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The nonlinearminimax problems without constraints are discussed. Due to the expensive computation for solvingQP subproblems
with inequality constraints of SQP algorithms, in this paper, a QP-free algorithm which is also called sequential systems of linear
equations algorithm is presented. At each iteration, only two systems of linear equations with the same coefficient matrix need
to be solved, and the dimension of each subproblem is not of full dimension. The proposed algorithm does not need any penalty
parameters and barrier parameters, and it has small computation cost. In addition, the parameters in the proposed algorithm are
few, and the stability of the algorithm is well. Convergence property is described and some numerical results are provided.

1. Introduction

We consider the nonlinear minimax problems of the form

min
𝑥∈𝑅
𝑛

max
𝑗∈𝐼

𝑓
𝑗
(𝑥) , (1)

where 𝐼 = {1, 2, . . . , 𝑚} and 𝑓
𝑗
(𝑗 ∈ 𝐼) : 𝑅𝑛 → 𝑅 are

continuously differentiable. Denote

𝐹 (𝑥) = max {𝑓
𝑗
(𝑥) , 𝑗 ∈ 𝐼} ,

𝐼 (𝑥) = {𝑗 ∈ 𝐼 | 𝑓
𝑗
(𝑥) = 𝐹 (𝑥)} ,

𝑔
𝑗
(𝑥) = ∇𝑓

𝑗
(𝑥) , 𝑗 ∈ 𝐼.

(2)

By introducing an auxiliary variable 𝑠 ∈ 𝑅, the problem
(1) can be represented as the following standard nonlinear
program (see [1]):

min
𝑥∈𝑅
𝑛
,𝑠∈𝑅

{𝑠 | 𝑓
𝑗
(𝑥) − 𝑠 ≤ 0, 𝑗 ∈ 𝐼} . (3)

It is obvious that the KKT conditions of (3) are equivalent to

∑
𝑗∈𝐼

𝜆
𝑗
𝑔
𝑗
(𝑥) = 0, ∑

𝑗∈𝐼

𝜆
𝑗
= 1;

𝜆
𝑗
[𝑓
𝑗
(𝑥) − 𝐹 (𝑥)] = 0, 𝜆

𝑗
≥ 0, 𝑗 ∈ 𝐼.

(4)

So, a point 𝑥 is called the stationary point (see [2]) of (1), if
there exists a vector 𝜆 = (𝜆

𝑗
, 𝑗 ∈ 𝐼) such that (4) holds, where

𝜆 is called the multiplier vector.

1.1. Related Work. Some algorithms have been proposed to
solve the minimax problems (1) and can be grouped into
three classes. The first one is the direct nonsmooth method.
The problem (1) is viewed as an unconstrained nonsmooth
optimization problem, which can be solved by some nons-
mooth methods, such as bundle methods, gradient sampling
methods, and cutting plane methods; see, for example, [3–5].

Secondly, a variety of regularization approaches have
been used to obtain smooth approximations to the problem
(1); see, for example, [6–10]. The main advantage of the
smoothing techniques is that the minimax problems are
converted into smooth unconstrained optimization problems
that can be solved by a standard unconstrainedminimization
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solver. However, when the approximation accuracy is high,
the smooth approximating problems become significantly ill-
conditioned. Hence, the unconstrained optimization solver
may experience numerical difficulty and slow convergence.
Consequently, the simple use of smoothing techniques is
complicated by the need of trading-off accuracy of approx-
imation against problem ill-conditioning.

The third one is based on solving the equivalent smooth
nonlinear programming problem (3), such as the sequential
quadratic programming (SQP) methods (see [11–16]), the
trust-region strategies (see [17, 18]), sequential quadratically
constrained quadratic programming (SQCQP) method (see
[19]), gradient projection method (see [20]), and the interior
point (IP) methods (see [21–23]). The advantage of this class
method is that the nondifferentiable optimization problem (1)
can be transformed into an equivalent smooth constrained
nonlinear programming problem which can be solved by
well-established methods.

It is well known that the SQP method is one of the
efficient methods for solving the smooth nonlinear program
due to its fast convergence rate. Jian et al. [14], Hu et al. [15],
and Zhu et al. [16] present some new SQP type algorithms
for unconstrained minimax problems, respectively. For an
iterative point 𝑥𝑘, a new quadratic program (QP) subproblem
is given by

min 𝑧 +
1

2
𝑑𝑇𝐻
𝑘
𝑑

s.t. 𝑓
𝑗
(𝑥𝑘) + 𝑔

𝑗
(𝑥𝑘)
𝑇

𝑑 − 𝐹 (𝑥𝑘) ≤ 𝑧, 𝑗 ∈ 𝐼
𝑘
,

(5)

where𝐻
𝑘
is a symmetric positive matrix and 𝐼

𝑘
is the 𝜀 active

constraints set.The descent direction of 𝐹(𝑥) can be obtained
by solving (5), and the algorithms have global and superlinear
convergence by introducing another correction direction.

In these SQP algorithms or SQCQPmethod,QP subprob-
lems or quadratically constrained quadratic programming
(QCQP) subproblems with inequality constraints are also
required to be solved which are computationally expensive
compared with system of linear equations. In addition, the IP
methods and the second class smoothing techniques do not
need to solve QP and QCQP subproblems, but they need the
penalty parameter or barrier parameter which is difficult to
deal with and causes numerical difficulty when the penalty
parameter or barrier parameter is too large. Therefore, it is
necessary to construct a new algorithm without solving any
QP and QCQP subproblems and using penalty parameters
and barrier parameters.

1.2. Division of the Systems of Linear Equations. In this paper,
we intend to replace the QP subproblem (5) used in [14–
16] by two systems of linear equations with the same matrix
so that the computation effort per iteration is much less
and propose a QP-free algorithm, which does not need any
penalty parameters and barrier parameters.

For (5), in order to speed up the rate of convergence and
construct the systems of linear equations conveniently, we
select an index 𝑗

𝑘
∈ 𝐼(𝑥𝑘) and consider the following QP

subproblem by introducing more parameters 𝜂𝑘
𝑗
, 𝑗 ∈ 𝐼

𝑘
\ {𝑗
𝑘
},

associated with the iterate 𝑥𝑘:

min 𝑧 +
1

2
𝑑𝑇𝐻
𝑘
𝑑

s.t. 𝑔
𝑗
𝑘

(𝑥𝑘)
𝑇

𝑑 ≤ 𝑧,

𝑓
𝑗
(𝑥𝑘) + 𝑔

𝑗
(𝑥𝑘)
𝑇

𝑑 − 𝐹 (𝑥𝑘) ≤ 𝜂𝑘
𝑗
𝑧,

𝑗 ∈ 𝐼
𝑘
≜ 𝐼
𝑘
\ {𝑗
𝑘
} .

