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We consider the strong and total Lagrange dualities for infinite quasiconvex optimization problems. By using the epigraphs of the 𝑧-
quasi-conjugates and the Greenberg-Pierskalla subdifferential of these functions, we introduce some new constraint qualifications.
Under the new constraint qualifications, we provide some necessary and sufficient conditions for infinite quasiconvex optimization
problems to have the strong and total Lagrange dualities.

1. Introduction

Consider the following infinite optimization problem:

Minimize 𝑓 (𝑥) ,

s.t. 𝑓
𝑡
(𝑥) ≤ 0, 𝑡 ∈ 𝑇,

𝑥 ∈ 𝐶,

(1)

where 𝑇 is an arbitrary (possibly infinite) index set, 𝐶 is
a nonempty convex subset of a locally convex (Hausdorff
topological vector) space 𝑋, and 𝑓, 𝑓

𝑡
: 𝑋 → R :=

R ∪ {+∞}, 𝑡 ∈ 𝑇, are proper functions. This problem has
been studied extensively under various degrees of restrictions
imposed on the involved functions or on the underlying
space andmany problems in optimization and approximation
theory such as linear semi-infinite optimization and the best
approximation with restricted ranges can be recast into the
form (1); see, for example, [1–12].

Observe that most works in the literature mentioned
above were done under the assumptions that the involved
functions are convex. Indeed, inmathematical programming,
many of the problems naturally involve nonconvex func-
tions. Recently, the quasiconvex programming, for which
the involved functions are quasiconvex, has received much
attention (cf. [13–18] and the references therein). Inspired
by the works mentioned above, we continue to study the

optimization problem (1) butwith𝑓 and𝑓
𝑡
being quasiconvex

functions. The present paper is centered around the strong
Lagrange duality and the total Lagrange duality for this
quasiconvex programming. Usually for the strong Lagrange
duality, one finds conditions ensuring the following equality:

inf
𝑥∈𝐴

𝑓 (𝑥) = max
𝜆∈R
(𝑇)
+

inf
𝑥∈𝐶

{𝑓 (𝑥) + ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
(𝑥)} , (2)

and for the total Lagrange duality, one seeks conditions
ensuring that the following implication holds for 𝑥

0
∈ 𝐴 :=

{𝑥 ∈ 𝐶 : 𝑓
𝑡
(𝑥) ≤ 0, ∀𝑡 ∈ 𝑇}:

[𝑓 (𝑥
0
) = min
𝑥∈𝐴

𝑓 (𝑥)]

󳨐⇒ [∃𝜆 ∈ R
(𝑇)

+
, s.t. inf

𝑥∈𝐶

{𝑓 (𝑥) + ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
(𝑥)}

= 𝑓 (𝑥
0
) ] ,

(3)

where

R
(𝑇)

+
:= {𝜆 = (𝜆

𝑡
) ∈ R
𝑇
: 𝜆
𝑡
≥ 0 for each 𝑡 ∈ 𝑇

and only finitely many 𝜆
𝑡

̸= 0} .

(4)
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To our knowledge, not many results are known to provide
complete characterizations for the strong and total Lagrange
dualities for quasiconvex programming.

Constraint qualifications involving epigraphs of the con-
jugate functions have been studied extensively. Ourmain aim
in the present paper is to use these constraint qualifications
(or their variations) to provide complete characterizations for
the strong Lagrange duality and for the total Lagrange duality.
It is well known that the Fenchel conjugate provides dual
problems of convex minimization problems. In a similar way,
different notions of conjugate for quasiconvex functions can
be introduced in order to obtain dual problems of quasicon-
vex minimization problems. Note that the 𝑧-quasi-conjugate
(𝑧 ∈ R), defined by Greenberg and Pierskalla [13], plays in
quasiconvex optimization the same role as the one Fenchel
conjugate plays in convex optimization.Thus, by using the 𝑧-
quasi-conjugate, we introduce a new constraint qualification
which completely characterizes the strong Lagrange dual-
ity. Furthermore, many authors introduced some constraint
qualifications involving the subdifferentials to establish the
total Lagrange duality for convex programming. Similar
to the convex case, we introduce the Greenberg-Pierskalla
subdifferential to consider the total Lagrange duality for the
quasiconvex programming.

The paper is organized as follows. The next section
contains the necessary notations and preliminary results. In
Section 3, some new constraint qualifications are provided
and some relationships among them are given. In Section 4,
we provide characterizations for the quasiconvex program-
ming to have the strong Lagrange duality and the total
Lagrange duality.

2. Notations and Preliminary Results

The notations used in this paper are standard (cf. [19]). In
particular, we assume throughout the whole paper that 𝑋 is
a real locally convex space and let 𝑋∗ denote the dual space
of 𝑋. For 𝑥 ∈ 𝑋 and 𝑥

∗
∈ 𝑋
∗, we write ⟨𝑥

∗
, 𝑥⟩ for the value

of 𝑥∗ at 𝑥; that is, ⟨𝑥∗, 𝑥⟩ := 𝑥
∗
(𝑥). Let 𝑍 be a set in 𝑋. The

indicator function 𝛿
𝑍
of 𝑍 is defined by

𝛿
𝑍
(𝑥) := {

0, 𝑥 ∈ 𝑍,

+∞, otherwise.
(5)

The normal cone of 𝑍 at 𝑧
0
∈ 𝑍 is denoted by 𝑁

𝑍
(𝑧
0
) and is

defined by

𝑁
𝑍
(𝑧
0
) := {𝑥

∗
∈ 𝑋
∗
: ⟨𝑥
∗
, 𝑧 − 𝑧

0
⟩ ≤ 0 ∀𝑧 ∈ 𝑍} . (6)

