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Our concern in this paper is to use the homotopy decomposition method to solve the Hamilton-Jacobi-Bellman equation (HJB).
The approach is obviously extremely well organized and is an influential procedure in obtaining the solutions of the equations. We
portrayed particular compensations that this technique has over the prevailing approaches. We presented that the complexity of
the homotopy decomposition method is of order 𝑂(𝑛). Furthermore, three explanatory examples established good outcomes and
comparisons with exact solution.

1. Introduction

Theory and application of optimal control have been widely
used in different fields such as biomedicine, aircraft systems,
and robotics. However, optimal control of nonlinear systems
is a challenging task which has been studied extensively
for decades. In the past two decades, the indirect methods
have been extensively developed. It is well known that
the nonlinear optimal control leads to a nonlinear two-
point boundary value problemor aHamilton-Jacobi-Bellman
(HJB) partial differential equation. Many recent researches
have been devoted to solving these two problems. In gen-
eral, the HJB equation is a nonlinear partial differential
equation that is hard to solve in most cases. An excel-
lent literature review on the methods for solving the HJB
equation is provided in [1], where a successive Galerkin
approximation method is also considered. In the Galerkin
approximation method a sequence of generalized Hamilton-
Jacobi-Bellman equations is solved iteratively to obtain a
sequence of approximations approaching the solution of
Hamilton-Jacobi-Bellman equation. However, the proposed

sequence may converge very slowly or even diverge. There
are various efficient methods such as those reported in [2, 3]
for the computation of open-loop optimal controls. However,
feedback controls are much preferred in many engineering
applications. Many other numerical methods [4–6]. In those,
a sequence of nonhomogeneous linear time-varying TPBVPs
is solved instead of directly solving the nonlinear TPBVP
derived from themaximumprinciple.However, solving time-
varying equations is much more difficult than solving time-
invariant ones.Thus, it is required to solveHJB equation by an
approximate-analytic method. Some of these equations were
also evaluated in [7]; they used the so-called piecewise homo-
topy perturbation method to derive approximate solution for
(HJB). Their method was a simple modification of the well-
known homotopy perturbation method; the modification
was based upon an algorithm in a sequence of small interval
meaning time step for finding more accurate approximate
solutions to the corresponding (HJB) equation.

In this paper we use homotopy decomposition method
that was recently proposed in [8] to solve the Hamilton-
Jacobi-Bellman equation. The method was first used to solve
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the groundwater flow equation [9]. To show the efficiency of
the method, the following three problems are solved.

Problem 1. Consider a single-input scalar system as follows
[10]:

𝑑𝑥 (𝑡)

𝑑𝑡
= −𝑥 (𝑡) + 𝑢 (𝑡) ,

𝐽 =
1

2
∫

1

0

(𝑥(𝑡))
2
+ (𝑢(𝑡))

2
𝑑𝑡.

(1)

The corresponding Hamiltonian function will be

𝐻(𝑥, 𝑢, 𝑉
𝑥
, 𝑡) =

1

2
𝑥(𝑡)
2
+
1

2
𝑢(𝑡)
2
+
𝜕𝑉 (𝑥, 𝑡)

𝜕𝑥
[−𝑥 (𝑡) + 𝑢 (𝑡)] .

(2)

Problem 2. Consider the following purelymathematical opti-
mal control problem:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝑥 (𝑡) + 𝑢 (𝑡) ,

𝐽 = 𝑥(𝑡
𝑓
)
2
+ ∫

𝑡𝑓

0

𝑢
2
(𝑡) 𝑑𝑡.

(3)

The corresponding Hamiltonian function will be

𝐻(𝑥, 𝑢, 𝑉
𝑥
, 𝑡) = 𝑢 (𝑡)

2
+ 𝑉
𝑥
(𝑥, 𝑡) (𝑥 (𝑡) + 𝑢 (𝑡)) . (4)

Problem 3. Consider the following nonlinear optimal control
problem [11]:

𝑑𝑥 (𝑡)

𝑑𝑡
=
1

2
𝑥(𝑡)
2 sin (𝑥 (𝑡)) + 𝑢 (𝑡) , 𝑡 ∈ [0, 1] ,

𝑥 (0) = 0, 𝑥 (1) = 0.5,

𝐽 = ∫

1

0

𝑢(𝑡)
2
𝑑𝑡.

(5)

The corresponding Hamiltonian function will be

𝐻(𝑥, 𝑢, 𝑉
𝑥
, 𝑡) = 𝑢(𝑡)

2
+ 𝑉
𝑥
(𝑥, 𝑡) (

1

2
𝑥(𝑡)
2 sin (𝑥 (𝑡)) + 𝑢 (𝑡)) .

