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Based upon the fast computation of the coefficients of the interpolation polynomials at Chebyshev-type points by FFT, together
with the efficient evaluation of the modified moments by forward recursions or by Oliver’s algorithms, this paper presents fast
and stable interpolating integration algorithms, by using the coefficients and modified moments, for Clenshaw-Curtis, Fejér’s first-
and second-type rules for Jacobi weights or Jacobi weights multiplied by a logarithmic function. Numerical examples illustrate the
stability, efficiency, and accuracy of these quadratures.

1. Introduction

The interpolation quadrature of the Clenshaw-Curtis rule as
well as Fejér-type formulas for

𝐼 [𝑓] = ∫

1

−1

𝑓 (𝑥)𝑤 (𝑥) 𝑑𝑥 ≈ 𝐼
𝑁
[𝑓] =

𝑁

∑

𝑘=0

𝑤
𝑘
𝑓 (𝑥
𝑘
) (1)

has been extensively studied since Fejér [1, 2] in 1933 and
Clenshaw and Curtis [3] in 1960, where the nodes {𝑥

𝑘
} are

of Chebyshev types while the weights {𝑤
𝑘
} are computed

by sums of trigonometric functions. When 𝑥
𝑘
= cos((2𝑘 +

1)𝜋/(2𝑁 + 2)) (𝑘 = 0, 1, . . . , 𝑁), this quadrature is called
Fejér’s first-type rule. This kind of points is called the first
kind of Chebyshev points, while Fejér’s second-type rule is
corresponding to the Filippi points 𝑥

𝑘
= cos((𝑘+1)𝜋/(𝑁+2))

(𝑘 = 0, 1, . . . , 𝑁) and the Clenshaw-Curtis-type quadrature to
the Clenshaw-Curtis points (the second kind of Chebyshev
points) 𝑥

𝑘
= cos(𝑘𝜋/𝑁) (𝑘 = 0, 1, . . . , 𝑁). For more

details, see Davis and Robinowitz [4], Sloan and Smith [5, 6],
Sommariva [7], Trefethen [8], Waldvogel [9], and so forth.

In the case 𝑤(𝑥) ≡ 1, a connection between the
Fejér, Clenshaw-Curtis quadrature rules, and discrete Fourier
transforms (DFTs) was given by Gentleman [10, 11], where
the Clenshaw-Curtis rule is implemented with (𝑁 + 1)

nodes by means of a discrete cosine transformation (DCT).

An independent approach along the same lines, unified
algorithms based on DFTs of order 𝑁 for generating the
weights of the two Fejér rules and of the Clenshaw-Curtis
rule, was presented in Waldvogel [9]. A streamlined matlab
code is given as well in [9]. In addition, Clenshaw and Curtis
[3], O’Hara and Smith [12], Trefethen [8, 13], Xiang and
Bornemann in [14], Xiang et al. [15–17], and so forth showed
that the Gauss, Clenshaw-Curtis, and Fejér quadrature rules
are about equally accurate.

In this paper, we focus the attention on the weight
functions𝑤(𝑥) = (1−𝑥)𝛼(1+𝑥)𝛽 and𝑤(𝑥) = ln((1+𝑥)/2)(1−
𝑥)
𝛼
(1 + 𝑥)

𝛽
. For these two weight functions, the Clenshaw-

Curtis-type quadrature has been extensively studied in a
series of papers of Piessens [18, 19] and Piessens and Bran-
ders [20–23], by using Chebyshev interpolant 𝑄

𝑁
[𝑓](𝑥) =

∑
𝑁

𝑛=0
𝑎
𝑛
𝑇
𝑛
(𝑥) of 𝑓(𝑥) at the (𝑁 + 1) Clenshaw-Curtis points

together with the modified moments𝑀
𝑛
= ∫
1

−1
𝑤(𝑥)𝑇

𝑛
(𝑥)𝑑𝑥

[24]:

𝐼 [𝑓] = ∫

1

−1

𝑓 (𝑥)𝑤 (𝑥) 𝑑𝑥 ≈ 𝐼
C-C
𝑁
[𝑓]

=

𝑁

∑

𝑛=0

𝑎
𝑛
∫

1

−1

𝑇
𝑛
(𝑥) 𝑤 (𝑥) 𝑑𝑥
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Table 1: Computation of𝑀
𝑛
(𝛼, 𝛽) = ∫

1

−1
(1 − 𝑥)

𝛼
(1 + 𝑥)

𝛽
𝑇
𝑛
(𝑥)𝑑𝑥 with different 𝑛 and (𝛼, 𝛽) by the forward recursion of (4).