(6)

Since (6) is a convex program with linear constraints, its
optimal solution is the KKT point; that is, (6) is equivalent
to the following KKT system with the multiplier vector
(𝜇, 𝜆
𝑗
, 𝑗 ∈ 𝐼

𝑘
):

𝜇 + ∑

𝑗∈𝐼
𝑘

𝜂𝑘
𝑗
𝜆
𝑗
= 1,

𝐻
𝑘
𝑑 + 𝜇𝑔

𝑗
𝑘

(𝑥𝑘) + ∑

𝑗∈𝐼
𝑘

𝜆
𝑗
𝑔
𝑗
(𝑥𝑘) = 0,

0 ≤ 𝜇 ⊥ (−𝑔
𝑗
𝑘

(𝑥𝑘)
𝑇

𝑑 + 𝑧) ≥ 0,

0 ≤ 𝜆
𝑗
⊥ (−𝑓

𝑗
(𝑥𝑘) + 𝐹 (𝑥𝑘) − 𝑔

𝑗
(𝑥𝑘)
𝑇

𝑑 + 𝜂𝑘
𝑗
𝑧) ≥ 0,

𝑗 ∈ 𝐼
𝑘
.

(7)

Motivated by the KKT conditions above, we present the
following system of linear equations (SLE):

𝜇 + ∑

𝑗∈𝐼
𝑘

𝜂𝑘
𝑗
𝜆
𝑗
= 1,

𝐻
𝑘
𝑑 + 𝜇𝑔

𝑗
𝑘

(𝑥𝑘) + ∑

𝑗∈𝐼
𝑘

𝜆
𝑗
𝑔
𝑗
(𝑥𝑘) = 0,

𝑔
𝑗
𝑘

(𝑥𝑘)
𝑇

𝑑 − 𝑧 = 0, 𝑔
𝑗
(𝑥𝑘)
𝑇

𝑑 − 𝜂𝑘
𝑗
𝑧 = 0,

𝑗 ∈ 𝐼
𝑘
.

(8)

The equation “𝑔
𝑗
𝑘

(𝑥𝑘)𝑇𝑑 − 𝑧 = 0” comes from 𝜂𝑘 = (𝜂𝑘
𝑗
, 𝑗 ∈

𝐼
𝑘
) → 0 (⇒ 𝜇 → 1). Obviously, the system above is

equivalent to

𝐻
𝑘
𝑑 + ∑

𝑗∈𝐼
𝑘

(𝑔
𝑗
(𝑥𝑘) − 𝜂𝑘

𝑗
𝑔
𝑗
𝑘

(𝑥𝑘)) 𝜆
𝑗
= −𝑔
𝑗
𝑘

(𝑥𝑘) ,

(𝑔
𝑗
(𝑥𝑘) − 𝜂𝑘

𝑗
𝑔
𝑗
𝑘

(𝑥𝑘))
𝑇

𝑑 = 0, 𝑗 ∈ 𝐼
𝑘
.

(9)

Let (𝑑𝑘0, 𝜆𝑘0
𝐼
𝑘

) be the solution of (9), and 𝑑𝑘0 is taken as
the first direction of our algorithm, which is not entirely
suitable as the main search direction although it is a descent
direction of 𝐹(𝑥). In fact, the global convergence cannot be
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guaranteed, since the properties of the nonnegativity and
complementarity of multiplier vector cannot be guaranteed
at the point 𝑥𝑘 with 𝑑𝑘0 and at the accumulation points of the
infinite sequence {𝑥𝑘} generated by the proposed algorithm.
Thus, we consider computing the second direction 𝑑𝑘 by
another linear system:

𝐻
𝑘
𝑑 + ∑

𝑗∈𝐼
𝑘

(𝑔
𝑗
(𝑥𝑘) − 𝜂𝑘

𝑗
𝑔
𝑗
𝑘

(𝑥𝑘)) 𝜆
𝑗
= −𝑔
𝑗
𝑘

(𝑥𝑘) ,

(𝑔
𝑗
(𝑥𝑘) − 𝜂𝑘

𝑗
𝑔
𝑗
𝑘

(𝑥𝑘))
𝑇

𝑑 = V𝑘
𝑗
, 𝑗 ∈ 𝐼

𝑘
,

(10)

where the right-hand parameters V𝑘
𝑗
, 𝑗 ∈ 𝐼

𝑘
, are yielded by 𝜆𝑘0

𝐼
𝑘

and 𝐹(𝑥𝑘) − 𝑓
𝑗
(𝑥𝑘), 𝑗 ∈ 𝐼

𝑘
as follows:

V𝑘
𝑗
=

{
{
{

𝜆𝑘0
𝑗
, if 𝜆𝑘0

𝑗
< 0;

𝜆𝑘0
𝑗

[𝐹 (𝑥𝑘) − 𝑓
𝑗
(𝑥𝑘)] , if 𝜆𝑘0

𝑗
≥ 0.

(11)

Considering that the linear systems (10) and (9) have the
same decomposed coefficient matrix, the computational cost
is typically low. Lemma 8 shows that 𝑑𝑘 is still a descent
direction of 𝐹(𝑥), so 𝑑𝑘 can be taken as the main search
direction to design the algorithm.

The parameters 𝜂𝑘
𝑗
, 𝑗 ∈ 𝐼

𝑘
, need to be devised deliberately

to guarantee the nonsingularity of the coefficient matrix and
global convergence. It is a difficult work throughout thewhole
research.

1.3. Properties of Our Algorithm. The proposed algorithm in
this paper possesses the following properties.

(i) Only the constraints indexed by some subset 𝐼
𝑘

of 𝐼 are considered which reduces the scale and
computation cost of the subproblems to some extent.

(ii) At each iteration, only the solutions of two linear
systems with the same coefficient matrix are required;
that is, the new algorithm is completely QP-free.

(iii) It does not need any penalty parameters and barrier
parameters.Therefore, the difficulty of choosing some
suitable penalty parameters and barrier parameters is
avoided.

(iv) It needs few parameters which are adjusted easily, and
the algorithm is robust.

(v) It has weakly global convergence under some suitable
assumptions.

We conclude this section by giving some notation which
is used throughout this paper. The symbol ‖ ⋅ ‖ refers to the
Euclidean norm. In addition, we denote by 0 an empty set,
the cardinality of any finite set 𝐽 by |𝐽|, and by det (𝑀) the
determinant of the matrix 𝑀. Furthermore, the directional
derivation of 𝐹 at the point 𝑥 along with the direction 𝑑 is
denoted by 𝐹(𝑥; 𝑑). It is easy to know that

𝐹 (𝑥; 𝑑) = max {𝑔
𝑗
(𝑥)
𝑇𝑑, 𝑗 ∈ 𝐼 (𝑥)} . (12)

2. Description of Algorithm

The new algorithm is based on the following assumption.

(A1) The vectors {𝑔
𝑗
(𝑥), 𝑗 ∈ 𝐼(𝑥) \ {𝑙}} are linearly

independent for any 𝑙 ∈ 𝐼(𝑥) and each point 𝑥 ∈ 𝑅𝑛.

Lemma 1. Suppose that the vectors {𝑔
𝑗
(𝑥), 𝑗 ∈ 𝐽} are linearly

independent for 𝑥 ∈ 𝑅𝑛 and index set 𝐽 ⊆ 𝐼. Then, for any
given 𝑙 ∈ 𝐼, there exists a constant 𝜌

𝐽
(𝑥) > 0 such that {𝑔

𝑗
(𝑥) −

𝜁‖𝑔
𝑗
(𝑥)‖𝑔
𝑙
(𝑥), 𝑗 ∈ 𝐽} are linearly independent for each 𝜁 ∈

[0, 𝜌
𝐽
(𝑥)].