Following [2], we use R(𝑇) to denote the space of real tuples
𝜆 = (𝜆

𝑡
)
𝑡∈𝑇

with only finitely many 𝜆
𝑡

̸= 0, and letR(𝑇)
+

denote
the nonnegative cone in R(𝑇); that is,

R
(𝑇)

+
:= {(𝜆

𝑡
)
𝑡∈𝑇

∈ R
(𝑇)

: 𝜆
𝑡
≥ 0 for each 𝑡 ∈ 𝑇} . (7)

Let 𝑓 : 𝑋 → R be a proper function. The effective
domain, convex conjugate function, and epigraph of 𝑓 are

denoted by dom𝑓, 𝑓
∗, and epi𝑓, respectively; they are

defined by

dom𝑓 := {𝑥 ∈ 𝑋 : 𝑓 (𝑥) < +∞} ,

𝑓
∗
(𝑥
∗
) := sup {⟨𝑥

∗
, 𝑥⟩ − 𝑓 (𝑥) : 𝑥 ∈ 𝑋}

for each 𝑥
∗
∈ 𝑋
∗
,

epi𝑓 := {(𝑥, 𝑟) ∈ 𝑋 ×R : 𝑓 (𝑥) ≤ 𝑟} .

(8)

Recall that a function 𝑓 is said to be quasiconvex if, for all
𝑥, 𝑦 ∈ R and 𝛼 ∈ (0, 1), the following inequality holds:

𝑓 (𝛼𝑥 + (1 − 𝛼) 𝑦) ≤ max {𝑓 (𝑥) , 𝑓 (𝑦)} , (9)

or equivalently its sublevel sets

{𝑥 ∈ 𝑋 : 𝑓 (𝑥) ≤ 𝑟} for each 𝑟 ∈ R (10)

are convex. Obviously, each convex function is quasiconvex.
The following definition is taken from [13].

Definition 1. Let 𝑧 ∈ R. The 𝑧-quasi-conjugate of 𝑓 is a
function 𝑓

∗

𝑧
: 𝑋
∗

→ R defined by

𝑓
∗

𝑧
(𝑥
∗
) = 𝑧 − inf {𝑓 (𝑦) : ⟨𝑥

∗
, 𝑦⟩ ≥ 𝑧} . (11)

Note that (11) implies that

𝑓
∗

𝑧
(𝑥
∗
) ≥ 𝑧 − 𝑓 (𝑦) for each 𝑦 ∈ {𝑦 ∈ 𝑋 : ⟨𝑥

∗
, 𝑦⟩ ≥ 𝑧} .

(12)

Then the 𝑧-quasi-conjugate function 𝑓
∗

𝑧
provides a lower

bound for the corresponding conjugate function 𝑓
∗ and,

indeed, the conjugate function 𝑓
∗ is the supremum of the 𝑧-

quasi-conjugates 𝑓∗
𝑧
over 𝑧. Moreover, by the definition, one

finds that 𝑓∗
𝑧
is quasiconvex for each 𝑧 ∈ R; that is,

𝑓
∗

𝑧
(𝛼𝑥
∗

1
+ (1 − 𝛼) 𝑥

∗

2
) ≤ max {𝑓∗

𝑧
(𝑥
∗

1
) , 𝑓
∗

𝑧
(𝑥
∗

2
)}

for each 𝑥
∗

1
, 𝑥
∗

2
∈ 𝑋
∗
, 𝛼 ∈ (0, 1) .

(13)

For quasiconvex functions, several types of subdifferen-
tials have been defined and observed by many researchers,
for example, GP-subdifferential [13], R-quasi-subdifferential
[20], MLS-subdifferential [21], and so on. The classical
Greenberg-Pierskalla subdifferential is among the simplest
concepts, which is given as follows (cf. [13]).

Definition 2. TheGreenberg-Pierskalla subdifferential of𝑓 at
𝑥 ∈ dom𝑓 is defined by

𝜕
∗
𝑓 (𝑥) := {𝑥

∗
∈ 𝑋
∗
: 𝑓 (𝑥) + 𝑓

∗

⟨𝑥
∗
,𝑥⟩

(𝑥
∗
) = ⟨𝑥

∗
, 𝑥⟩} . (14)

We also define

dom 𝜕
∗
𝑓 := {𝑥 ∈ 𝑋 : 𝜕

∗
𝑓 (𝑥) ̸= 0} ,

im𝜕
∗
𝑓 := {𝑥

∗
∈ 𝑋
∗
: 𝑥
∗
∈ 𝜕
∗
𝑓 (𝑥) for some 𝑥 ∈ 𝑋} .

(15)

By definition,

𝜕
∗
𝑓 (𝑥) = {𝑥

∗
∈ 𝑋
∗
: ⟨𝑥
∗
, 𝑦 − 𝑥⟩ ≥ 0 󳨐⇒ 𝑓 (𝑦) ≥ 𝑓 (𝑥)} ,

(16)
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which is equivalent to the following equivalence, holds:

𝑥
∗
∈ 𝜕
∗
𝑓 (𝑥) ⇐⇒ ⟨𝑥

∗
, 𝑦 − 𝑥⟩ < 0 for each 𝑦 ∈ 𝑆

𝑓
(𝑥) ,

(17)

where 𝑆
𝑓
(𝑥) denotes the strict sublevel sets

𝑆
𝑓
(𝑥) := {𝑦 ∈ 𝑋 : 𝑓 (𝑦) < 𝑓 (𝑥)} . (18)

Moreover, the following equivalence holds:

0 ∈ 𝜕
∗
𝑓 (𝑥) ⇐⇒ 𝑥 is a mimimizer of 𝑓 on 𝑋. (19)

Recall that the subdifferential of function 𝑔 at 𝑥 ∈ dom𝑔 is
defined by

𝜕𝑔 (𝑥) := {𝑥
∗
∈ 𝑋
∗
: 𝑔 (𝑥) + ⟨𝑥

∗
, 𝑦 − 𝑥⟩

≤ 𝑔 (𝑦) for each 𝑦 ∈ 𝑋} .