(6)

The paper is organized as follows. In Section 2, the basics
idea of homotopy decomposition method is presented. In
Section 3, the advantages of the chosenmethod are presented.
In Section 4, nonlinear time-variant HJB equation is pre-
sented. Conclusion is made in Section 5.

2. Homotopy Decomposition Method [12, 13]

To exemplify the primitive thought of this approach we study
an overall nonlinear nonhomogeneous partial differential
equation with initial conditions of the following form:

𝜕
𝑚
𝑈 (𝑥, 𝑡)

𝜕𝑡𝑚
= 𝐿 (𝑈 (𝑥, 𝑡)) + 𝑁 (𝑈 (𝑥, 𝑡)) + 𝑓 (𝑥, 𝑡) ,

𝑚 = 1, 2, 3, . . .

(7)

subject to the initial condition

𝜕
𝑖
𝑈 (𝑥, 0)

𝜕𝑡𝑖
= 𝑓
𝑚
(𝑥) ,

𝜕
𝑚−1

𝑈 (𝑥, 0)

𝜕𝑡𝑚−1
= 0,

𝑖 = 0, 1, 2, . . . , 𝑚 − 2.

(8)

Somewhere,𝑓 is a known function,𝑁 is the general nonlinear
differential operator, and 𝐿 represents a linear differential
operator. The first step of the method here is to apply the
inverse operator 𝜕𝑚/𝜕𝑡𝑚 of both sides of (7) to obtain

𝑈 (𝑥, 𝑡)

=

𝑚−1

∑

𝑘=0

𝑡
𝑘

𝑘!

𝑑
𝑘
𝑢 (𝑥, 𝑡)

𝑑𝑡𝑘
| 𝑡

= 0 + ∫

𝑡

0

∫

𝑡1

0

⋅ ⋅ ⋅ ∫

𝑡𝑚−1

0

𝐿 (𝑈 (𝑥, 𝜏)) + 𝑁 (𝑈 (𝑥, 𝜏))

+ 𝑓 (𝑥, 𝜏) 𝑑𝜏 ⋅ ⋅ ⋅ 𝑑𝑡.

(9)

The multi-integral in (9) can be distorted to

∫

𝑡

0

∫

𝑡1

0

⋅ ⋅ ⋅ ∫

𝑡𝑚−1

0

𝐿 (𝑈 (𝑥, 𝜏)) + 𝑁 (𝑈 (𝑥, 𝜏)) + 𝑓 (𝑥, 𝜏) 𝑑𝜏 ⋅ ⋅ ⋅ 𝑑𝑡

=
1

(𝑚 − 1)!
∫

𝑡

0

(𝑡 − 𝜏)
𝑚−1

𝐿 (𝑈 (𝑥, 𝜏))

+ 𝑁 (𝑈 (𝑥, 𝜏)) + 𝑓 (𝑥, 𝜏) 𝑑𝜏,

(10)

so that (9) can be reformulated as
𝑈 (𝑥, 𝑡)

=

𝑚−1

∑

𝑘=0

𝑡
𝑘

𝑘!
{
𝑑
𝑘
𝑢 (𝑥, 0)

𝑑𝑡𝑘
} +

1

(𝑚 − 1)!

× ∫

𝑡

0

(𝑡 − 𝜏)
𝑚−1

𝐿 (𝑈 (𝑥, 𝜏)) + 𝑁 (𝑈 (𝑥, 𝜏)) + 𝑓 (𝑥, 𝜏) 𝑑𝜏.

(11)

Employing the homotopy arrangement the resolution of the
overhead integral equation is assumed in series form as

𝑈(𝑥, 𝑡, 𝑝) =

∞

∑

𝑛=0

𝑝
𝑛
𝑈
𝑛
(𝑥, 𝑡) ,

𝑈 (𝑥, 𝑡) = lim
𝑝→1

𝑈 (𝑥, 𝑡, 𝑝) ,

(12)

and the nonlinear term can be decomposed as

𝑁𝑈(𝑥, 𝑡) =

∞

∑

𝑛=1

𝑝
𝑛
H
𝑛
(𝑈) , (13)

where 𝑝𝜖(0, 1] is an embedding parameter. H
𝑛
(𝑈) is He’s

polynomials [14] that can be generated by

H
𝑛
(𝑈
0
, . . . , 𝑈

𝑛
)

=
1

𝑛!

𝜕
𝑛

𝜕𝑝𝑛
[

[

𝑁(

𝑛

∑

𝑗=0

𝑝
𝑗
𝑈
𝑗
(𝑥, 𝑡))]

]

, 𝑛 = 0, 1, 2, . . . .