For a point 𝑥 ∈ 𝑅𝑛, an index 𝑙 ∈ 𝐼, and a given index
set 𝐽 such that {𝑔

𝑗
(𝑥), 𝑗 ∈ 𝐽} are linearly independent, we

introduce the following technique similar to [24] to generate
the parameter 𝜌

𝐽
(𝑥) in Lemma 1. Define

𝑓
𝐽
(𝑥) = (𝑓

𝑗
(𝑥) , 𝑗 ∈ 𝐽) , 𝑔

𝐽
(𝑥) = (𝑔

𝑗
(𝑥) , 𝑗 ∈ 𝐽) ,

𝑛
𝑗
(𝑥) =

𝑔
𝑗
(𝑥)

𝑔𝑗 (𝑥)
 ,

𝑁
𝐽
(𝑥) = (𝑛

𝑗
(𝑥) , 𝑗 ∈ 𝐽) ,

(13)

𝜌
𝐽
(𝑥) =

det [𝑁
𝐽
(𝑥)𝑇𝑁

𝐽
(𝑥)]

𝑒 |𝐽|
𝑔𝑙 (𝑥)

 + 1
, (14)

𝑎
𝑗
(𝑥, 𝜖) = 𝑛

𝑗
(𝑥) − 𝜖𝜌

𝐽
(𝑥) 𝑔
𝑙
(𝑥) , (15)

where 𝑒 is Napierian base and the parameter 𝜖 ≥ 0.

Lemma 2 (see [24]). Suppose that the vectors {𝑔
𝑗
(𝑥), 𝑗 ∈ 𝐽}

are linearly independent. Then the vectors {𝑎
𝑗
(𝑥, 𝜖), 𝑗 ∈ 𝐽} are

also linearly independent for each 𝜖 ∈ [0, 1].

Let 𝑥𝑘 be a given iteration point. We denote 𝑗
𝑘

=

min{𝑗 | 𝑗 ∈ 𝐼(𝑥𝑘)} and use the following pivoting operation
to generate the index set 𝐼

𝑘
such that 𝑅

𝑘
≜ 𝑔
𝐼
𝑘

(𝑥𝑘) has
full column rank, so vectors {𝑔

𝑗
(𝑥𝑘), 𝑗 ∈ 𝐼

𝑘
} are linearly

independent.

Pivoting Operation (POP)

Step (i). Select an initial parameter 𝜀 = 𝜀
𝑘−1

.

Step (ii). Generate 𝜀 active constraint subset 𝐼(𝑥𝑘, 𝜀) and
matrix 𝐺

𝑘
by

𝐼 (𝑥𝑘, 𝜀) = {𝑗 ∈ 𝐼 | −𝜀 ≤ 𝑓
𝑗
(𝑥𝑘) − 𝐹 (𝑥𝑘) ≤ 0} ,

𝐺
𝑘
= (𝑔
𝑗
(𝑥𝑘) , 𝑗 ∈ 𝐼 (𝑥𝑘, 𝜀) \ {𝑗

𝑘
}) .

(16)

Step (iii). If 𝐼(𝑥𝑘, 𝜀) \ {𝑗
𝑘
} = 0 or det(𝐺𝑇

𝑘
𝐺
𝑘
) ≥ 𝜀, then set

𝐼
𝑘

:= 𝐼(𝑥𝑘, 𝜀) \ {𝑗
𝑘
}, 𝜀
𝑘

= 𝜀, and stop; otherwise, set 𝜀 := 𝜀/2
and repeat Step (ii).
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For simplicity, denote

𝜌
𝑘
≜ 𝜌
𝐼
𝑘

(𝑥𝑘) ,

𝐴
𝐽
(𝑥𝑘, 𝜁) = (𝑔

𝑗
(𝑥𝑘) − 𝜁

𝑔𝑗 (𝑥
𝑘)

 𝑔
𝑗
𝑘

(𝑥𝑘) , 𝑗 ∈ 𝐽) ,

𝜁 ∈ [0, 𝜌
𝑘
] .

(17)

From the POP and Lemma 2 above, we know that
(𝑎
𝑗
(𝑥𝑘, 𝜖), 𝑗 ∈ 𝐼

𝑘
) = (𝑛

𝑗
(𝑥𝑘) − 𝜖𝜌

𝐼
𝑘

(𝑥𝑘)𝑔
𝑗
𝑘

(𝑥𝑘), 𝑗 ∈ 𝐼
𝑘
)

has full column rank for each 𝜖 ∈ [0, 1]. Furthermore, it is
easy to get the following lemma.

Lemma 3. Suppose that (A1) holds.Then the matrix𝐴
𝐽
(𝑥𝑘, 𝜁)

has full column rank for each 𝐽 ⊆ 𝐼
𝑘
and 𝜁 ∈ [0, 𝜌

𝑘
].

To describe some beneficial properties of the POP above,
which is helpful for discussing the convergence of our
algorithm, we have the following results.

Lemma 4. Suppose that (A1) holds, and let 𝑥𝑘 ∈ 𝑅𝑛.

(i) The parameter 𝜀
𝑘
can be obtained in a finite number of

steps in the POP.
(ii) If a sequence {𝑥𝑘} is bounded, then there exist two

constants 𝜀, 𝜀 > 0 such that

inf {𝜀
𝑘
} = 𝜀, det (𝑅𝑇

𝑘
𝑅
𝑘
) ≥ 𝜀, ∀𝑘, (18)

det [𝐴
𝐽
𝑘

(𝑥𝑘, 𝜁)
𝑇

𝐴
𝐽
𝑘

(𝑥𝑘, 𝜁)] ≥ 𝜀, ∀𝑘, ∀𝜁 ∈ [0, 𝜌
𝑘
] ,

∀𝐽
𝑘
⊆ 𝐼
𝑘
.

(19)

Proof. Based on the assumption (A1), it is easy to get that (i)
and (18) hold, so it is omitted here.

Now, we will prove that (19) holds. In view of 𝐼
𝑘
and

𝐽
𝑘
being the subsets of the fixed and finite set 𝐼 and the

boundedness of {𝑥𝑘}, we assume by contradiction without
loss of generality that there exist an infinite index set 𝐾 and
𝜁
𝑘
∈ [0, 𝜌

𝑘
] such that

𝐼
𝑘
≡ 𝐼, 𝐽

𝑘
≡ 𝐽 ⊆ 𝐼, 𝑗

𝑘
≡ 𝑗
0
, 𝑥𝑘 → 𝑥∗,

det [𝐴
𝐽
(𝑥𝑘, 𝜁
𝑘
)
𝑇

𝐴
𝐽
(𝑥𝑘, 𝜁
𝑘
)] → 0, 𝑘 ∈ 𝐾.