𝑛 5 10 100
Exact value for (20, −0.5) −1.734810854604316𝑒 + 05 4.049003666168904𝑒 + 03 −3.083991348593134𝑒 − 41

(4) for (20, −0.5) −1.734810854604308𝑒 + 05 4.049003666169083𝑒 + 03 1.787242305340324𝑒 − 11

Exact value for (100, −0.5) −2.471295049468578𝑒 + 29 1.174275526131223𝑒 + 29 2.805165440968788𝑒 − 29

(4) for (100, −0.5) −2.471295049468764𝑒 + 29 1.174275526131312𝑒 + 29 −1.380038973213404𝑒 + 13

=

𝑁

∑

𝑘=0

𝑎
𝑛
𝑀
𝑛
,

(2)

where 𝑇
𝑛
(𝑥) is the Chebyshev polynomial of degree 𝑛 and

𝑎
𝑛
can be efficiently computed by FFT [8, 10, 11] which

is widely used for the approximation of highly oscillatory
integrals such as [22, 25–30]. The modified moments𝑀

𝑛
=

∫
1

−1
𝑤(𝑥)𝑇

𝑛
(𝑥)𝑑𝑥 satisfy the following recurrence formulas

for Jacobi weights or Jacobi weightsmultiplied by ln((𝑥+1)/2)
[20].

(i) For 𝑤(𝑥) = (1 − 𝑥)𝛼(1 + 𝑥)𝛽, by using Fasenmyer’s
technique, the recurrence formula for the evaluation
of the modified moments

𝑄
𝑛
(𝛼, 𝛽) = ∫

1

−1

(1 − 𝑥)
𝛼
(1 + 𝑥)

𝛽
𝑇
𝑛
(𝑥) 𝑑𝑥 (3)

is
(𝛽 + 𝛼 + 𝑘 + 2)𝑄

𝑛+1
(𝛼, 𝛽) + 2 (𝛼 − 𝛽)𝑄

𝑛
(𝛼, 𝛽)

+ (𝛽 + 𝛼 − 𝑛 + 2)𝑄
𝑛−1
(𝛼, 𝛽) = 0

(4)

with

𝑄
0
(𝛼, 𝛽) = 2

𝛽+𝛼+1
Γ (𝛼 + 1) Γ (𝛽 + 1)

Γ (𝛽 + 𝛼 + 2)
,

𝑄
1
(𝛼, 𝛽) = 2

𝛽+𝛼+1
Γ (𝛼 + 1) Γ (𝛽 + 1)

Γ (𝛽 + 𝛼 + 2)

𝛽 − 𝛼

𝛽 + 𝛼 + 2
.

(5)

The forward recursion is numerically stable [20],
except in two cases:

𝛼 > 𝛽, 𝛽 = −
1

2
,
1

2
,
3

2
, . . . (6)

𝛽 > 𝛼, 𝛼 = −
1

2
,
1

2
,
3

2
, . . . . (7)

(ii) For 𝑤(𝑥) = ln((𝑥 + 1)/2)(1 − 𝑥)𝛼(1 + 𝑥)𝛽, for

𝐺
𝑛
(𝛼, 𝛽) = ∫

1

−1

ln(𝑥 + 1
2
) (1 − 𝑥)

𝛼
(1 + 𝑥)

𝛽
𝑇
𝑛
(𝑥) 𝑑𝑥, (8)

the recurrence formula [20] is

(𝛽 + 𝛼 + 𝑘 + 2)𝐺
𝑛+1
(𝛼, 𝛽) + 2 (𝛼 − 𝛽)𝐺

𝑛
(𝛼, 𝛽)

+ (𝛽 + 𝛼 − 𝑛 + 2)𝐺
𝑛−1
(𝛼, 𝛽)

= 2𝑄
𝑛
(𝛼, 𝛽) − 𝑄

𝑛−1
(𝛼, 𝛽) − 𝑄

𝑛+1
(𝛼, 𝛽)

(9)

with

𝐺
0
(𝛼, 𝛽) = − 2

𝛽+𝛼+1
Φ(𝛼, 𝛽 + 1) ,

𝐺
1
(𝛼, 𝛽) = − 2

𝛽+𝛼+1
[2Φ (𝛼, 𝛽 + 2) − Φ (𝛼, 𝛽 + 1)] ,

(10)

where

Φ(𝛼, 𝛽) = 𝐵 (𝛼 + 1, 𝛽) [Ψ (𝛼 + 𝛽 + 1) − Ψ (𝛽)] . (11)

𝐵(𝑥, 𝑦) is the Beta function and Ψ(𝑥) is the Psi func-
tion (see Abramowitz and Stegun [31]). The forward
recursion is as numerically stable as (4) except for (6)
or (7) [20].

Thus, the modified moments can be fast computed by the
forward recursions (4) and (9) except the two cases (6) and
(7), and the total costs for 𝐼

𝑁
[𝑓] are 𝑂(𝑁 log𝑁) operations.