(20)

Then,

𝜕𝑔 (𝑥) ⊆ 𝜕
∗
𝑔 (𝑥) for each 𝑥 ∈ dom𝑔. (21)

By definition, we can obtain the following lemma easily,
which was proved in [13] when𝑋 = R𝑛.

Lemma 3. Let 𝑔, ℎ be proper quasiconvex functions on𝑋 and
let 𝑥
0
∈ dom𝑔 ∩ dom ℎ. Then the following statements hold.

(i) If 𝑔 ≤ ℎ, then 𝑔
∗

𝑧
≥ ℎ
∗

𝑧
and hence epi𝑔∗

𝑧
⊆ epi ℎ∗

𝑧
for

each 𝑧 ∈ R.
(ii) If 𝑔 ≤ ℎ and 𝑔(𝑥

0
) = ℎ(𝑥

0
), then 𝜕

∗
𝑔(𝑥
0
) ⊆ 𝜕
∗
ℎ(𝑥
0
).

The following lemma is known in [19, Theorem 2.8.7].

Lemma 4. Let 𝑔, ℎ : 𝑋 → R be proper convex functions. If 𝑔
or ℎ is continuous at some point of dom𝑔 ∩ dom ℎ, then

epi (𝑔 + ℎ)
∗

= epi𝑔∗ + epi ℎ∗,

𝜕 (𝑔 + ℎ) (𝑥) = 𝜕𝑔 (𝑥) + 𝜕ℎ (𝑥)

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ dom𝑔 ∩ dom ℎ;

(22)

consequently, if ℎ ∈ 𝑋
∗, then

epi (𝑔 + ℎ)
∗

= epi𝑔∗ + {ℎ} × [0, +∞) ,

𝜕 (𝑔 + ℎ) (𝑥) = 𝜕𝑔 (𝑥) + ℎ 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ dom𝑔.

(23)

The following example shows that (22) do not necessarily
hold if 𝑔 is a quasiconvex function even in the case when ℎ ∈

𝑋
∗.

Example 5. Let 𝑋 := R and define the function 𝑔 : R → R

by

𝑔 (𝑥) := {

1, 𝑥 ≥ 0,

0, 𝑥 < 0.

(24)

Then

epi𝑔∗
0
= ((0, +∞) × [−1, +∞)) ∪ ((−∞, 0] × [0, +∞)) ,

𝜕
∗
𝑔 (0) = {𝑥

∗
∈ R : 𝑥

∗
⋅ 𝑥 < 0 for each 𝑥 < 0} = (0, +∞) .

(25)

Take 𝑝 = 2. Then for each 𝑥
∗
∈ R,

(𝑔 + 𝑝)
∗

0
(𝑥
∗
) = {

−1, 𝑥
∗
> 0,

+∞, 𝑥
∗
≤ 0,

𝑝
∗

0
(𝑥
∗
) = {

+∞, 𝑥
∗
> 0,

0, 𝑥
∗
≤ 0,

(26)

and hence

epi (𝑔 + 𝑝)
∗

0
= (0, +∞) × [−1, +∞) ,

epi𝑝∗
0
= (−∞, 0] × [0, +∞) ,

(27)

Therefore,

epi (𝑔 + 𝑝)
∗

0
̸= epi𝑔∗

0
+ epi𝑝∗

0
. (28)

On the other hand, take 𝑝 = −2. Then 𝑆
𝑔+𝑝

(0) = (−∞, 0)

and 𝑆
𝑝
(0) = 0. Hence,

𝜕
∗
(𝑔 + 𝑝) (0) = {𝑥

∗
∈ R : 𝑥

∗
⋅ 𝑥 < 0

for each 𝑥 ∈ 𝑆
𝑔+𝑝

(0)} = (0, +∞) ,

𝜕
∗
𝑝 (0) = {𝑥

∗
∈ R : 𝑥

∗
⋅ 𝑥 < 0 for each 𝑥 ∈ 𝑆

𝑝
(0)} = R.

(29)

Therefore,

𝜕
∗
(𝑔 + 𝑝) (0) ̸= 𝜕

∗
𝑔 (0) + 𝜕

∗
𝑝 (0) . (30)

3. New Regularity Conditions for
Lagrange Dualities

Unless explicitly stated otherwise, let 𝑇, 𝐶, 𝑓, {𝑓
𝑡
: 𝑡 ∈ 𝑇} and

𝐴 be as in Section 1; namely, 𝑇 is an index set, 𝐶 ⊆ 𝑋 is a
convex set, 𝑓 and 𝑓

𝑡
, 𝑡 ∈ 𝑇 are proper quasiconvex functions

such that 𝑓+𝛿
𝐶
+∑
𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
is quasiconvex for each 𝜆 ∈ R(𝑇)

+
,

and 𝐴 ̸= 0 is the solution set of the following system:

𝑥 ∈ 𝐶; 𝑓
𝑡
(𝑥) ≤ 0 for each 𝑡 ∈ 𝑇. (31)

Then, 𝐴 is a convex set. Throughout we also assume that
dom𝑓 ∩ 𝐴 ̸= 0. For each 𝑥 ∈ 𝑋, let 𝑇(𝑥) be the active index
set of system (31); that is,

𝑇 (𝑥) := {𝑡 ∈ 𝑇 : 𝑓
𝑡
(𝑥) = 0} . (32)

To study the strong Lagrange duality and the total Lagrange
duality, we need the following regularity conditions.
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Definition 6. The family {𝛿
𝐶
; 𝑓
𝑡
: 𝑡 ∈ 𝑇} is said to have

