). This assumption is not satisfied for most
quasi-interpolation type linear operators or the classical
Weierstrass (or Gaussian convolution) operators W𝑛(𝑓) =

(√𝑛/2𝜋)
𝑑

∫
R𝑑

exp{−𝑛‖𝑡 − 𝑥‖
2

2
/2}𝑓(𝑡)𝑑𝑡, for which 𝜌 is often

the Lebesgue measure on R𝑑. It is desirable to overcome
the technical difficulty and establish error analysis for linear
operators with respect to unbounded measures.

We describedmotivations of our study in learning theory.
It would be interesting to implement detailed error analysis
for some related learning algorithms in classification and
quantile regression by means of our results on orders of
approximation by linear operators.
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