However, in case (6) or (7), the accuracy of the forward
recursion is catastrophic particularly when 𝛼 − 𝛽 ≫ 1 or 𝛽 −
𝛼 ≫ 1 and 𝑛 ≫ 1 (see Table 1). In case (6) the relative errors
𝜖
𝑛
of the computed values 𝑄

𝑛
(𝛼, 𝛽) obtained by the forward

recursion behave approximately as

𝜖
𝑛
∼ 𝑛
2(𝛼−𝛽)

, 𝑛 󳨀→ ∞ (12)

and in case (7) as

𝜖
𝑛
∼ 𝑛
2(𝛽−𝛼)

, 𝑛 󳨀→ ∞. (13)

In this paper, we will consider interpolation approaches
for Clenshaw-Curtis rules as well as Fejér’s first- and second-
type formulas for

𝐼 [𝑓] = ∫

1

−1

𝑓 (𝑥)𝑤 (𝑥) 𝑑𝑥 ≈

𝑁

∑

𝑘=0

𝑎
𝑛
∫

1

−1

𝑇
𝑛
(𝑥) 𝑤 (𝑥) 𝑑𝑥

=

𝑁

∑

𝑘=0

𝑎
𝑛
𝑀
𝑛
:= 𝐼
𝑁
[𝑓]

(14)

with 𝑤(𝑥) = (1 − 𝑥)
𝛼
(1 + 𝑥)

𝛽 or 𝑤(𝑥) = (1 − 𝑥)
𝛼
(1 +

𝑥)
𝛽 ln((1 + 𝑥)/2), which can be efficiently calculated in

𝑂(𝑁 log𝑁) operations. Computing the modified moments
𝑀
𝑛
in cases (6) and (7) by Oliver’s algorithm [32] or Lozier’s

algorithm [33] with one starting value and one end value, as
well as offering the very short codes for the evaluation of the
coefficients by FFT, is the topic of this paper.

This paper is organized as follows. In Section 2.1, we
studied the asymptotic expansions of the modified moments
𝑀
𝑛
. Based on the results of the asymptotic expansions, we
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Table 2: Computation of 𝑄
𝑛
(𝛼, 𝛽) = ∫

1

−1
(1 − 𝑥)

𝛼
(1 + 𝑥)

𝛽
𝑇
𝑛
(𝑥)𝑑𝑥 with (𝛼, 𝛽) = (100, −0.5) and different 𝑛 by Oliver’s algorithm.

𝑛 100 500 1000
Exact value for (100, −0.5) 2.805165440968788𝑒 − 29 −2.283851909785347𝑒 − 198 −1.247890461118514𝑒 − 259

Oliver’s method for (100, −0.5) 2.805165440968861𝑒 − 29 −2.283851909785405𝑒 − 198 −1.247890461118544𝑒 − 259

Table 3: Computation of 𝐺
𝑛
(𝛼, 𝛽) = ∫

1

−1
(1 − 𝑥)

𝛼
(1 + 𝑥)

𝛽 ln((1 + 𝑥)/2)𝑇
𝑛
(𝑥)𝑑𝑥 with (𝛼, 𝛽) = (−0.5, 100) and different 𝑛 by Oliver’s algorithm

compared with that computed by the forward recursion (9).

𝑛 100 500 1000
Exact value for (−0.5, 100) 1.089944378602585𝑒 − 28 7.222157005510106𝑒 − 198 5.715301877322031𝑒 − 259

Oliver’s method for (−0.5, 100) 1.089944378602206𝑒 − 28 7.222157005510654𝑒 − 198 5.715301877322483𝑒 − 259

(9) for (−0.5, 100) −5.331299059334499𝑒 + 14 −1.061058894110758𝑒 + 14 −5.304494050667818𝑒 + 13

discussed Oliver’s algorithm for the modified moments 𝑀
𝑛

when the recursion is unstable in Section 2.2. Moreover, we
gave some test to verify the accuracy and the CPU time of
Oliver’s algorithm. In Section 2.3, the concise matlab codes
for evaluation of the coefficients 𝑎

𝑛
by FFT are presented.

The efficiency and accuracy of the three quadratures are
illustrated in Section 3.

2. Computation of the Modified
Moments and the Coefficients of
the Interpolation Polynomials

From (4) and (9), we see that if 𝑄
𝑛
(𝛼, 𝛽) can be efficiently

and stably computed then 𝐺
𝑛
(𝛼, 𝛽) can be so. Note that the

asymptotic behaviour of two linearly independent solutions
of (4) satisfies

𝑦
𝑛,1
∼ 𝑛
−2𝛼−2

[1 + 𝑂 (𝑛
−2
)] ,

𝑦
𝑛,2
∼ 𝑛
−2𝛽−2

[1 + 𝑂 (𝑛
−2
)] ,

𝑛 󳨀→ ∞

(15)

(seeDenef and Piessens [34] and Piessens andBranders [20]).
Consequently, the forward recursions for (4) and (9) are
perfectly stable except cases (6) and (7). In these two cases,
both the forward recursions and backward recursions for (4)
and (9) are numerically unstable. In the following, we will
consider Oliver’s algorithms to evaluate modified moments
based on their asymptotic formulas of the moments with one
starting value and one end value for these two cases.