(a) the quasi-(WEHP) if

epi (𝑓 + 𝛿
𝐴
)
∗

0
∩ ({0} ×R)

= ⋃

𝜆∈R
(𝑇)
+

epi (𝑓 + 𝛿
𝐶
+ ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
)

∗

0

∩ ({0} ×R) ;

(33)

(b) the quasi-(WBCQ) at 𝑥 ∈ dom 𝑓 ∩ 𝐴 if

𝜕
∗
(𝑓 + 𝛿

𝐴
) (𝑥) ∩ {0}

= ⋃

𝜆∈R(𝑇)+
∑𝑡∈𝑇 𝜆𝑡𝑓𝑡(𝑥)=0

𝜕
∗
(𝑓 + 𝛿

𝐶
+ ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
) (𝑥) ∩ {0} ;

(34)

(c) the quasi-(WBCQ) if it has the quasi-(WBCQ) at each
point in dom𝑓 ∩ 𝐴.

Remark 7. Note that 𝑓 + 𝛿
𝐶
+ ∑
𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
≤ 𝑓 + 𝛿

𝐴
holds for

each 𝜆 ∈ R(𝑇)
+

. Then, by Lemma 3(i), (𝑓 + 𝛿
𝐶
+ ∑
𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
)
∗

𝑧
≥

(𝑓 + 𝛿
𝐴
)
∗

𝑧
for each 𝑧 ∈ R and hence

⋃

𝜆∈R
(𝑇)
+

epi(𝑓 + 𝛿
𝐶
+ ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
)

∗

𝑧

⊆ epi (𝑓 + 𝛿
𝐴
)
∗

𝑧

for each 𝑧 ∈ R.

(35)

Moreover, for each 𝜆 ∈ R(𝑇)
+

satisfying ∑
𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
(𝑥) = 0,

𝑓 (𝑥) + 𝛿
𝐴
(𝑥) = 𝑓 (𝑥) = 𝑓 (𝑥) + 𝛿

𝐶
(𝑥) + ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
(𝑥)

for each 𝑥 ∈ 𝐴.

(36)

Thus, by Lemma 3(ii), we have

⋃

𝜆∈R(𝑇)+
∑𝑡∈𝑇 𝜆𝑡𝑓𝑡(𝑥)=0

𝜕
∗
(𝑓 + 𝛿

𝐶
+ ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
) (𝑥) ⊆ 𝜕

∗
(𝑓 + 𝛿

𝐴
) (𝑥) .

(37)

Therefore, (33) holds if and only if

epi (𝑓 + 𝛿
𝐴
)
∗

0
∩ ({0} ×R)

⊆ ⋃

𝜆∈R
(𝑇)
+

epi(𝑓 + 𝛿
𝐶
+ ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
)

∗

0

∩ ({0} ×R) ;

(38)

and (34) holds if and only if the following inclusion holds:

𝜕
∗
(𝑓 + 𝛿

𝐴
) (𝑥) ∩ {0}

⊆ ⋃

𝜆∈R(𝑇)+
∑𝑡∈𝑇 𝜆𝑡𝑓𝑡(𝑥)=0

𝜕
∗
(𝑓 + 𝛿

𝐶
+ ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
) (𝑥) ∩ {0} .

(39)

The following proposition describes the relationship between
the quasi-(WEHP) and the quasi-(WBCQ).

Proposition 8. The following implication holds:

𝑡ℎ𝑒 𝑞𝑢𝑎𝑠𝑖- (𝑊𝐸𝐻𝑃) 󳨐⇒ 𝑡ℎ𝑒 𝑞𝑢𝑎𝑠𝑖- (𝑊𝐵𝐶𝑄) . (40)

Furthermore, if 0 ∈ im 𝜕
∗
(𝑓 + 𝛿

𝐴
), then

𝑡ℎ𝑒 𝑞𝑢𝑎𝑠𝑖- (𝑊𝐸𝐻𝑃) ⇐⇒ 𝑡ℎ𝑒 𝑞𝑢𝑎𝑠𝑖- (𝑊𝐵𝐶𝑄) . (41)

Proof. Suppose that the quasi-(WEHP) holds. To show the
quasi-(WBCQ), by Remark 7, it suffices to show (39) holds.
To do this, let 𝑥

0
∈ dom𝑓 ∩ 𝐴 and let 0 ∈ 𝜕

∗
(𝑓 + 𝛿

𝐴
)(𝑥
0
).

Then by (19), 𝑓(𝑥
0
) ≤ 𝑓(𝑥) for each 𝑥 ∈ 𝐴. Hence, by the

definition of 0-conjugate function,

(0, −𝑓 (𝑥
0
)) ∈ epi (𝑓 + 𝛿

𝐴
)
∗

0

= ⋃

𝜆∈R
(𝑇)
+

epi(𝑓 + 𝛿
𝐶
+ ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
)

∗

0

,

(42)

thanks to the assumed quasi-(WEHP).This implies that there
exists 𝜆 ∈ R(𝑇)

+
such that

(0, −𝑓 (𝑥
0
)) ∈ epi(𝑓 + 𝛿

𝐶
+ ∑

𝑡∈𝐽

𝜆
𝑡
𝑓
𝑡
)

∗

0

, (43)

where 𝐽 ⊆ 𝑇 is a finite subset and (𝜆
𝑡
) ∈ R(𝑇)