(14)
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The homotopy decomposition method is obtained by the
beautiful coupling of decomposition method with He’s poly-
nomials and is given by

∞

∑

𝑛=0

𝑝
𝑛
𝑈
𝑛
(𝑥, 𝑡)

= 𝑇 (𝑥, 𝑡) + 𝑝
1

(𝑚 − 1)!

× ∫

𝑡

0

(𝑡 − 𝜏)
𝑚−1

[𝑓 (𝑥, 𝜏) + 𝐿(

∞

∑

𝑛=0

𝑝
𝑛
𝑈
𝑛
(𝑥, 𝜏))

+

∞

∑

𝑛=0

𝑝
𝑛
H
𝑛
(𝑈)] 𝑑𝜏

(15)

with

𝑇 (𝑥, 𝑡) =

𝑚−1

∑

𝑘=0

𝑡
𝑘

𝑘!
{
𝑑
𝑘
𝑢 (𝑥, 0)

𝑑𝑡𝑘
} . (16)

Comparing the terms of same powers of 𝑝, give solutions
of various orders. The initial guess of the approximation is
𝑇(𝑥, 𝑡) [13]. It is important to point out that the initial guess
𝑇(𝑥, 𝑡) is Taylor series of order 𝑚 of the exact solution of the
main problem [13].

2.1. Advantage of the Method. The homotopy decomposition
method is chosen to solve this nonlinear problem because of
the following advantages the method has over the existing
methods.

(1) The method does not require the linearization or
assumptions of weak nonlinearity.

(2) The solutions are not generated in the form of general
solution as in Adomian decompositionmethod.With
ADM the recursive formula allows repetition of terms
in the case of nonhomogeneous partial differential
equation and this leads to the noisy solution [15].

(3) The solution obtained is noise-free compared to the
variational iteration method [16].

(4) No correctional function is required as in the case of
the variational homotopy decomposition method.

(5) No Lagrange multiplier is required in the case of the
variational iteration method [16].

(6) It is more realistic compared to the method of simpli-
fying the physical problems.

(7) If the exact solution of the partial differential equation
exists, the approximated solution via the method
converges to the exact solution [8].

(8) A construction of a homotopy V(𝑟, 𝑝) : Ω×[0, 1] is not
needed as in the case of the homotopy perturbation
method [14].

3. Complexity of the Homotopy
Decomposition Method

It is very important to test the computational complexity of
the method or algorithm. Complexity of an algorithm is the
study of how long a program will take to run, depending
on the size of its input and length of loops made inside the
code [13]. We compute a numerical example which is solved
by the homotopy decomposition method. The code has been
presented with Mathematica 8 according to the following
code [13].

Step 1. Set𝑚 ← 0.

Step 2. Calculating the recursive relation after the compari-
son of the terms of the same power is done.

Step 3. If ‖𝑈
𝑛+1
(𝑥, 𝑡) − 𝑈

𝑛
(𝑥, 𝑡)‖ < 𝑟 with 𝑟 being the ratio of

the neighbourhood of the exact solution [8] then go to Step 4;
else𝑚 ← 𝑚 + 1 and go to Step 2.

Step 4. Print out

𝑈 (𝑥, 𝑡) =

∞

∑

𝑛=0

𝑈
𝑛
(𝑥, 𝑡) (17)

as the approximation of the exact solution.

Lemma 1. If the exact solution of the partial differential
equation (7) exists, then

𝑈𝑛+1 (𝑥, 𝑡) − 𝑈𝑛 (𝑥, 𝑡)
 < 𝑟 ∀ (𝑥, 𝑡) ∈ 𝑋 × 𝑇. (18)

Proof. Let (𝑥, 𝑡) ∈ 𝑋 × 𝑇; since the exact solution exists, then
we have the following:
𝑈𝑛+1 (𝑥, 𝑡) − 𝑈𝑛 (𝑥, 𝑡)



=
𝑈𝑛+1 (𝑥, 𝑡) − 𝑈 (𝑥, 𝑡) + 𝑈 (𝑥, 𝑡) − 𝑈𝑛 (𝑥, 𝑡)



≤
𝑈𝑛+1 (𝑥, 𝑡) − 𝑈 (𝑥, 𝑡)

 +
−𝑈𝑛 (𝑥, 𝑡) + 𝑈 (𝑥, 𝑡)



≤
𝑟

2
+
𝑟

2
= 𝑟.

(19)

The last inequality follows from [13].

Lemma 2. The complexity of the homotopy decomposition
method is of order 𝑂(𝑛).

Proof. Thenumber of computations including product, addi-
tion, subtraction, and division is in Step 2:

𝑈
0
: 0 because, obtains directly from the initial guess

[13],
𝑈
1
: 3,

...
𝑈
𝑛
: 3.