2.1. Asymptotic Expansions of the Modified Moments

Lemma 1 (Erdélyi [35]). If 0 < 𝜆, 𝜇 ≤ 1, and 𝜙(𝑡) is 𝑚 times
continuously differentiable for 𝛼 ≤ 𝑡 ≤ 𝛽, then

∫

𝛽

𝛼

𝑒
𝑖𝑥𝑡
(𝑡 − 𝛼)

𝜆−1
(𝛽 − 𝑡)

𝜇−1

𝜙 (𝑡) 𝑑𝑡

= 𝐵
𝑚
(𝑥) − 𝐴

𝑚
(𝑥) + 𝑂 (𝑥

−𝑚
) ,

(16)

where

𝐴
𝑚
(𝑥) =

𝑚−1

∑

𝑛=0

Γ (𝑛 + 𝜆)

𝑛!
𝑒
𝑖𝜋(𝑛+𝜆−2)/2

𝑥
−𝑛−𝜆

× 𝑒
𝑖𝑥𝛼
[
𝑑
𝑛

𝑑𝑡𝑛
{(𝛽 − 𝑡)

𝜇−1

𝜙 (𝑡)}]

𝑡=𝛼

,

𝐵
𝑚
(𝑥) =

𝑚−1

∑

𝑛=0

Γ (𝑛 + 𝜇)

𝑛!
𝑒
𝑖𝜋(𝑛−𝜇)/2

𝑥
−𝑛−𝜇

× 𝑒
ix𝛽
[
𝑑
𝑛

𝑑𝑡𝑛
{(𝑡 − 𝛼)

𝜆−1
𝜙 (𝑡)}]

𝑡=𝛽

.

(17)

Lemma 2. If 0 < 𝜆, 0 < 𝜇, and 𝜙(𝑡) is 𝑚 times continuously
differentiable for 𝛼 ≤ 𝑡 ≤ 𝛽, then

∫

𝛽

𝛼

𝑒
𝑖𝑥𝑡
(𝑡 − 𝛼)

𝜆−1
(𝛽 − 𝑡)

𝜇−1 ln (𝛽 − 𝑡) 𝜙 (𝑡) 𝑑𝑡

= 𝐵
𝑚
(𝑥) − 𝐴

𝑚
(𝑥) + 𝑂 (𝑥

−𝑚
) ,

(18)

where

𝐴
𝑚
(𝑥) =

𝑚−1

∑

𝑛=0

Γ (𝑛 + 𝜆)

𝑛!
𝑒
𝑖𝜋(𝑛+𝜆−2)/2

𝑥
−𝑛−𝜆

× 𝑒
𝑖𝑥𝛼
[
𝑑
𝑛

𝑑𝑡𝑛
{(𝛽 − 𝑡)

𝜇−1 ln (𝛽 − 𝑡) 𝜙 (𝑡)}]
𝑡=𝛼

,

𝐵
𝑚
(𝑥) =

𝑚−1

∑

𝑛=0

Γ (𝑛 + 𝜇)

𝑛!
𝑒
𝑖𝜋(𝑛−𝜇)/2

× 𝑥
−𝑛−𝜇

{Ψ (𝑛 + 𝜇) − ln (𝑥) − 𝑖𝜋
2
}

× 𝑒
𝑖𝑥𝛽
[
𝑑
𝑛

𝑑𝑡𝑛
{(𝑡 − 𝛼)

𝜆−1
𝜙 (𝑡)}]

𝑡=𝛽

.

(19)

Proof. The proof can be directly derived from the proof of
Lemma 1 and the proof of theTheorem 5 in Erdélyi [36].
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Table 4: Computation of 𝑄
𝑛
(𝛼, 𝛽) = ∫

1

−1
(1 − 𝑥)

𝛼
(1 + 𝑥)

𝛽
𝑇
𝑛
(𝑥)𝑑𝑥 with different 𝑛 and (𝛼, 𝛽) by Oliver’s algorithm.

𝑛 2000 4000 8000
Exact value for (0.6, −0.5) 9.551684021848334𝑒 − 12 1.039402748103725𝑒 − 12 1.131065744497495𝑒 − 13

Oliver’s method for (0.6, −0.5) 9.551684021848822𝑒 − 12 1.039402748103918𝑒 − 12 1.131065744497332𝑒 − 13

Exact value for (10, −0.5) −8.412345942129556𝑒 − 57 −2.005493070382270𝑒 − 63 −4.781368848995069𝑒 − 70

Oliver’s method for (10, −0.5) −8.412345942129623𝑒 − 57 −2.005493070382302𝑒 − 63 −4.781368848995179𝑒 − 70

Theorem 3. If −1 < 𝛼, −1 < 𝛽, then

𝑄
𝑛
(𝛼, 𝛽) = 2

𝛽−𝛼

𝑚−1

∑

𝑘=0

𝑎
𝑘
(𝛼, 𝛽) ℎ (𝛼 + 𝑘)

+ (−1)
𝑛
2
𝛼−𝛽

𝑚−1

∑

𝑘=0

𝑎
𝑘
(𝛽, 𝛼) ℎ (𝛽 + 𝑘)