+
with 𝐽 = {𝑡 ∈

𝑇 : 𝜆
𝑡

̸= 0}. By definition, (43) is equivalent to

(𝑓 + 𝛿
𝐶
+ ∑

𝑡∈𝐽

𝜆
𝑡
𝑓
𝑡
) (𝑥) ≥ 𝑓 (𝑥

0
) ≥ (𝑓 + 𝛿

𝐶
+ ∑

𝑡∈𝐽

𝜆
𝑡
𝑓
𝑡
)(𝑥
0
)

for each 𝑥 ∈ 𝑋,

(44)

where the last inequality holds because 𝑓
𝑡
(𝑥
0
) ≤ 0 for each

𝑡 ∈ 𝐽, while, by (19), (44) holds if and only if

0 ∈ 𝜕
∗
(𝑓 + 𝛿

𝐶
+ ∑

𝑡∈𝐽

𝜆
𝑡
𝑓
𝑡
) (𝑥
0
) . (45)

Below we show that 𝐽 ⊆ 𝑇(𝑥
0
). Note by (43) that

(𝑓 + 𝛿
𝐶
+ ∑

𝑡∈𝐽

𝜆
𝑡
𝑓
𝑡
)

∗

0

(0) ≤ −𝑓 (𝑥
0
) , (46)

while, by definition,

(𝑓 + 𝛿
𝐶
+ ∑

𝑡∈𝐽

𝜆
𝑡
𝑓
𝑡
)

∗

0

(0) ≥ −(𝑓 + 𝛿
𝐶
+ ∑

𝑡∈𝐽

𝜆
𝑡
𝑓
𝑡
)(𝑥
0
) .

(47)

Hence, by the above inequalities, one has that

(𝑓 + 𝛿
𝐶
+ ∑

𝑡∈𝐽

𝜆
𝑡
𝑓
𝑡
)(𝑥
0
) ≥ 𝑓 (𝑥

0
) . (48)
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Since 𝜆
𝑡
> 0 and 𝑓

𝑡
(𝑥) ≤ 0 for each 𝑡 ∈ 𝐽, this implies that

𝜆
𝑡
𝑓
𝑡
(𝑥) = 0; that is, 𝑓

𝑡
(𝑥) = 0 for each 𝑡 ∈ 𝐽. Thus 𝐽 ⊆ 𝑇(𝑥),

and hence, (39) holds.
Conversely, suppose that 0 ∈ Im 𝜕

∗
(𝑓 + 𝛿

𝐴
). To show

the quasi-(WEHP), by Remark 7, we only need to show (38)
holds. To do this, note that 0 ∈ Im 𝜕

∗
(𝑓 + 𝛿

𝐴
). Then there

exists 𝑥
0
∈ dom𝑓 ∩ 𝐴 such that

0 ∈ 𝜕
∗
(𝑓 + 𝛿

𝐴
) (𝑥
0
)

⊆ ⋃

𝜆∈R(𝑇)+
∑𝑡∈𝑇 𝜆𝑡𝑓𝑡(𝑥0)=0

𝜕
∗
(𝑓 + 𝛿

𝐶
+ ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
)(𝑥
0
) ,

(49)

thanks to the assumed quasi-(WBCQ).Therefore, there exists
𝜆 ∈ R(𝑇)

+
such that

𝑥
∗
∈ 𝜕
∗
(𝑓 + 𝛿

𝐶
+ ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
) (0) (50)

with

∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
(𝑥
0
) = 0. (51)

These two relations imply that

𝑓 (𝑥
0
) + (𝑓 + 𝛿

𝐶
+ ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
)

∗

0

(0) = 0. (52)

Moreover, since 0 ∈ 𝜕
∗
(𝑓 + 𝛿

𝐴
)(𝑥
0
), it follows that

𝑓 (𝑥
0
) + (𝑓 + 𝛿

𝐴
)
∗

0
(0) = 0. (53)

Combining (53) with (52), we have that

(𝑓 + 𝛿
𝐴
)
∗

0
(0) = (𝑓 + 𝛿

𝐶
+ ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
)

∗

0

(0) . (54)

Hence, for each 𝑟 ∈ R satisfying (0, 𝑟) ∈ epi(𝑓+𝛿
𝐴
)
∗

0
, we have

(0, 𝑟) ∈ epi(𝑓 + 𝛿
𝐶
+ ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
)

∗

0

⊆ ⋃

𝜆∈R
(𝑇)
+

epi(𝑓 + 𝛿
𝐶
+ ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
)

∗

0

.

(55)

Thus, (38) holds and the proof is complete.

4. Strong and Total Lagrange Dualities for
Infinite Quasiconvex Programming

Consider the following quasiconvex programming:

(𝑃) Minimize 𝑓 (𝑥) ,

s.t. 𝑓
𝑡
(𝑥) ≤ 0, 𝑡 ∈ 𝑇,

𝑥 ∈ 𝐶.

(56)

Its dual problem is defined by

(𝐷) sup
𝜆∈R
(𝑇)
+

inf
𝑥∈𝐶

{𝑓 (𝑥) + ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
(𝑥)} . (57)

We denote by V(𝑃) and V(𝐷) the optimal objective values of
(𝑃) and (𝐷), respectively. Clearly, V(𝑃) ≥ V(𝐷); that is, the
weak Lagrange duality holds between (𝑃) and (𝐷). We say
that the strong Lagrange duality between (𝑃) and (𝐷) holds
if there is no duality gap (i.e., V(𝑃) = V(𝐷)) and the dual
problem (𝐷) has an optimal solution. The following theorem
gives some sufficient and necessary conditions to ensure that
the strong Lagrange duality holds.

Theorem 9. The following statements are equivalent.
(i) For each 𝛼 ∈ R,

(0, −𝛼) ∈ epi (𝑓 + 𝛿
𝐴
)
∗

0

⇐⇒ [∃(𝜆
𝑡
)
𝑡∈𝑇

∈ R
(𝑇)

+
𝑠.𝑡. (0, −𝛼)

∈ epi(𝑓 + 𝛿
𝐶
+ ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
)

∗

0

] .