Now in Step 4 the total number of computations is equal
to ∑𝑛
𝑗=0
𝑈
𝑗
(𝑥, 𝑡) = 3𝑛 = 𝑂(𝑛).
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4. Nonlinear Time-Variant
Hamilton-Jacobi-Bellman Equation

In this paper, we consider a general nonlinear control system
described by

�̇� (𝑡) = 𝐿 (𝑥 (𝑡) , 𝑢 (𝑡) , 𝑡) , (20)

where a state is 𝑥(𝑡) and vector 𝑢(𝑡) is a control signal. The
objective is to find the optimal control law 𝑢

∗
(𝑡), which

minimizes the following cost function:

𝐽 = 𝑘 (𝑥 (𝑡
𝑓
) , 𝑡
𝑓
) + ∫

𝑡𝑓

0

𝑓 (𝑥 (𝑡) , 𝑢 (𝑡) , 𝑡) 𝑑𝑡. (21)

In this cost function, 𝑘 and 𝑓 are arbitrary convex functions
and 𝑡
𝑓
is final time of system operation. It is supposed [4] that

𝑉 (𝑥 (𝑡) , 𝑡) = 𝐽
∗
(𝑥 (𝑡) , 𝑡)

= min
𝑢(𝜏)

𝑡≤𝜏≤𝑡𝑓

{𝑘 (𝑥 (𝑡
𝑓
) , 𝑡
𝑓
)

+ ∫

𝑡𝑓

𝑡

𝑓 (𝑥 (𝜏) , 𝑢 (𝜏) , 𝜏) 𝑑𝜏} ,

−
𝜕𝑉

𝜕𝑡
= 𝐻 (𝑥, 𝑢

∗
(𝑥, 𝑉
𝑥
, 𝑡) , 𝑉

𝑥
, 𝑡) .

(22)

Problem 4. Consider a single-input scalar system as follows
[9]:

𝑑𝑥 (𝑡)

𝑑𝑡
= −𝑥 (𝑡) + 𝑢 (𝑡) ,

𝐽 =
1

2
∫

1

0

(𝑥(𝑡))
2
+ (𝑢(𝑡))

2
𝑑𝑡.

(23)

The corresponding Hamiltonian function will be

𝐻(𝑥, 𝑢, 𝑉
𝑥
, 𝑡) =

1

2
𝑥(𝑡)
2
+
1

2
𝑢(𝑡)
2
+
𝜕𝑉 (𝑥, 𝑡)

𝜕𝑥
[−𝑥 (𝑡) + 𝑢 (𝑡)] .

(24)

Our concern here is to find 𝑢∗, that is, stationary point for
theHamiltonian function.Therefore, differentiating (24)with
respect to 𝑢, we obtain

𝜕𝐻

𝜕𝑢
= 𝑢 (𝑡) +

𝜕𝑉 (𝑥, 𝑡)

𝜕𝑥
= 0 ⇒ 𝑢

∗
(𝑡) = −

𝜕𝑉 (𝑥, 𝑡)

𝜕𝑥
. (25)

Applying the second derivative test, we obtain 𝜕2𝐻/𝜕𝑢2 = 1 >
0, since the second derivative is positive for all 𝑢; it follows
that our turning point is a minimum, which is acceptable
because our concern is to find the minimum value. Thus, by
substituting 𝑢∗(𝑡) in Hamilton-Jacobi-Bellman equation we
obtain

𝜕𝑉

𝜕𝑡
= −

1

2
𝑥 (𝑡)
2
+
1

2
(
𝜕𝑉 (𝑥, 𝑡)

𝜕𝑥
)

2

+ 𝑥 (𝑡)
𝜕𝑉 (𝑥, 𝑡)

𝜕𝑥
,

𝑑𝑥 (𝑡)

𝑑𝑡
= −𝑥 (𝑡) −

𝜕𝑉 (𝑥, 𝑡)

𝜕𝑥
.

(26)

To solve the above system of equation via the homotopy de-
compositionmethod, we transform it to the integral equation
as follows:

𝑥 (𝑡) = 𝑥 (0) − ∫

𝑡

0

𝑥 (𝜏) +
𝜕𝑉 (𝑥, 𝜏)

𝜕𝑥
𝑑𝜏, (27)

𝑉 (𝑥, 𝑡) = 𝑉 (𝑥, 0)

+ ∫

𝑡

0

[−
1

2
𝑥
2
+
1

2
(
𝜕𝑉(𝑥, 𝜏)

𝜕𝑥
)

2

+ 𝑥
𝜕𝑉 (𝑥, 𝜏)

𝜕𝑥
] 𝑑𝜏.