+ 𝑂 (𝑛
−2 min(𝛼,𝛽)−2𝑚

) ,

(20)

where
ℎ (𝛼) = cos [𝜋 (𝛼 + 1)] Γ (2𝛼 + 2) 𝑛−2𝛼−2,

𝑎
0
(𝛼, 𝛽) = 1, 𝑎

1
(𝛼, 𝛽) = −

𝛼

12
−
𝛽

4
−
1

6
,

𝑎
2
(𝛼, 𝛽) =

1

120
+
19𝛼

1440
+
𝛼
2

288
+
𝛼𝛽

48
+
𝛽

32
+
𝛽
2

32
,

𝑎
3
(𝛼, 𝛽) = −

1

5040
−
𝛽

960
−
107𝛼

181440
−
𝛽
2

384
−
𝛼
2

1920

−
𝛽
3

384
−

𝛼
3

10368
−
7𝛼𝛽

2880
−
𝛼
2
𝛽

1152
−
𝛼𝛽
2

384
.

(21)

Proof. For −1 < 𝛼, 𝛽 ≤ −1/2, taking 𝑥 = cos(𝜃) in (3), we
have

𝑄
𝑛
(𝛼, 𝛽) = ∫

𝜋

0

(1 − cos (𝜃))𝛼+1/2

× (1 + cos (𝜃))𝛽+1/2 cos (𝑛𝜃) 𝑑𝜃

= ∫

𝜋

0

𝜑 (𝜃) 𝜃
2𝛼+1

(𝜋 − 𝜃)
2𝛽+1 cos (𝑛𝜃) 𝑑𝜃,

(22)

where

𝜑 (𝜃) = (
1 − cos (𝜃)

𝜃2
)

𝛼+1/2

(
1 + cos (𝜃)
(𝜋 − 𝜃)

2
)

𝛽+1/2

. (23)

Consequently, the desired result can be derived by applying
(16) to (22).

The above outcome can be extended to the case of −1/2 <
𝛼, −1/2 < 𝛽, since 𝑄

𝑛
(𝛼, 𝛽) can be written as

𝑄
𝑛
(𝛼, 𝛽) = ∫

𝜋

0

[𝜑 (𝜃) 𝜃
⌊2𝛼+1⌋+1

(𝜋 − 𝜃)
⌊2𝛽+1⌋+1

]

× 𝜃
2𝛼+1−⌊2𝛼+1⌋−1

(𝜋 − 𝜃)
2𝛽+1−⌊2𝛽+1⌋−1

× cos (𝑛𝜃) 𝑑𝜃,

(24)

where ⌊𝑧⌋ denotes the largest integer less than or equal to 𝑧.

Theorem 4. If −1 < 𝛼, −1 < 𝛽, then

𝐺
𝑛
(𝛼, 𝛽) = 2

𝛽−𝛼

𝑚−1

∑

𝑘=0

𝑐
𝑘
ℎ (𝛼 + 𝑘) + (−1)

𝑛
2
𝛼−𝛽

×

𝑚−1

∑

𝑘=0

ℎ (𝛽 + 𝑘) (2𝑎
𝑘
(𝛽, 𝛼) 𝜙 (𝛽 + 𝑘) + 𝑏

𝑘
)

+ 𝑂 (𝑛
−2𝑚
) ,

(25)

where

𝜙 (𝛽) = Ψ (2𝛽 + 2) − ln (2𝑛) − 𝜋
2
tan (𝜋𝛽) ,

𝑏
0
= 0, 𝑏

1
= −

1

12
, 𝑏

2
=
19

1440
+
𝛼

48
+
𝛽

144
,

𝑏
3
= −

7𝛼

2880
−
𝛽

960
−
𝛼
2

384
−
𝛽
2

3456
−

107

181440
−
𝛼𝛽

576
,

𝑐
0
= 0, 𝑐

1
= −

1

4
, 𝑐

2
=
1

32
+
𝛼

48
+
𝛽

16
,

𝑐
3
= −

7𝛼

2880
−
𝛽

192
−
𝛼
2

1152
−
𝛽
2

128
−
1

960
−
𝛼𝛽

192
.

(26)

Proof. Letting 𝑥 = cos(𝜃) in (8) and using ln((1+cos(𝜃))/2) =
ln((1 + cos(𝜃))/2(𝜋 − 𝜃)2) + 2 ln(𝜋 − 𝜃), we have

𝐺
𝑛
(𝛼, 𝛽) = ∫

𝜋

0

ln(1 + cos (𝜃)
2(𝜋 − 𝜃)

2
)

× 𝜑 (𝜃) 𝜃
2𝛼+1

(𝜋 − 𝜃)
2𝛽+1 cos (𝑛𝜃) 𝑑𝜃

+ 2∫

𝜋

0

𝜑 (𝜃) ln (𝜋 − 𝜃) 𝜃2𝛼+1

× (𝜋 − 𝜃)
2𝛽+1 cos (𝑛𝜃) 𝑑𝜃.