(20)

According to (14) and (A1), we can get 𝜌
𝑘

𝑘∈𝐾

→ 𝜌
∗

= 𝜌
𝐼
(𝑥∗).

So, {𝜁
𝑘
, 𝑘 ∈ 𝐾} is bounded from 𝜁

𝑘
∈ [0, 𝜌

𝑘
]; we may assume

that there exists an infinite index set𝐾 ⊆ 𝐾 such that 𝜁
𝑘

𝑘∈𝐾


→
𝜁
∗

∈ [0, 𝜌
∗
]. On the other hand, from (18) one knows that

vectors {𝑔
𝑗
(𝑥∗), 𝑗 ∈ 𝐼} are linearly independent. Therefore,

by Lemma 2, we know that {𝑎
𝑗
(𝑥∗, 𝜖), 𝑗 ∈ 𝐼} are also linearly

independent for each 𝜖 ∈ [0, 1], which implies that vectors

{
𝑔𝑗 (𝑥

∗)
 𝑎
𝑗
(𝑥∗, 𝜖)

= 𝑔
𝑗
(𝑥∗) − 𝜖𝜌

∗

𝑔𝑗 (𝑥
∗)

 𝑔
𝑗
0

(𝑥∗) , 𝑗 ∈ 𝐼}
(21)

are linearly independent for each 𝜖 ∈ [0, 1]. So, {𝑔
𝑗
(𝑥∗) −

𝜁‖𝑔
𝑗
(𝑥∗)‖𝑔

𝑗
0

(𝑥∗), 𝑗 ∈ 𝐽 ⊆ 𝐼} are linearly independent for each
𝜁 ∈ [0, 𝜌

∗
]. Denote that𝐴

∗
= (𝑔
𝑗
(𝑥∗)−𝜁

∗
‖𝑔
𝑗
(𝑥∗)‖𝑔

𝑗
0

(𝑥∗), 𝑗 ∈

𝐽), 𝐴
∗
, has full column rank since 𝜁

∗
∈ [0, 𝜌

∗
]. However,

0 = lim
𝑘∈𝐾


det [𝐴
𝐽
(𝑥𝑘, 𝜁
𝑘
)
𝑇

𝐴
𝐽
(𝑥𝑘, 𝜁
𝑘
)] = det (𝐴𝑇

∗
𝐴
∗
) , (22)

which contradicts the fact that 𝐴
∗
has full column rank. So

(19) holds.

A detailed description of the algorithm for solving (1) is
given below.

Algorithm A 1. Parameters: 𝛼 ∈ (0, 1/2), 𝛽 ∈ (0, 1), 𝜀
−1

> 0.

Step 0 (initialization). Consider 𝑥0 ∈ 𝑅𝑛, an initial symmetric
positive definite matrix 𝐻

0
. Set 𝑘 := 0.

Step 1 (generating 𝜀 active set). Set parameter 𝜀 = 𝜀
𝑘−1

,
generate the set 𝐼

𝑘
by the POP, and let 𝜀

𝑘
be the corresponding

termination parameter.

Step 2. Compute 𝜌
𝑘

= 𝜌
𝐼
𝑘

(𝑥𝑘) according to (14), and adjust
the parameter 𝜁

𝑘
by

𝜁
𝑘
=

{
{
{

𝜌
0
, if 𝑘 = 0;

min {𝜌
𝑘
,
𝑑
𝑘−1,0

 +
V
𝑘−1

 , 𝜁
𝑘−1

} , if 𝑘 > 0. (23)

Step 3. Compute the unique solution (𝑑𝑘0, 𝜆𝑘0
𝐼
𝑘

) of the follow-
ing linear system:

(LS1) 𝑀(𝑥𝑘, 𝐻
𝑘
, 𝜁
𝑘
) (

𝑑
𝜆
) = (

−𝑔
𝑗
𝑘

(𝑥𝑘)

0
) , (24)

with

𝑀(𝑥𝑘, 𝐻
𝑘
, 𝜁
𝑘
) = (

𝐻
𝑘

𝐴
𝑘

𝐴𝑇
𝑘

0
) , 𝐴

𝑘
≜ 𝐴
𝐼
𝑘

(𝑥𝑘, 𝜁
𝑘
) . (25)

Step 4. Compute the unique solution (𝑑𝑘, 𝜆𝑘
𝐼
𝑘

) of the following
linear system:

(LS2) 𝑀(𝑥𝑘, 𝐻
𝑘
, 𝜁
𝑘
) (

𝑑
𝜆
) = (

−𝑔
𝑗
𝑘

(𝑥𝑘)

V𝑘
) , (26)

where V𝑘 = (V𝑘
𝑗
, 𝑗 ∈ 𝐼

𝑘
) is yielded by

V𝑘
𝑗
=

{
{
{

𝜆𝑘0
𝑗
, if 𝜆𝑘0

𝑗
< 0;

𝜆𝑘0
𝑗

[𝐹 (𝑥𝑘) − 𝑓
𝑗
(𝑥𝑘)] , if 𝜆𝑘0

𝑗
≥ 0.

(27)
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If 𝑑𝑘 = 0 and

𝜆𝑘
𝑗
𝑘

≜ 1 − 𝜁
𝑘
∑

𝑗∈𝐼
𝑘

𝜆𝑘
𝑗

𝑔𝑗 (𝑥
𝑘)

 ≥ 0, (28)

then 𝑥𝑘 is a stationary point of (1), and stop.

Step 5 (doing line search). Compute the step size 𝑡
𝑘
, the first

number 𝑡 of the sequence {1, 𝛽, 𝛽2, . . .} satisfying

𝐹 (𝑥𝑘 + 𝑡𝑑𝑘) ≤ 𝐹 (𝑥𝑘) + 𝛼𝑡𝐹 (𝑥𝑘; 𝑑𝑘) . (29)

Step 6. Set 𝑥𝑘+1 = 𝑥𝑘 + 𝑡
𝑘
𝑑𝑘, and compute a new symmetric

positive definite matrix 𝐻
𝑘+1

. Set 𝑘 := 𝑘 + 1, and go back to
Step 1.

Remark 5. If the case 𝑑𝑘 = 0, 𝜆𝑘
𝑗
𝑘

< 0 arises; the algorithm
will stop at iterate 𝑥𝑘 which is not a stationary point of (1). To
avoid this pitfall, we will reset 𝜁

𝑘
:= (1/2)𝜁

𝑘
and solve (LS1)

and (LS2) again.