(58)

(ii) The family {𝛿
𝐶
; 𝑓
𝑡
: 𝑡 ∈ 𝑇} has the quasi-(WEHP).

(iii) The strong Lagrange duality holds between (𝑃) and
(𝐷).

Proof. It is evident that (i)⇔ (ii). Below we show that
(i)⇔ (iii). To do this, note that, for each 𝛼 ∈ R,

(0, −𝛼) ∈ epi (𝑓 + 𝛿
𝐴
)
∗

0

⇐⇒ (𝑓 + 𝛿
𝐴
)
∗

0
(0) ≤ −𝛼

⇐⇒ 𝑓 (𝑥) ≥ 𝛼 for each 𝑥 ∈ 𝐴,

(0, −𝛼) ∈ ⋃

𝜆∈R
(𝑇)
+

epi(𝑓 + 𝛿
𝐶
+ ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
)

∗

0

⇐⇒ ∃(𝜆
𝑡
)
𝑡∈𝑇

∈ R
(𝑇)

+
,

s.t. 𝑓 (𝑥) + ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
(𝑥) ≥ 𝛼 for each 𝑥 ∈ 𝐶.

(59)

Suppose that (i) holds. Let 𝑟 := V(𝑃) ∈ R (if V(𝑃) =

−∞, then the result holds trivially). Then, by (59), (0, −𝑟) ∈

epi(𝑓 + 𝛿
𝐴
)
∗

0
and (0, −𝑟) ∈ ⋃

𝜆∈R
(𝑇)
+
epi(𝑓 + 𝛿

𝐶
+ ∑
𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
)
∗

0

by (i). Hence, using (59) and the definition of V(𝐷), we see
that V(𝐷) ≥ 𝑟 and the problem (𝐷) has an optimal solution.
This together with the weak Lagrange duality implies that the
strong Lagrange duality holds.

Conversely, suppose that the strong Lagrange duality
holds. To show (i), by Remark 7, we only need to show that
(38) holds. To do this, let (0, −𝑟) ∈ epi(𝑓 + 𝛿

𝐴
)
∗

0
. Then, by

(59), V(𝑝) ≥ 𝑟 and V(𝐷) ≥ 𝑟 by (iii). Hence, by (59), we see
that (0, −𝑟) ∈ ⋃

𝜆∈R
(𝑇)
+
epi(𝑓+𝛿

𝐶
+∑
𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
)
∗

0
.Therefore, (38)

is proved and the proof is complete.
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The following two examples illustrate Theorem 9.

Example 10. Let 𝑋 = 𝐶 := R and let 𝑇 := {1}. Define the
function 𝑓, 𝑓

1
: R → R by

𝑓 (𝑥) := {

1, 𝑥 ≥ 0,

0, 𝑥 < 0,

𝑓
1
(𝑥) := 𝑥

2
− 1 for each 𝑥 ∈ R.

(60)

Then 𝑓 is quasiconvex and 𝐴 = [−1, 1]. Note that, for each
𝑥 ∈ R and each 𝜆 ≥ 0,

(𝑓 + 𝛿
𝐴
) (𝑥) =

{
{

{
{

{

1, 0 ≤ 𝑥 ≤ 1,

0, −1 ≤ 𝑥 < 0,

+∞, 𝑥 > 1 or 𝑥 < −1,

(𝑓 + 𝛿
𝐶
+ 𝜆𝑓
1
) (𝑥) = {

1 + 𝜆 (𝑥
2
− 1) , 𝑥 ≥ 0,

𝜆 (𝑥
2
− 1) , 𝑥 < 0.

(61)

Then for each 𝑥
∗
∈ R, it is easy to see that

(𝑓 + 𝛿
𝐴
)
∗

0
(𝑥
∗
) = − inf {(𝑓 + 𝛿

𝐴
) (𝑥) : 𝑥

∗
𝑥 ≥ 0}

= {

−1, 𝑥
∗
> 0,

0, 𝑥
∗
≤ 0,

(62)

and for each 𝜆 ≥ 0,

(𝑓 + 𝛿
𝐶
+ 𝜆𝑓
1
)
∗

0
(𝑥
∗
) = − inf {(𝑓 + 𝛿

𝐶
+ 𝜆𝑓
1
) (𝑥) : 𝑥

∗
𝑥 ≥ 0}

= {

−1 + 𝜆, 𝑥
∗
> 0,

𝜆, 𝑥
∗
≤ 0.

(63)

Hence,

epi (𝑓 + 𝛿
𝐴
)
∗

0
= ⋃

𝜆≥0

epi (𝑓 + 𝛿
𝐶
+ 𝜆𝑓
1
)
∗

0

= ((−∞, 0] ×R
+
) ∪ ((0, +∞) × [−1, +∞)) .

(64)

Therefore, by Theorem 9, we see that the strong Lagrange
duality holds. In fact, V(𝑃) = V(𝐷) = 0 and 𝜆 = 0 is an optimal
solution to (𝐷).

Example 11. Let 𝑋 = 𝐶 := R and let 𝑇 := {1}. Define the
function 𝑓, 𝑓

1
: R → R by

𝑓 (𝑥) := {

1, 𝑥 ≥ 0,

0, 𝑥 < 0,

𝑓
1
(𝑥) := −𝑥 for each 𝑥 ∈ R.

(65)

Then 𝑓 is quasiconvex and 𝐴 = [0, +∞). Note that, for each
𝑥 ∈ R and each 𝜆 ≥ 0,

(𝑓 + 𝛿
𝐴
) (𝑥) = {

1, 𝑥 ≥ 0,

+∞, 𝑥 < 0,

(𝑓 + 𝛿
𝐶
+ 𝜆𝑓
1
) (𝑥) = {

1 − 𝜆𝑥, 𝑥 ≥ 0,

−𝜆𝑥, 𝑥 < 0.