(27)

Applying Lemmas 1 and 2 to the two integrals on the right
hand side of (27), respectively, leads to the desired result.

Remark 5. Piessens and Branders gave the first term of
asymptotic expansion for 𝑄

𝑛
(𝛼, 𝛽) and 𝐺

𝑛
(𝛼, 𝛽) in [20]

using the asymptotic theory of Fourier coefficients (Lighthill
[37]). Furthermore, Piessens [18] presented the asymptotic
expansion with explicit formulas for the first three terms for
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Table 5: Computation of 𝐺
𝑛
(𝛼, 𝛽) = ∫

1

−1
(1 − 𝑥)

𝛼
(1 + 𝑥)

𝛽 ln((1 + 𝑥)/2)𝑇
𝑛
(𝑥)𝑑𝑥 with different 𝑛 and (𝛼, 𝛽) by Oliver’s algorithm.

𝑛 10 100 500
Exact value for (−0.4999, −0.5) −0.314181354550401 −0.031418104511487 −0.006283620842004

Oliver’s method for (−0.4999, −0.5) −0.314181354550428 −0.031418104511490 −0.006283620842004

Exact value for (0.9999, −0.5) −0.895286620533541 −0.088858164406923 −0.017770353274330

Oliver’s method for (0.9999, −0.5) −0.895286620533558 −0.088858164406925 −0.017770353274330

Table 6: The CPU time for calculation of the first (𝑁 + 1)modified moments by the Oliver’s methods for 𝛼 = −0.5 and 𝛽 = 100.

Modified moments 𝑁 = 10
3

𝑁 = 10
4

𝑁 = 10
5

𝑁 = 10
6

{𝑄
𝑛
(𝛼, 𝛽)}

𝑁

𝑛=0
0.003954 s 0.011553 s 0.121553 s 1.200070 s

{𝐺
𝑛
(𝛼, 𝛽)}

𝑁

𝑛=0
0.006087 s 0.028416 s 0.296032 s 2.933928 s

function a = clenshaw curtis(f,N) % (N+1)-coefficients for C-C quadrature

x = cos(pi∗(0:N)’/N); % C-C points

fx = feval(f,x)/(2∗N); % f evaluated at these points

g = fft(fx([1:N+1 N:−1:2])); % FFT

a = [g(1); g(2:N)+g(2∗N:−1:N+2); g(N+1)]; % Chebyshev coefficients

Algorithm 1

𝑄
𝑛
(𝛼, 𝛽), which is equivalent to (20) except a minor clerical

error. In [18], 𝑎
1
(𝛼, 𝛽) = −((𝛼 + 2𝛽 + 2)/3)2

𝛽−𝛼−2 should
be modified by 𝑎

1
(𝛼, 𝛽) = −((𝛼 + 3𝛽 + 2)/3)2

𝛽−𝛼−2. The
first term of (25) is different from the first asymptotic term
for 𝐺
𝑛
(𝛼, 𝛽) proposed in [18]; that is, 2𝛽−𝛼∑1

𝑘=0
𝑐
𝑘
ℎ(𝛼 + 𝑘) +

(−1)
𝑛
2
𝛼−𝛽

∑
0

𝑘=0
ℎ(𝛽 + 𝑘)[2𝑎

𝑘
(𝛽, 𝛼)𝜙(𝛽 + 𝑘) + 𝑏

𝑘
]. In order to

ensure the accuracy of the modified moments evaluated by
Oliver’s method, the end value of modified moments must be
computed very precisely. In this paper, we use the first four-
term truncation.

2.2. Oliver’s Algorithm. Let

𝐴
𝑁
:=

(
(
(
(
(
(

(

2(𝛼 − 𝛽) 𝛼 + 𝛽 + 2 + 1

𝛼 + 𝛽 + 2 − 2 2 (𝛼 − 𝛽) 𝛼 + 𝛽 + 2 + 2

d d d

𝛼 + 𝛽 + 2 − (𝑁 − 1) 2 (𝛼 − 𝛽) 𝛼 + 𝛽 + 2 + (𝑁 − 1)

𝛼 + 𝛽 + 2 − 𝑁 2 (𝛼 − 𝛽)

)
)
)
)
)
)

)

, (28)

𝑏
𝑁
:= (− (𝛽 + 𝛼 + 1)𝑄0 (𝛼, 𝛽) 0 ⋅ ⋅ ⋅ 0 − (𝛼 + 𝛽 + 2 + 𝑁)𝑄𝑁+1)

𝑇

, (29)

where “⋅𝑇” denotes the transpose; then themodifiedmoments
can be solved by

𝐴
𝑁
𝑀 = 𝑏

𝑁
,

𝑀 = (𝑄
1
(𝛼, 𝛽) , 𝑄

2
(𝛼, 𝛽) , . . . , 𝑄

𝑁
(𝛼, 𝛽))

𝑇

,

(30)

where 𝑄
𝑁+1
(𝛼, 𝛽) is computed by hypergeometric function

[20] when𝑁 ≤ 2000:

𝑄
𝑁+1

(𝛼, 𝛽)

= 2
𝛼+𝛽+1

Γ (𝛼 + 1) Γ (𝛽 + 1)

Γ (𝛼 + 𝛽 + 2)

×
3
𝐹
2
([𝑁 + 1, −𝑁 − 1, 𝛼 + 1] , [

1

2
, 𝛼 + 𝛽 + 2] , 1) .