For convenience of analysis in the rest of this paper, we
give the equivalent forms of (LS1)-(LS2):

(LS1)

⇐⇒

{{{{{{{
{{{{{{{
{

𝐻
𝑘
𝑑𝑘0 + ∑

𝑗∈𝐼
𝑘

𝜆𝑘0
𝑗

(𝑔
𝑗
(𝑥𝑘) − 𝜁

𝑘

𝑔𝑗 (𝑥
𝑘)

 𝑔
𝑗
𝑘

(𝑥𝑘))

= −𝑔
𝑗
𝑘

(𝑥𝑘) ,

(𝑔
𝑗
(𝑥𝑘) − 𝜁

𝑘

𝑔𝑗 (𝑥
𝑘)

 𝑔
𝑗
𝑘

(𝑥𝑘))
𝑇

𝑑𝑘0 = 0,

𝑗 ∈ 𝐼
𝑘
;

(30)

(LS2)

⇐⇒

{{{{{{{
{{{{{{{
{

𝐻
𝑘
𝑑𝑘 + ∑

𝑗∈𝐼
𝑘

𝜆𝑘
𝑗
(𝑔
𝑗
(𝑥𝑘) − 𝜁

𝑘

𝑔𝑗 (𝑥
𝑘)

 𝑔
𝑗
𝑘

(𝑥𝑘))

= −𝑔
𝑗
𝑘

(𝑥𝑘) ,

(𝑔
𝑗
(𝑥𝑘) − 𝜁

𝑘

𝑔𝑗 (𝑥
𝑘)

 𝑔
𝑗
𝑘

(𝑥𝑘))
𝑇

𝑑𝑘 = V𝑘
𝑗
,

𝑗 ∈ 𝐼
𝑘
.

(31)

So, the parameters 𝜂𝑘
𝑗
, 𝑗 ∈ 𝐼

𝑘
, in (9)-(10) are selected as 𝜂𝑘

𝑗
=

𝜁
𝑘
‖𝑔
𝑗
(𝑥𝑘)‖. From Algorithm A and (A1) as well as Lemma 3,

we can get the following lemmas immediately.

Lemma 6. The matrix 𝑀(𝑥𝑘, 𝐻
𝑘
, 𝜁) is nonsingular for each

𝜁 ∈ [0, 𝜌
𝑘
]. Therefore, the coefficient matrix 𝑀(𝑥𝑘, 𝐻

𝑘
, 𝜁
𝑘
) in

systems (LS1)-(LS2) is nonsingular.

Taking into account the inverse matrix of 𝑀
𝑘

≜

𝑀(𝑥𝑘, 𝐻
𝑘
, 𝜁
𝑘
) that can be expressed as𝑀−1

𝑘
= (
𝐶
𝑘
𝐵
𝑘

𝐵
𝑇

𝑘
−𝐷
−1

𝑘

), with

𝐷
𝑘
= 𝐴𝑇
𝑘
𝐻−1
𝑘

𝐴
𝑘
, 𝐵

𝑘
= 𝐻−1
𝑘

𝐴
𝑘
𝐷−1
𝑘

,

𝐶
𝑘
= 𝐻−1
𝑘

− 𝐻−1
𝑘

𝐴
𝑘
𝐵𝑇
𝑘
,

(32)

from (LS1)-(LS2) and (32), we have the following relations:

𝑑𝑘0 = −𝐶
𝑘
𝑔
𝑗
𝑘

(𝑥𝑘) , 𝜆𝑘0
𝐼
𝑘

= −𝐵𝑇
𝑘
𝑔
𝑗
𝑘

(𝑥𝑘) ; (33)

𝑑𝑘 = 𝑑𝑘0 + 𝐵
𝑘
V𝑘, 𝜆𝑘

𝐼
𝑘

= 𝜆𝑘0
𝐼
𝑘

− 𝐷−1
𝑘
V𝑘. (34)

Lemma 7. If Algorithm A stops at an iterate 𝑥𝑘 with 𝑑𝑘 = 0

and 𝜆𝑘
𝑗
𝑘

≥ 0, then 𝑥𝑘 is a stationary point of the problem (1).

Proof. If Algorithm A stops at an iterate 𝑥𝑘 with 𝑑𝑘 = 0 and
𝜆𝑘
𝑗
𝑘

≥ 0, it follows from (31) that

(1 − 𝜁
𝑘
∑

𝑗∈𝐼
𝑘

𝜆𝑘
𝑗

𝑔𝑗 (𝑥
𝑘)

)𝑔
𝑗
𝑘

(𝑥𝑘) + ∑

𝑗∈𝐼
𝑘

𝜆𝑘
𝑗
𝑔
𝑗
(𝑥𝑘) = 0,

V𝑘 = 0.

(35)

By the definition of V𝑘, we have 𝜆𝑘0
𝐼
𝑘

≥ 0, 𝜆𝑘0
𝑗
[𝑓
𝑗
(𝑥𝑘)−𝐹(𝑥𝑘)] =

0, 𝑗 ∈ 𝐼
𝑘
, and hence, by (34),

𝜆𝑘
𝐼
𝑘

= 𝜆𝑘0
𝐼
𝑘

≥ 0, 𝜆𝑘
𝑗
[𝑓
𝑗
(𝑥𝑘) − 𝐹 (𝑥𝑘)] = 0, 𝑗 ∈ 𝐼

𝑘
. (36)

Since 𝑅
𝑘
has full column rank, from (35) it is easy to get 𝜆𝑘

𝑗
𝑘

=

1 − 𝜁
𝑘
∑
𝑗∈𝐼
𝑘

𝜆𝑘
𝑗
‖𝑔
𝑗
(𝑥𝑘)‖ ̸= 0 and 𝜆𝑘

𝑗
𝑘

> 0. If one denotes 𝑢𝑘
𝐼
𝑘

=

(𝑢𝑘
𝑗

= 𝜆𝑘
𝑗
/∑
𝑗∈𝐼
𝑘

𝜆𝑘
𝑗
, 𝑗 ∈ 𝐼

𝑘
), 𝑢𝑘 = (𝑢𝑘

𝐼
𝑘

, 0
𝐼\𝐼
𝑘

), then from (35)-
(36) we can conclude that 𝑥𝑘 is a stationary point of (1) with
the multiplier vector 𝑢𝑘.

Lemma 8. If 𝑑𝑘 ̸= 0, then

(i) 𝑔
𝑗
𝑘

(𝑥𝑘)𝑇𝑑𝑘 = −(𝑑𝑘0)𝑇𝐻
𝑘
𝑑𝑘0 − ∑

𝜆
𝑘0

𝑗
<0

(𝜆𝑘0
𝑗
)2 +

∑
𝜆
𝑘0

𝑗
≥0

(𝜆𝑘0
𝑗
)2[𝑓
𝑗
(𝑥𝑘) − 𝐹(𝑥𝑘)] < 0;

(ii) 𝑔
𝑗
(𝑥𝑘)𝑇𝑑𝑘 ≤ 𝜁

𝑘
‖𝑔
𝑗
(𝑥𝑘)‖𝑔

𝑗
𝑘

(𝑥𝑘)𝑇𝑑𝑘 < 0, 𝑗 ∈ 𝐼(𝑥𝑘) \
{𝑗
𝑘
};

(iii) 𝑑𝑘 is a descent direction of 𝐹(𝑥) at the iterate 𝑥𝑘, so the
proposed algorithm is well defined.