(28)

Using the homotopy scheme the solution of the above integral
equation is given in series form as

𝑉 (𝑥, 𝑡, 𝑝) =

∞

∑

𝑛=0

𝑝
𝑛
𝑉
𝑛
(𝑥, 𝑡) , 𝑉 (𝑥, 𝑡) = lim

𝑝→1

𝑉 (𝑥, 𝑡, 𝑝)

(29)

verifying
∞

∑

𝑛=0

𝑝
𝑛
𝑉
𝑛
(𝑥, 𝑡)

= 𝑉 (𝑥, 0) + 𝑝∫

𝑡

0

[−
1

2
𝑥
2
+
1

2

𝜕

𝜕𝑥
(

∞

∑

𝑛=0

𝑝
𝑛
𝑉
𝑛
(𝑥, 𝜏))

2

+ 𝑥
𝜕

𝜕𝑥
(

∞

∑

𝑛=0

𝑝
𝑛
𝑉
𝑛
(𝑥, 𝜏))]𝑑𝜏.

(30)

Comparing the terms of same powers of 𝑝, we obtain the
following system of integral equations:

𝑝
0: 𝑉
0
(𝑥, 𝑡) = 𝑉 (𝑥, 0) = 0,

𝑝
1: 𝑉
1
(𝑥, 𝑡)

= ∫

𝑡

1

[−
1

2
𝑥
2
+
1

2
(
𝜕𝑉
0
(𝑥, 𝜏)

𝜕𝑥
)

2

+ 𝑥
𝜕𝑉
0
(𝑥, 𝜏)

𝜕𝑥
] 𝑑𝜏,

𝑉
1
(𝑥, 0) = 0,

𝑝
2: 𝑉
2
(𝑥, 𝑡)

= ∫

𝑡

1

[+
1

2

2𝜕𝑉
0
(𝑥, 𝜏)

𝜕𝑥

𝜕𝑉
1
(𝑥, 𝜏)

𝜕𝑥
+ 𝑥

𝜕𝑉
1
(𝑥, 𝜏)

𝜕𝑥
] 𝑑𝜏,

𝑉
2
(𝑥, 0) = 0,

𝑝
𝑛: 𝑉
𝑛
(𝑥, 𝑡)

= ∫

𝑡

1

[

[

1

2

𝑛−1

∑

𝑗=0

𝜕𝑉
𝑗
(𝑥, 𝜏)

𝜕𝑥

𝜕𝑉
𝑛−𝑗−1

(𝑥, 𝜏)

𝜕𝑥
+𝑥
𝜕𝑉
𝑛−1
(𝑥, 𝜏)

𝜕𝑥

]

]

𝑑𝜏,

𝑉
𝑛
(𝑥, 0) = 0.

(31)
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Lemma 3. If 𝑥(𝑡) ̸= 0 over its domain, then 𝑢
∗
(𝑥(𝑡), 𝑡) =

−𝑙(𝑡)𝑥(𝑡).

Proof. Notice that
𝜕𝑉 (𝑥, 𝑡)

𝜕𝑡

=
𝜕𝑉 (𝑥, 𝑡)

𝜕𝑥

𝜕𝑥

𝜕𝑡

= −𝑢
∗
(𝑥, 𝑡) �̇� (𝑡) = −𝑢

∗
(𝑥, 𝑡) [−𝑥 (𝑡) + 𝑢 (𝑡)] .

(32)

Replacing (32) in (26) we obtain

− 𝑢
∗
(𝑥, 𝑡) [−𝑥 (𝑡) + 𝑢 (𝑡)]

= −
1

2
𝑥 (𝑡)
2
+
1

2
(𝑢
∗
(𝑥, 𝑡))

2

− 𝑥 (𝑡) 𝑢
∗
(𝑥, 𝑡) .

(33)

Arranging this we obtain

(𝑢
∗
(𝑥, 𝑡))

2

− 2𝑢
∗
(𝑥, 𝑡) [2𝑥 (𝑡) − 𝑢 (𝑡)] − 𝑥

2
(𝑡) = 0. (34)

Solving the above, we obtain

𝑢
∗
(𝑥 (𝑡) , 𝑡)

= −𝑥 (𝑡) [−2 +
𝑢 (𝑡)

𝑥 (𝑡)
+

1

𝑥 (𝑡)

√(2𝑥 (𝑡) − 𝑢 (𝑡))
2
+ 𝑥2 (𝑡)]

= −𝑙 (𝑡) 𝑥 (𝑡) .