(31)
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function a = fejer1(f,N)

x = cos(pi∗(2∗(0:N)’+1)/(2∗N+2)); % coefficients for Fejér’s first rule

fx = feval(f,x)/(N+1); % first kind of Chebyshev points

g = fft(fx([1:N+1 N+1:−1:1])); % f evaluated at these points

hx = real(exp(2∗1i∗pi∗(0:2∗n+1)/(4∗n+4)).∗g’); % FFT

a = hx(1:n+1);a(1)=0.5∗a(1); % Chebyshev coefficients

Algorithm 2

function a = fejer2(f,N) % coefficients for Fejér’s second rule

x = cos(pi∗(0:N+2)’/(N+2));
fx = feval(f,x)/(2N+4); % f evaluated at these points

g = fft(fx([1:N+3 N+2:−1:2])); % FFT

b = [g(1); g(2:N+2)+g(2∗N+4:−1:N+4); g(N+3)];

b(N+1:−2:1) = b(N+1:-2:1)−2∗b(N+3);

b(N:−2:1) = b(N:-2:1)−b(N+2);

b(1) = b(1)+mod(N+1,2)∗b(N+3)+mod(N,2)∗b(N+2)/2;

a = b(1:N+1); % Chebyshev coefficients

Algorithm 3

function a = fejer1dct(f,N) % coefficients for Fejér’s second rule

x = cos(pi∗(2∗(0:N)’+1)/(2∗N+2)); % The first kind of Chebyshev points

fx = feval(f,x); % f evaluated at these points

a = dct(fx)∗sqrt(2/(N+1));a(1)=a(1)/sqrt(2); % Chebyshev coefficients

Algorithm 4

function a = fejer2idst(f,N) % coefficients for Fejér’s second rule

x = cos(pi∗(1:N+1)’/(N+2)); % Filippi points

fx = feval(f,x).∗sin(pi∗(1:N+1)’/(N+2)); % f evaluated at these points

a = idst(fx); % Chebyshev coefficients

Algorithm 5

If𝑁 > 2000,𝑄
𝑁+1
(𝛼, 𝛽) is computed by using the asymptotic

expression (20) with the first four-term truncation. Particu-
larly, Oliver’s algorithm can be fast implemented by applying
LU factorization (chasing method) with 𝑂(𝑁) operations.

In addition, for theweight𝑤(𝑥) = ln((𝑥+1)/2)(1−𝑥)𝛼(1+
𝑥)
𝛽 in case of (6) or (7), the computation of the modified

moments can be fixed up by Oliver’s algorithm similar to (29)
with one starting 𝐺

0
(𝛼, 𝛽) = −2

𝛼+𝛽+1
Φ(𝛼, 𝛽 + 1) and one

end𝐺
𝑁+1
(𝛼, 𝛽). Consequently, the modified moments can be

solved by

𝐴
𝑁
𝐺 = 𝐶

𝑁
,

𝐺 = (𝐺
1
(𝛼, 𝛽) , 𝐺

2
(𝛼, 𝛽) , . . . , 𝐺

𝑁
(𝛼, 𝛽))

𝑇

,

(32)

where

𝐶
𝑁
= (𝑐1 𝑐2 ⋅ ⋅ ⋅ 𝑐𝑁−1 𝑐𝑁)

𝑇

,

𝑐
1
= − (𝛽 + 𝛼 + 1)𝐺

0
(𝛼, 𝛽) + 2𝑄

1
(𝛼, 𝛽)

− 𝑄
0
(𝛼, 𝛽) − 𝑄

2
(𝛼, 𝛽) ,

𝑐
𝑘
= 2𝑄
𝑘
(𝛼, 𝛽) − 𝑄

𝑘−1
(𝛼, 𝛽) − 𝑄

𝑘+1
(𝛼, 𝛽) ,

𝑘 = 2, . . . , 𝑁 − 1,

𝑐
𝑁
= − (𝛽 + 𝛼 + 𝑁 + 2)𝐺

𝑁+1
(𝛼, 𝛽)

+ 2𝑄
𝑁
(𝛼, 𝛽) − 𝑄

𝑁−1
(𝛼, 𝛽) − 𝑄

𝑁+1
(𝛼, 𝛽) .