(66)

Then for each 𝑥
∗
∈ R, it is easy to see that

(𝑓 + 𝛿
𝐴
)
∗

0
(𝑥
∗
) = − inf {(𝑓 + 𝛿

𝐴
) (𝑥) : 𝑥

∗
𝑥 ≥ 0} = −1,

(67)

and for each 𝜆 ≥ 0,

(𝑓 + 𝛿
𝐶
+ 𝜆𝑓
1
)
∗

0
(𝑥
∗
) = − inf {(𝑓 + 𝛿

𝐶
+ 𝜆𝑓
1
) (𝑥) : 𝑥

∗
𝑥 ≥ 0}

=

{
{

{
{

{

−1, 𝑥
∗
> 0, 𝜆 = 0,

+∞, 𝑥
∗
> 0, 𝜆 > 0,

0, 𝑥
∗
≤ 0.

(68)

Hence,

epi (𝑓 + 𝛿
𝐴
)
∗

0
= R × [−1, +∞) ,

⋃

𝜆≥0

epi (𝑓 + 𝛿
𝐶
+ 𝜆𝑓
1
)
∗

0

= ((0, +∞) × [−1, +∞)) ∪ ((−∞, 0] × [0, +∞)) .

(69)

Therefore, the quasi-(WEHP) does not hold and, by
Theorem 9, the strong Lagrange duality does not hold (in
fact, V(𝑃) = 1 and V(𝐷) = −∞).

Remark 12. (a) In [5, Theorem 5.1], the authors showed that
the strong Lagrange duality holds between (𝑃) and (𝐷) if and
only if the following condition holds:

(iv) epi (𝑓 + 𝛿
𝐴
)
∗

∩ ({0} ×R)

= ⋃

𝜆∈R
(𝑇)
+

epi(𝑓 + 𝛿
𝐶
+ ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
)

∗

∩ ({0} ×R) .

(70)

Thus, by Theorem 9, the statements (i), (ii), and (iii) of
Theorem 9 are equivalent to (iv).

(b) Recall from [5] that the stable strong Lagrange duality
holds between (𝑃) and (𝐷) if, for each 𝑝

∗
∈ 𝑋
∗, the following

equality holds:

inf
𝑥∈𝐴

{𝑓 (𝑥) + ⟨𝑝, 𝑥⟩}

= max
𝜆∈R
(𝑇)
+

inf
𝑥∈𝐶

{𝑓 (𝑥) + ⟨𝑝, 𝑥⟩ + ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
(𝑥)} .

(71)

In [5], the authors show that the stable strong Lagrange
duality holds if and and only if the family {𝛿

𝐶
; 𝑓
𝑡
: 𝑡 ∈ 𝑇}

has the conical (WEHP)
𝑓
; that is,

epi (𝑓 + 𝛿
𝐴
)
∗

= ⋃

𝜆∈R
(𝑇)
+

epi(𝑓 + 𝛿
𝐶
+ ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
)

∗

. (72)

Naturally, we wonder if the equivalence still holds if we
replace the convex conjugate function by the 𝑧-quasi-
conjugate function. However, the following example shows
that the stable strong Lagrange duality is not equivalent to

epi (𝑓 + 𝛿
𝐴
)
∗

0
= ⋃

𝜆∈R
(𝑇)
+

epi(𝑓 + 𝛿
𝐶
+ ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
)

∗

0

. (73)
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Example 13. Let 𝑋 = 𝐶 := R and 𝑇 := {1}. Define 𝑓, 𝑓
1
:

R → R as in Example 10. Then by (64), we see that (73)
holds. However, it is easy to see that, for each 𝑦 ∈ R,

(𝑓 + 𝛿
𝐴
)
∗

(𝑦) =

{
{

{
{

{

𝑦 − 1, 𝑦 ≥ 1,

0, 0 ≤ 𝑦 < 1,

−𝑦, 𝑦 < 0

(74)

and, for each 𝜆 > 0,

(𝑓 + 𝛿
𝐶
+ 𝜆𝑓
1
)
∗

(𝑦) =

𝑦
2

4𝜆

+ 𝜆. (75)

Thus,

epi (𝑓 + 𝛿
𝐴
)
∗

= {(𝑥, 𝑦) ∈ R
2
: 𝑥 ≥ 1, 𝑦 ≥ 𝑥 − 1} ∪ ([0, 1) ×R

+
)

∪ {(𝑥, 𝑦) ∈ R
2
: 𝑥 < 0, 𝑦 ≥ −𝑥} ,

⋃

𝜆≥0

epi (𝑓 + 𝛿
𝐶
+ 𝜆𝑓
1
)
∗

= (R × (0, +∞)) ∪ ({0} ×R
+
) .

(76)

This implies that

epi (𝑓 + 𝛿
𝐴
)
∗

̸= ⋃

𝜆≥0

epi (𝑓 + 𝛿
𝐶
+ 𝜆𝑓
1
)
∗

. (77)

Hence, by [5,Theorem 5.2], the stable strong duality does not
hold. Therefore, the stable strong Lagrange duality and (73)
are not equivalent.

In the remainder of this section, we study the total
Lagrange duality problem; that is, when does the strong
duality hold between (𝑃) and (𝐷) (assuming that 0 ̸= 𝑆(𝑃) :=

{𝑦 ∈ 𝐴 : 𝑓(𝑥) = min
𝑥∈𝐴

𝑓(𝑥)})? Obviously, if the strong
duality holds between (𝑃) and (𝐷), then so does the total
duality. Hence, if one of conditions inTheorem 9 holds, then
the total duality holds. Below we give some sufficient and
necessary conditions to ensure that the total duality holds.