Proof. (i) From (34), (30), (33), and (27), one gets

𝑔
𝑗
𝑘

(𝑥𝑘)
𝑇

𝑑𝑘 = 𝑔
𝑗
𝑘

(𝑥𝑘)
𝑇

(𝑑𝑘0 + 𝐵
𝑘
V𝑘)

= −(𝑑𝑘0)
𝑇

𝐻
𝑘
𝑑𝑘0 − (𝜆𝑘0

𝐼
𝑘

)
𝑇

𝐴𝑇
𝑘
𝑑𝑘0 − (𝜆𝑘0

𝐼
𝑘

)
𝑇

V𝑘

= −(𝑑𝑘0)
𝑇

𝐻
𝑘
𝑑𝑘0 − (𝜆𝑘0

𝐼
𝑘

)
𝑇

V𝑘

= −(𝑑𝑘0)
𝑇

𝐻
𝑘
𝑑𝑘0 − ∑

𝜆
𝑘0

𝑗
<0

(𝜆𝑘0
𝑗
)
2

+ ∑
𝜆
𝑘0

𝑗
≥0

(𝜆𝑘0
𝑗
)
2

[𝑓
𝑗
(𝑥𝑘) − 𝐹 (𝑥𝑘)] .

(37)
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Furthermore, since 𝑑𝑘 ̸= 0, from (34), we can get (𝑑𝑘0,

V𝑘) ̸= (0, 0). This implies that (i) holds.
(ii) If 𝑗 ∈ 𝐼(𝑥𝑘) \ {𝑗

𝑘
}, from 𝐼(𝑥𝑘) \ {𝑗

𝑘
} ⊆ 𝐼
𝑘
and (27),

we have V𝑘
𝑗
≤ 0. From Remark 5, we can assume without loss

of generality that 𝑑𝑘−1 ̸= 0. Furthermore, it follows from (34)
and (23) that 𝜁

𝑘
> 0. Therefore, from the second formula of

(31) and assumption (A1), it is easy to get

𝑔
𝑗
(𝑥𝑘)
𝑇

𝑑𝑘 = 𝜁
𝑘

𝑔𝑗 (𝑥
𝑘)

 𝑔
𝑗
𝑘

(𝑥𝑘)
𝑇

𝑑𝑘 + V𝑘
𝑗

≤ 𝜁
𝑘

𝑔𝑗 (𝑥
𝑘)

 𝑔
𝑗
𝑘

(𝑥𝑘)
𝑇

𝑑𝑘 < 0,

𝑗 ∈ 𝐼 (𝑥𝑘) \ {𝑗
𝑘
} .

(38)

(iii) From (12) and the above results (i)-(ii), one knows
that 𝐹(𝑥𝑘; 𝑑𝑘) < 0, which implies that 𝑑𝑘 is a descent
direction of 𝐹(𝑥) at 𝑥𝑘. So the line search can be performed
and the proposed algorithm is well defined.

3. Global Convergence

In this part, undermild assumptions, we show thatAlgorithm
A is weak globally convergent; that is, there exists at least one
accumulation point of the iterates {𝑥𝑘} yielded by Algorithm
A such that it is a stationary point of (1). To this end, in
addition to (A1), the following two assumptions are necessary.

(A2) The sequence {𝑥𝑘} generated by Algorithm A is
bounded.

(A3) There exist two constants 𝑎, 𝑏 > 0 such that

𝑎‖𝑑‖
2 ≤ 𝑑𝑇𝐻

𝑘
𝑑 ≤ 𝑏‖𝑑‖

2, ∀𝑑 ∈ 𝑅𝑛, ∀𝑘. (39)

The following lemma establishes the boundedness of the
associated sequences generated by the algorithm, and its
proof is similar to Lemma 3.1 in [25], so it is omitted here.

Lemma 9. Suppose that (A1)–(A3) hold. Then, the sequences
{𝜌
𝑘
}, {𝜁
𝑘
}, {𝑀−1
𝑘

}, {𝑑𝑘0}, {𝜆𝑘0
𝐼
𝑘

}, {𝑑𝑘}, {𝜆𝑘
𝐼
𝑘

}, {𝐷−1
𝑘

}, and {𝐵
𝑘
} are

all bounded.

Lemma 10. Suppose that (A1)–(A3) hold. If an infinite index
set 𝐾 satisfies

𝑥𝑘 → 𝑥∗, 𝑗
𝑘
≡ 𝑗, 𝑔

𝑗
(𝑥𝑘)
𝑇

𝑑𝑘 → 0, 𝑘 ∈ 𝐾,

(40)

then 𝑥∗ is a stationary point of (1).

Proof. FromLemma 9,we know there exists an infinite subset
𝐾 ⊆ 𝐾 such that

𝐼
𝑘
≡ 𝐼, 𝑑𝑘0 → 𝑑∗0, 𝜆𝑘0

𝐼
→ 𝜆∗0

𝐼
, 𝑘 ∈ 𝐾. (41)

Again, lim
𝑘→∞

𝜁
𝑘

= 𝜁
∗
follows since {𝜁

𝑘
} is monotone and

bounded. In view of Lemma 8 (i) and (A3), we have

0 ← 𝑔
𝑗
(𝑥𝑘)
𝑇

𝑑𝑘 ≤ −𝑎
𝑑
𝑘0

2

− ∑
𝜆
𝑘0

𝑗
<0

(𝜆𝑘0
𝑗
)
2

+ ∑
𝜆
𝑘0

𝑗
≥0

(𝜆𝑘0
𝑗
)
2

[𝑓
𝑗
(𝑥𝑘) − 𝐹 (𝑥𝑘)] < 0.

(42)

This along with (40)-(41) shows that

𝑑𝑘0 → 0, 𝜆∗0
𝐼

≥ 0, 𝑘 ∈ 𝐾,

(𝜆∗0
𝑗

)
2

[𝑓
𝑗
(𝑥∗) − 𝐹 (𝑥∗)] = 0, 𝑗 ∈ 𝐼.

(43)

So, passing to the limit for 𝑘 ∈ 𝐾, 𝑘 → ∞, in (30), one gets

(1 − 𝜁
∗
∑

𝑗∈𝐼

𝜆∗0
𝑗

𝑔𝑗 (𝑥
∗)

)𝑔
𝑗
 (𝑥∗) + ∑

𝑗∈𝐼

𝜆∗0
𝑗

𝑔
𝑗
(𝑥∗) = 0;

𝜆∗0
𝑗

≥ 0, 𝜆∗0
𝑗

[𝑓
𝑗
(𝑥∗) − 𝐹 (𝑥∗)] = 0, 𝑖 ∈ 𝐼.

(44)

Furthermore, it follows from (23) and (27) that 𝜁
𝑘+1

→ 0,
𝑘 ∈ 𝐾. So, 𝜁

∗
= 0 and 𝜆∗0

𝑗
 ≜ 1 − 𝜁

∗
∑
𝑗∈𝐼

𝜆∗0
𝑗

‖𝑔
𝑗
(𝑥∗)‖ = 1. If

one denotes 𝐼 = 𝐼 ∪ {𝑗}, 𝑢∗
𝐼
 = (𝑢∗

𝑗
= 𝜆∗0
𝑗

/∑
𝑗∈𝐼
 𝜆∗0
𝑗

, 𝑗 ∈ 𝐼),
and 𝑢∗ = (𝑢∗

𝐼
 , 0
𝐼\𝐼
), then (44) implies that 𝑥∗ is a stationary

point with the multiplier vector 𝑢∗.