(35)

Solving the integral equations we obtain the following terms:

𝑉
0
(𝑥, 𝑡) = 𝑉 (𝑥, 0) = 0,

𝑉
1
(𝑥, 𝑡) = −

𝑥
2

2
(𝑡 − 1) ,

𝑉
2
(𝑥, 𝑡) = −𝑥

2
(
1

2
− 𝑡 +

𝑡
2

2
) ,

𝑉
3
(𝑥, 𝑡) = −𝑥

2
(
𝑡

2
−
1

6
−
𝑡
2

2
+
𝑡
3

6
) ,

𝑉
4
(𝑥, 𝑡) = −𝑥

2
(
2

3
𝑡 −

1

6
− 𝑡
2
+
2

3
𝑡
3
−
𝑡
4

6
) ,

𝑉
5
(𝑥, 𝑡) = −𝑥

2
(−

1

12
+
𝑡

6
+
𝑡
2

6
−
2𝑡
3

3
+
7𝑡
4

12
−
𝑡
5

6
) ,

𝑉
6
(𝑥, 𝑡) = −𝑥

2
(−

8

45
+
𝑡

2
−
𝑡
2

2
+
𝑡
3

3
−
𝑡
4

3
+
7𝑡
5

30
−
𝑡
6

18
)

...
(36)

Using the packageMathematica, in the samemanner, one can
obtain the rest of the components. But, here, 16 terms were
computed and the asymptotic solution is given by

𝑢
∗

𝑁=7
(𝑥, 𝑡) = −𝜕

𝑥
𝑉
𝑁=16

(𝑥, 𝑡) = −𝑥𝑙 (𝑡) . (37)

This verifies Lemma 3.
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Figure 1: Approximated solution.

The analytical solution for this problem of state 𝑥(𝑡) and
the control 𝑢(𝑡) is given as [4]

𝑥 (𝑡) = cosh (√2𝑡) + 𝛼 sinh (√2𝑡)

𝑢 (𝑡) = (1 + √2𝛼) cosh (√2𝑡) + (√2 + 𝛼) sinh (√2𝑡)
(38)

with

𝛼 = −

cosh (√2) + √2 sinh (√2)
√2 cosh (√2) + sinh (√2)

,

𝑢
∗
(𝑥, 𝑡) = −𝑙 (𝑡) 𝑥 (𝑡) ,

(39)

where, for simplicity,

𝑙 (𝑡) = −

(1 + √2𝛼) cosh (√2𝑡) + (√2 + 𝛼) sinh (√2𝑡)

cosh (√2𝑡) + 𝛼 sinh (√2𝑡)
.

(40)

To access the accuracy of the homotopy decomposition
method, we determine numerically the absolute errors
|𝑙analytic(𝑡) − 𝑙HDM(𝑡)| for 𝑛 = 16 as shown in Figure 1 that is
showing the comparison between the two.

Problem 5. Consider the following purelymathematical opti-
mal control problem:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝑥 (𝑡) + 𝑢 (𝑡) ,

𝐽 = 𝑥(𝑡
𝑓
)
2
+ ∫

𝑡𝑓

0

𝑢
2
(𝑡) 𝑑𝑡.

(41)

The corresponding Hamiltonian function will be

𝐻(𝑥, 𝑢, 𝑉
𝑥
, 𝑡) = 𝑢(𝑡)

2
+ 𝑉
𝑥
(𝑥, 𝑡) (𝑥 (𝑡) + 𝑢 (𝑡)) . (42)

Our concern here is to find 𝑢∗, that is, stationary point for the
Hamiltonian function. Therefore, differentiating (42) with
respect to 𝑢 we obtain

𝜕𝐻

𝜕𝑢
= 2𝑢 (𝑡) +

𝜕𝑉 (𝑥, 𝑡)

𝜕𝑥
= 0 ⇒ 𝑢

∗
(𝑡) = −

𝜕𝑉 (𝑥, 𝑡)

2𝜕𝑥
. (43)
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Applying the second derivative test we obtain 𝜕2𝐻/𝜕𝑢2 = 2 >
0, since the second derivative is positive for all 𝑢; it follows
that our turning point is a minimum, which is acceptable
because our aim is to minimise. Thus, by substituting 𝑢∗(𝑡)
in Hamilton-Jacobi-Bellman equation we obtain

𝜕𝑉 (𝑥, 𝑡)

𝜕𝑡
=
1

4

𝑉
2
(𝑥, 𝑡)

𝜕𝑥
− 𝑥

𝜕𝑉 (𝑥, 𝑡)

𝜕𝑥

(44)

subjected to the following condition:

𝑉(𝑥 (𝑡
𝑓
) , 𝑡
𝑓
) = 𝑥
2
(𝑡
𝑓
) . (45)

The exact solution of this form was proposed in [4] as

𝑉(𝑥, 𝑡, 𝑡
𝑓
) =

2𝑥
2

1 + 𝑒
2(𝑡−𝑡𝑓)

. (46)

Shadowing the homotopy decomposition structure and
equaling the relations of the same powers of 𝑝, we obtain the
following system of integral equations:

𝑝
0: 𝑉
0
(𝑥, 𝑡) = 𝑉 (𝑥, 0) = 0,

𝑝
1: 𝑉
1
(𝑥, 𝑡)

= ∫

𝑡

𝑡𝑓

[
1

4
(
𝜕𝑉
0
(𝑥, 𝜏)

𝜕𝑥
)

2

− 𝑥
𝜕𝑉
0
(𝑥, 𝜏)

𝜕𝑥
] 𝑑𝜏,

𝑉
1
(𝑥, 0) = 0,

𝑝
2: 𝑉
2
(𝑥, 𝑡)

= ∫

𝑡

𝑡𝑓

[
1

4

2𝜕𝑉
0
(𝑥, 𝜏)

𝜕𝑥

𝜕𝑉
1
(𝑥, 𝜏)

𝜕𝑥
− 𝑥

𝜕𝑉
1
(𝑥, 𝜏)

𝜕𝑥
] 𝑑𝜏,

𝑉
2
(𝑥, 0) = 0,

𝑝
𝑛: 𝑉
𝑛
(𝑥, 𝑡)

= ∫

𝑡

𝑡𝑓

[

[

1

4

𝑛−1

∑

𝑗=0

𝜕𝑉
𝑗
(𝑥, 𝜏)

𝜕𝑥

𝜕𝑉
𝑛−𝑗−1

(𝑥, 𝜏)

𝜕𝑥

+𝑥
𝜕𝑉
𝑛−1
(𝑥, 𝜏)

𝜕𝑥

]

]

𝑑𝜏,

𝑉
𝑛
(𝑥, 0) = 0.

(47)

The following solutions are obtained. Here we chose the first
term to be −𝑥2 so that

𝑉
1
(𝑥, 𝑡) = −𝑥

2
(𝑡 − 1) ,

𝑉
2
(𝑥, 𝑡) = 0,

𝑉
3
(𝑥, 𝑡) = −𝑥

2
(
1

3
− 𝑡 + 𝑡

2
−
𝑡
3

3
) ,

𝑉
4
(𝑥, 𝑡) = 0,

0.2 0.4 0.6 0.8 1.0

Time

0.1

0.2

0.3

l(
t
)

fo
r a

pp
ro

xi
m

at
e

Figure 2: Exact solution.

𝑉
5
(𝑥, 𝑡) = −𝑥

2
(−

2

15
+
2

3
𝑡 −

4𝑡
2

3
+
4𝑡
3

3
−
2𝑡
4

3
+
2𝑡
5

15
) ,

𝑉
6
(𝑥, 𝑡) = 0,

𝑉
7
(𝑥, 𝑡)

= −𝑥
2
(
17

315
−
17

45
+
17𝑡
2

15
−
17𝑡
3

9
+
17𝑡
4

9
−
17𝑡
5

15

+
17𝑡
6

45
−
17𝑡
7

315
)

...
(48)

With the similar routine one can acquire the remaining terms
of the components. But 8 terms were computed and the
asymptotic solution is given by

𝑉 (𝑥, 𝑡) = 𝑉
0
(𝑥, 𝑡) + 𝑉

1
(𝑥, 𝑡) + ⋅ ⋅ ⋅ ,

𝑉 (𝑥, 𝑡) = −𝑥
2
(𝑡) 𝑓 (𝑡) ⇒ 𝑢

∗
(𝑥 (𝑡) , 𝑡) =

1

2
𝑥 (𝑡) 𝑓 (𝑡) .

(49)

To access the accuracy of the homotopy decomposition
method, we determine numerically the absolute errors
|𝑓analytic(𝑡)−𝑓HDM(𝑡)| for 𝑛 = 7 as shown in Figure 4. Figures 2
and 3 show approximate solution of equation and numerical
error respectively.

Problem 6. Consider the following nonlinear optimal control
problem [14]:

𝑑𝑥 (𝑡)

𝑑𝑡
=
1

2
𝑥(𝑡)
2 sin (𝑥 (𝑡)) + 𝑢 (𝑡) , 𝑡 ∈ [0, 1] ,

𝑥 (0) = 0, 𝑥 (1) = 0.5,

𝐽 = ∫

1

0

𝑢(𝑡)
2
𝑑𝑡.

(50)



Abstract and Applied Analysis 7

1.4 × 10
−6

1.2 × 10
−6

0.2 0.4 0.6 0.8 1.0

Time

N
um

er
ic

al
 er

ro
r

1 × 10
−6

8 × 10
−7

6 × 10
−7

4 × 10
−7

2 × 10
−7

Figure 3: Numerical error.
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Figure 4: Numerical error.