Theorem 14. The following assertions are equivalent.

(i) The total Lagrange duality holds between (𝑃) and (𝐷).
(ii) For each 𝑥 ∈ dom𝑓 ∩ 𝐴,

0 ∈ 𝜕
∗
(𝑓 + 𝛿

𝐴
) (𝑥)

⇐⇒ 0 ∈ ⋃

𝜆∈R(𝑇)+
∑𝑡∈𝑇 𝜆𝑡𝑓𝑡(𝑥)=0

𝜕
∗
(𝑓 + 𝛿

𝐶
+ ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
) (𝑥) .

(78)

(iii) For each 𝑥 ∈ dom𝑓 ∩ 𝐴,

𝜕
∗
(𝑓 + 𝛿

𝐴
) (𝑥)

= ⋃

𝜆∈R(𝑇)+
∑𝑡∈𝑇 𝜆𝑡𝑓𝑡(𝑥)=0

𝜕
∗
(𝑓 + 𝛿

𝐶
+ ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
) (𝑥) = 𝑋

∗
.

(79)

(iv) The family {𝛿
𝐶
; 𝑓
𝑡
: 𝑡 ∈ 𝑇} has the quasi-(𝑊𝐵𝐶𝑄).

Proof. It is evident that (ii)⇔(iv). Note that
0 ∈ 𝜕
∗
(𝑓 + 𝛿

𝐴
) (𝑥) ⇐⇒ 𝜕

∗
(𝑓 + 𝛿

𝐴
) (𝑥) = 𝑋

∗
,

0 ∈ ⋃

𝜆∈R(𝑇)+
∑𝑡∈𝑇 𝜆𝑡𝑓𝑡(𝑥)=0

𝜕
∗
(𝑓 + 𝛿

𝐶
+ ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
) (𝑥)

⇐⇒ ⋃

𝜆∈R(𝑇)+
∑𝑡∈𝑇 𝜆𝑡𝑓𝑡(𝑥)=0

𝜕
∗
(𝑓 + 𝛿

𝐶
+ ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
) (𝑥) = 𝑋

∗
.

(80)

Hence, (ii)⇔ (iii). Suppose that (iv) holds. Let 𝑓(𝑥
0
) =

min
𝑥∈𝐴

𝑓(𝑥). Then by (19), 0 ∈ 𝜕
∗
(𝑓 + 𝛿

𝐴
)(𝑥
0
). This implies

that 0 ∈ Im 𝜕
∗
(𝑓 + 𝛿

𝐴
). Hence, by Proposition 8, the

quasi-(WEHP) holds and byTheorem 9, the strong Lagrange
duality holds between (𝑃) and (𝐷). Therefore, (i) holds and
the implication (iv)⇒ (i) is proved. Below we only need to
show that (i)⇒ (iv). To do this, assume that (i) holds. Let
𝑥
0

∈ dom𝑓 ∩ 𝐴. To show the quasi-(WBCQ), it suffices
by Remark 7 to show that (39) holds with 𝑥

0
in place of 𝑥.

To do this, let 0 ∈ 𝜕
∗
(𝑓 + 𝛿

𝐴
)(𝑥
0
). Then by (19), 𝑓(𝑥

0
) =

min
𝑥∈𝐴

𝑓(𝑥). Since the strong duality holds between (𝑃
𝑓
) and

(𝐷), it follows that there exists 𝜆 ∈ R(𝑇)
+

such that

𝑓 (𝑥
0
) = inf
𝑥∈𝐶

{𝑓 (𝑥) + ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
(𝑥)}

≤ 𝑓 (𝑥
0
) + ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
(𝑥
0
) ≤ 𝑓 (𝑥

0
) ,

(81)

where the last inequality holds because 𝑥
0

∈ 𝐴. Hence,
∑
𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
(𝑥
0
) = 0 and it follows that

(𝑓 + 𝛿
𝐶
+ ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
) (𝑥
0
) ≤ (𝑓 + 𝛿

𝐶
+ ∑

𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
) (𝑥)

for each 𝑥 ∈ 𝑋,

(82)

which by (19) implies that 0 ∈ 𝜕
∗
(𝑓 + 𝛿

𝐶
+ ∑
𝑡∈𝑇

𝜆
𝑡
𝑓
𝑡
)(𝑥
0
).

Therefore, (39) holds and the proof is complete.

Corollary 15. Suppose that there exists 𝑥
0
∈ dom𝑓 ∩ 𝐴 such

that 𝜕∗𝑓(𝑥
0
) ∩ (−𝑁

𝐴
(𝑥
0
)) ̸= 0. Then, for (𝑃) and (𝐷), the total

Lagrange duality holds if and only if the strong Lagrange duality
holds.

Proof. Let 𝑥∗ ∈ 𝜕
∗
𝑓(𝑥
0
)∩(−𝑁

𝐴
(𝑥
0
)) ̸= 0.Then, by definition,

∀𝑥 ∈ 𝑋, ⟨𝑥
∗
, 𝑥 − 𝑥

0
⟩ ≥ 0 󳨐⇒ 𝑓 (𝑥) ≥ 𝑓 (𝑥

0
) ,

⟨𝑥
∗
, 𝑥 − 𝑥

0
⟩ ≥ 0 for each 𝑥 ∈ 𝐴.

(83)

Hence, 𝑥
0
is a minimizer of 𝑓 on 𝐴. This implies that

0 ∈ 𝜕
∗
(𝑓 + 𝛿

𝐴
)(𝑥
0
). Thus, by Proposition 8, the quasi-

(WEHP) and the quasi-(WBCQ) are equivalent. Therefore,
by Theorems 9 and 14, the result is seen to hold.
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