Theorem 11. Suppose that (A1)–(A3) hold. Then Algorithm A
either stops at a stationary point of (1) in a finite number of
iterations or generates an infinite sequence {𝑥𝑘}, of which at
least one accumulation point is a stationary point of (1). In such
sense, AlgorithmA is said to possess weakly global convergence.

Proof. Thecases 𝜁
∗
= 0 and 𝜁

∗
> 0 are discussed, respectively.

Case A. If 𝜁
∗
= 0, from (14), Lemma 4 (ii), and (A2), we know

that there exists a constant 𝜌 > 0 such that 𝜌
𝑘

≥ 𝜌 holds for
all 𝑘 large enough. Therefore, in view of (A2) and (23), there
exists an infinite index 𝐾 such that

𝑥𝑘 → 𝑥∗, 𝜁
𝑘
=

𝑑
𝑘−1,0

 +
V
𝑘−1

 → 0, 𝑘 ∈ 𝐾; (45)

that is, 𝑑𝑘−1,0 → 0, V𝑘−1 → 0, 𝑘 ∈ 𝐾. So, from
(34) and the boundedness of {𝐵

𝑘
}, we have lim

𝑘∈𝐾
𝑑𝑘−1 =

lim
𝑘∈𝐾

(𝑑𝑘−1,0 + 𝐵
𝑘−1

V𝑘−1) = 0. It further follows that ‖𝑥𝑘 −

𝑥𝑘−1‖ = 𝑡
𝑘−1

‖𝑑𝑘−1‖ → 0, 𝑘 ∈ 𝐾. Thus, lim
𝑘∈𝐾

𝑥𝑘−1 = 𝑥∗.
So, according to Lemma 10 and lim

𝑘∈𝐾
𝑑𝑘−1 = 0, it is easy to

conclude that 𝑥∗ is a stationary point of (1).

Case B. If 𝜁
∗
> 0, then we have 𝜁

𝑘
≥ (1/2)𝜁

∗
for all 𝑘 ∈ 𝐾 large

enough. Suppose that 𝑥∗ is any given accumulation point of
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{𝑥𝑘}. Since 𝐼 is a fixed and finite set, from Lemma 9, there
always exists an infinite index set 𝐾 such that

𝐼 (𝑥𝑘) ≡ 𝐼
∗
, 𝐼

𝑘
≡ 𝐼, 𝑗

𝑘
≡ 𝑗, 𝑘 ∈ 𝐾,

(𝑥𝑘, 𝑑𝑘0, 𝑑𝑘, 𝜆𝑘0
𝐼
, 𝜆𝑘
𝐼
, 𝜁
𝑘
) → (𝑥∗, 𝑑∗0, 𝑑∗, 𝜆∗0

𝐼
, 𝜆∗
𝐼
, 𝜁
∗
) ,

𝑘 ∈ 𝐾.

(46)

Suppose by contradiction that 𝑥∗ is not a stationary point.
We first show by contradiction that the given infinite index
set 𝐾 satisfies 𝑔

𝑗
(𝑥𝑘)𝑇𝑑𝑘 → 0, 𝑘 ∈ 𝐾. Otherwise, since

𝑔
𝑗
(𝑥𝑘)𝑇𝑑𝑘 < 0 and 𝑔

𝑗
(𝑥𝑘)𝑇𝑑𝑘 → 𝑔

𝑗
(𝑥∗)𝑇𝑑∗, 𝑘 ∈ 𝐾, there

exists a constant 𝑐 > 0 such that

𝑔
𝑗
(𝑥𝑘)
𝑇

𝑑𝑘 ≤ −𝑐, 𝑘 ∈ 𝐾 large enough. (47)

Consequently, we prove that the line search inequality
(29) holds for all 𝑘 ∈ 𝐾 large enough and 𝑡 > 0 small enough.
We denote

𝜔
𝑘
(𝑡) = 𝐹 (𝑥𝑘 + 𝑡𝑑𝑘) − 𝐹 (𝑥𝑘) − 𝛼𝑡𝐹 (𝑥𝑘, 𝑑𝑘) . (48)

It follows from the boundedness of {𝑑𝑘} and Taylor expansion
that

𝜔
𝑘
(𝑡) = max {𝑓

𝑗
(𝑥𝑘 + 𝑡𝑑𝑘) − 𝐹 (𝑥𝑘) − 𝛼𝑡𝐹 (𝑥𝑘, 𝑑𝑘) , 𝑗 ∈ 𝐼}

= max {𝑓
𝑗
(𝑥𝑘) − 𝐹 (𝑥𝑘) + 𝑡𝑔

𝑗
(𝑥𝑘)
𝑇

𝑑𝑘

− 𝛼𝑡𝐹 (𝑥𝑘, 𝑑𝑘) + 𝑜 (𝑡) , 𝑗 ∈ 𝐼} .

(49)

Denote 𝑎
𝑘𝑗
(𝑡) = 𝑓

𝑗
(𝑥𝑘) − 𝐹(𝑥𝑘) + 𝑡𝑔

𝑗
(𝑥𝑘)𝑇𝑑𝑘 − 𝛼𝑡𝐹(𝑥𝑘, 𝑑𝑘) +

𝑜(𝑡). For 𝑗 ∈ 𝐼
∗
\ {𝑗} ⊆ 𝐼, according to (18) in Lemma 4 (ii),

it is easy to know that there exists a constant 𝜎 > 0 such that
‖𝑔
𝑗
(𝑥𝑘)‖ ≥ 𝜎 for all 𝑘 ∈ 𝐾. From Lemma 8 (ii), one has for

𝑘 ∈ 𝐾 large enough and 𝑡 > 0 small enough

𝑎
𝑘𝑗

(𝑡) = 𝑡𝑔
𝑗
(𝑥𝑘)
𝑇

𝑑𝑘 − 𝛼𝑡𝐹 (𝑥𝑘, 𝑑𝑘) + 𝑜 (𝑡)

≤ (1 − 𝛼) 𝑡𝑔
𝑗
(𝑥𝑘)
𝑇

𝑑𝑘 + 𝑜 (𝑡)

≤ (1 − 𝛼) 𝑡𝜁
𝑘

𝑔𝑗 (𝑥
𝑘)

 𝑔
𝑗
(𝑥𝑘)
𝑇

𝑑𝑘 + 𝑜 (𝑡)

≤ −
1

2
(1 − 𝛼) 𝜁

∗
𝜎𝑐𝑡 + 𝑜 (𝑡) ≤ 0.