The corresponding Hamiltonian function will be

𝐻(𝑥, 𝑢, 𝑉
𝑥
, 𝑡)=𝑢(𝑡)

2
+𝑉
𝑥
(𝑥, 𝑡) (

1

2
𝑥 (𝑡)
2 sin (𝑥 (𝑡))+𝑢 (𝑡)) .

(51)

Following the discussion presented earlier, we obtain

𝜕𝐻

𝜕𝑢
= 2𝑢 (𝑡) +

𝜕𝑉 (𝑥, 𝑡)

𝜕𝑥
= 0 ⇒ 𝑢

∗
(𝑡) = −

𝜕𝑉 (𝑥, 𝑡)

2𝜕𝑥
. (52)

Applying the second derivative test we obtain 𝜕2𝐻/𝜕𝑢2 = 2 >
0, since the second derivative is positive for all 𝑢; it follows
that our turning point is a minimum, which is acceptable
because our aim is to minimise. Thus, by substituting 𝑢∗(𝑡)
in Hamilton-Jacobi-Bellman equation we obtain

𝜕𝑉 (𝑥, 𝑡)

𝜕𝑡
=
1

4
(
𝜕𝑉(𝑥, 𝑡)

𝜕𝑥
)

2

−
1

2
𝑥
2 sin (𝑥) 𝜕𝑉 (𝑥, 𝑡)

𝜕𝑥
(53)

subjected to the following condition:

𝑉 (𝑥 (1) , 1) = 0. (54)

Following the homotopy decomposition scheme and com-
paring the terms of the same powers of 𝑝, we obtain the
following system of integral equations:

𝑝
0: 𝑉
0
(𝑥, 𝑡) = 𝑉 (𝑥, 0) = 0,

𝑝
1: 𝑉
1
(𝑥, 𝑡)

= ∫

𝑡

𝑡𝑓

[
1

4
(
𝜕𝑉
0
(𝑥, 𝜏)

𝜕𝑥
)

2

− 𝑥 sin (𝑥)
𝜕𝑉
0
(𝑥, 𝜏)

𝜕𝑥
] 𝑑𝜏,

𝑉
1
(𝑥, 0) = 0,

𝑝
2: 𝑉
2
(𝑥, 𝑡)

= ∫

𝑡

𝑡𝑓

[
1

4

2𝜕𝑉
0
(𝑥, 𝜏)

𝜕𝑥

𝜕𝑉
1
(𝑥, 𝜏)

𝜕𝑥
−𝑥 sin (𝑥)

𝜕𝑉
1
(𝑥, 𝜏)

𝜕𝑥
] 𝑑𝜏,

𝑉
2
(𝑥, 0) = 0,

𝑝
𝑛: 𝑉
𝑛
(𝑥, 𝑡)

= ∫

𝑡

𝑡𝑓

[

[

1

4

𝑛−1

∑

𝑗=0

𝜕𝑉
𝑗
(𝑥, 𝜏)

𝜕𝑥

𝜕𝑉
𝑛−𝑗−1

(𝑥, 𝜏)

𝜕𝑥

+𝑥 sin (𝑥)
𝜕𝑉
𝑛−1
(𝑥, 𝜏)

𝜕𝑥

]

]

𝑑𝜏,

𝑉
𝑛
(𝑥, 0) = 0.

(55)

The following solutions are obtained. Here we chose the first
term to be −𝑥 so that

𝑉
1
(𝑥, 𝑡) =

𝑡

4
+ 𝑥
2
𝑡 sin (𝑥) ,

𝑉
2
(𝑥, 𝑡) = −

𝑡
2
𝑥
2

4
cos (𝑥) − 𝑡

2
𝑥 sin (𝑥)
2

−
𝑡
3
𝑥
4

2
cos (𝑥) sin (𝑥) − 𝑡2𝑥3sin2 (𝑥) .

(56)

The asymptotic solution is given by

𝑉 (𝑥, 𝑡) = 𝑉
0
(𝑥, 𝑡) + 𝑉

1
(𝑥, 𝑡) + ⋅ ⋅ ⋅ . (57)

Figure 5 shows the graphical representation of 𝑢∗(𝑥, 𝑡).

5. Conclusion

The purpose of this paper was to use the homotopy decom-
positionmethod to solve theHamilton-Jacobi-Bellman equa-
tion. The method is clearly a very efficient and powerful
technique in finding the solutions of the equations. We
presented some advantages the method has over the existing
methods. We showed that the complexity of the homotopy
decomposition method is of order 𝑂(𝑛). In addition, three
illustrative examples demonstrated good results and compar-
isons with exact solution. Although the technique used in this
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Figure 5: Numerical approximation of 𝑉(𝑥, 𝑡).

paper is very accurate, we have to mention that there exist
more appropriate techniques that can be used to handle this
type of nonlinear equation.
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