(50)

For 𝑗 = 𝑗, one has for 𝑘 ∈ 𝐾 large enough and 𝑡 > 0 small
enough 𝑎

𝑘𝑗
(𝑡) ≤ (1−𝛼)𝑡𝑔

𝑗
(𝑥𝑘)𝑇𝑑𝑘+𝑜(𝑡) ≤ −(1−𝛼)𝑐𝑡+𝑜(𝑡) ≤

0.
For 𝑗 ∈ 𝐼 \ 𝐼

∗
, from the POP and Lemma 4 (ii), we can

obtain 𝑓
𝑗
(𝑥𝑘) − 𝐹(𝑥𝑘) < −𝜀

𝑘
≤ −𝜀. So, 𝑎

𝑘𝑗
(𝑡) ≤ −𝜀 + 𝑂(𝑡) ≤ 0

holds for 𝑘 ∈ 𝐾 large enough and 𝑡 > 0 small enough.
Summarizing the analysis above, we know that there

exists a constant 𝑡
∗

> 0 such that the step size 𝑡
𝑘
≥ 𝑡
∗
,

∀𝑘 ∈ 𝐾. Furthermore, for ∀𝑗 ∈ 𝐼
∗
, 𝑔
𝑗
(𝑥𝑘)𝑇𝑑𝑘 ≤

−min{(1/2)𝜁
∗
𝜎, 1}𝑐. So, 𝐹(𝑥𝑘, 𝑑𝑘) ≤ −min{(1/2)𝜁

∗
𝜎, 1}𝑐.

Combining (29), we have

𝐹 (𝑥𝑘+1) − 𝐹 (𝑥𝑘) ≤ 𝛼𝑡
𝑘
𝐹 (𝑥𝑘, 𝑑𝑘)

≤ −𝛼𝑡
∗
min {

1

2
𝜁
∗
𝜎, 1} 𝑐, 𝑘 ∈ 𝐾.

(51)

Since the whole sequence {𝐹(𝑥𝑘)} is decreasing and
lim
𝑘∈𝐾

𝐹(𝑥𝑘) = 𝐹(𝑥∗), we know that lim
𝑘→∞

𝐹(𝑥𝑘) = 𝐹(𝑥∗).
So, passing to the limit for 𝑘 ∈ 𝐾 and 𝑘 → ∞ in inequality
(51), one has −𝛼𝑡

∗
min{(1/2)𝜁

∗
𝜎, 1}𝑐 ≥ 0, which contradicts

the fact that 𝛼 > 0, 𝑡
∗

> 0, 𝜁
∗

> 0, and 𝑐 > 0. The
contradiction shows that (40) holds. Furthermore, one can
conclude from Lemma 10 that 𝑥∗ is a stationary point of
(1), which contradicts the assumption. The whole proof is
completed.

4. Numerical Results

In this section, some preliminary numerical tests on 5 typical
problems from [26] are reported, and the computation results
show that Algorithm A is efficient. All the numerical experi-
ments were implemented on MATLAB 7.0, under Windows
XP and 2.2GHz CPU. The BFGS formula with Powell’s
modification [27] is adopted in the algorithm, and 𝐻

0
is the

identity matrix. The parameters were selected as 𝛼 = 0.2,
𝛽 = 0.6, and 𝜀

−1
= 1.2. In addition, execution is terminated if

one of the following termination criteria is satisfied:

(a) ‖𝑑𝑘‖ ≤ 10−5,
(b) ‖𝑥𝑘+1 − 𝑥𝑘‖ ≤ 10−5.
The computational results are reported in Table 1, and

the columns of Table 1 have the following meanings: IP: the
initial point; 𝑛: the number of variables; 𝑚: the number of
functions 𝑓

𝑗
(𝑥); ALG: the type of algorithm; NI: the number

of iterations. “Algo A” represents Algorithm A in this paper,
“J2006-1” and “J2006-2” represent the algorithms in [13], and
“Hu2009” represents the algorithm in [15].

From Table 1, we can see that our algorithm can find
the solutions of the test problems with a small number of
iterations, and the computational results illustrate that our
algorithm executes well for those problems. The numerical
results are comparative with the algorithms in [13, 15].
Furthermore, we only need to solve two systems of linear
equations with the same coefficient matrix per iteration.
Considering that these linear systems have the same decom-
posed coefficient matrix, the computational cost per iteration
of Algorithm A is typically low. This shows the potential
advantage of our algorithmwhen applied to solving problems
with large numbers of constraints. In addition, the parameters
in the proposed algorithm are few, and the stability of the
algorithm is very well.

5. Concluding Remarks

In this paper, aQP-free algorithmwithout solving anyQP and
QCQP subproblems is presented for unconstrainednonlinear
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Table 1: Numerical results of Algorithm A.

P IP n m ALG NI Approximate solution 𝑥∗ 𝐹(𝑥∗) ‖𝑑𝑘‖

1 (1, −0.01)𝑇 2 3

Algo A 7 (1.1390, 0.8995)𝑇 1.952 1.715𝑒 − 6

J2006-1 11 (1.1390, 0.8995)𝑇 1.952 3.462𝑒 − 7

J2006-2 19 (1.1390, 0.8995)𝑇 1.952 2.457𝑒 − 6

Hu2009 8 — 1.952 4.248𝑒 − 6

2 (0.01, 0.01)𝑇 2 3

Algo A 7 (1.0000, 0.9999)𝑇 2.000 3.543𝑒 − 5

J2006-1 7 (1.0000, 1.0000)𝑇 2.000 6.177𝑒 − 10

J2006-2 17 (1.00000, 1.00000)𝑇 2.000 4.775𝑒 − 9

Hu2009 7 — 2.000 1.987𝑒 − 14

3 (0.2, −1, 2.3, −0.01)𝑇 4 4

Algo A 12 (0.0, 1.0, 2.0, −1.0)𝑇 −44.00 2.206𝑒 − 5

J2006-1 38 (0.0, 1.0, 2.0, −1.0)𝑇 −44.00 3.087𝑒 − 6

J2006-2 74 (0.0, 1.0, 2.0, −1.0)𝑇 −44.00 7.733𝑒 − 6

Hu2009 11 — −44.00 8.294𝑒 − 6

4 (3, 1)𝑇 2 3

Algo A 11 (−0.45330, 0.90659)𝑇 0.616 9.617𝑒 − 6

J2006-1 10 (−0.45329, 0.90659)𝑇 0.616 6.419𝑒 − 6

J2006-2 21 (−0.45329, 0.90659)𝑇 0.616 2.641𝑒 − 6

Hu2009 12 — 0.616 8.797𝑒 − 6

5 (1, 1, 1)𝑇

(1.01, 0.9, 1)𝑇
3 6

Algo A 13 (0.3282, 0.0, 0.1313)𝑇 3.599 7.343𝑒 − 6

J2006-1 20 (0.3282, 0.0, 0.1313)𝑇 3.599 7.227𝑒 − 7

J2006-2 34 (0.3282, 0.0, 0.1313)𝑇 3.599 3.382𝑒 − 6

Hu2009 14 — 3.599 1.832𝑒 − 6

finite minimax problems. At each iteration, only two systems
of linear equations with the same coefficient matrix need
to be solved. The proposed algorithm does not need any
penalty parameters and barrier parameters which are difficult
to deal with. Furthermore, under some mild assumptions,
the global convergence is attained. As further work of this
method, we think that there are still some problems worthy
of discussing. For example, the assumption (A1) is different
from the linearly independent assumption in common use,
and any of them cannot derive the other. The discussion
that the assumption (A1) is a constraint qualification needs
further consideration. In addition, one should also take into
account improving it to have superlinear convergence and
generalizing it to solve minimax problems with inequality
constraints.
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