(33)
The end value 𝐺

𝑁+1
(𝛼, 𝛽) can be calculated by its asymptotic

formula (25) with the first four-term truncation.
Tables 2 and 3 show the accuracy of Oliver’s algorithm for

𝛼 = 100 and 𝛽 = −0.5, 𝛼 = −0.5 and 𝛽 = 100, respectively.
Table 4 displays the accuracy of Oliver’s algorithm for 𝛼 = 0.6
and 𝛽 = −0.5, 𝛼 = 10 and 𝛽 = −0.5 for 𝑄

𝑛
(𝛼, 𝛽). Table 5

displays the accuracy of Oliver’s algorithm for 𝛼 = −0.4999
and 𝛽 = −0.5, 𝛼 = 0.9999 and 𝛽 = −0.5 for 𝐺

𝑛
(𝛼, 𝛽). Table 6

shows the CPU time for implementation of the two Oliver’s
algorithms. From these tables, we see that Oliver’s algorithms
have high efficiency and are precise. The matlab codes on
Oliver’s algorithms and all the matlab codes in this paper
can be downloaded from [38].
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−0.5

tan dx
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⏐⏐⏐⏐I[f] I[f]− I
G
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G

N
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N
[f]

⏐⏐⏐⏐I[f] − I
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N

I[f] = ∫1
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(1 − x)

100
(1 + x)

−0.5

1/(1 + 16x
2
)dx

I[f] = ∫1
−1
(1 − x)

100
(1 + x)

−0.5

1/(1 + 16x
2
)dx

I[f] = ∫1
−1
(1 − x)

100
(1 + x)

−0.5

1/(1 + 16x
2
)dx

I[f] = ∫1
−1
(1 − x)

100
(1 + x)

−0.5

1/(1 + 16x
2
)dx

N = 10 : 1000 N = 10 : 1000 N = 10 : 1000 N = 10 : 1000

N = 10 : 1000
N = 10 : 1000 N = 10 : 1000

N = 10 : 1000

| | |
⏐⏐⏐⏐I[f] − I

F

N
2 [f]|/|I[f]

⏐⏐⏐⏐
⏐⏐⏐

⏐⏐
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N
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N
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N
1
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/ |/ I[f][f] ||/
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⏐

⏐⏐⏐[f] ||/I[f]⏐⏐⏐[f] ||/I[f]
⏐⏐⏐⏐[f] ||/

Figure 1: The relative errors compared with Gauss quadrature for ∫1
−1
(1 − 𝑥)

𝛼
(1 + 𝑥)

𝛽
𝑓(𝑥)𝑑𝑥 evaluated by the Clenshaw-Curtis, Fejér’s first-

and second-type rules with𝑁 nodes, respectively: 𝑓(𝑥) = tan |𝑥| or 1/(1 + 16𝑥2) and𝑁 = 10 : 1000.

2.3. Fast Computation of the Coefficients by FFT. The coeffici-
ents 𝑎

𝑛
for the interpolation polynomial 𝑄

𝑁
[𝑓](𝑥) =

∑
𝑁

𝑛=0
𝑎
𝑛
𝑇
𝑛
(𝑥) at the three kinds of points can be efficiently

computed by FFT. For the Clenshaw-Curtis points, the
elegant matlab code on the 𝑎

𝑛
is from [8] (see Algorithm 1).

For the other two classes of points, by the sums of
trigonometric functions at these two point-set, it is not
difficult to get the FFT implementation. Here, we will not give
details but just offer the following matlab functions.

For the first kind of Chebyshev points, we presented a
matlab code for computing the coefficients 𝑎

𝑛
by FFT in

Algorithm 2.

For the Filippi points, we presented a matlab code for
computing the coefficients 𝑎

𝑛
by FFT in Algorithm 3.

In addition, the coefficients of the interpolation poly-
nomials 𝑄

𝑁
[𝑓](𝑥) at these Chebyshev-type points may be

also efficiently evaluated by DCT and inverse discrete sine
transform (IDST), respectively.The discrete cosine transform
denoted by 𝑌 = dct(𝑋) is closely related to the discrete
Fourier transform but using purely real numbers and takes
𝑂(𝑁 log𝑁) operations for

𝑌 (𝑘) = 𝜎 (𝑘)

𝑁

∑

𝑠=1

𝑋 (𝑠) cos((𝑘 − 1) 𝜋 (2𝑠 − 1)
2𝑁

)
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I
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F

n
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Figure 2: The absolute errors for ∫1
−1
(1 − 𝑥)

𝛼
(1 + 𝑥)

𝛽 ln((1 + 𝑥)/2)𝑓(𝑥)𝑑𝑥 evaluated by the Clenshaw-Curtis, Fejér’s first- and second-type
rules with𝑁 nodes, respectively: 𝑓(𝑥) = tan |𝑥| or |𝑥 − 0.5|0.6 and𝑁 = 10 : 1000.

with 𝜎 (1) = 1

√𝑁

, 𝜎 (𝑘) = √
2

𝑁
, for 2 ≤ 𝑘 ≤ 𝑁. (34)

The discrete sine transform denoted by 𝑌 = dst(𝑋) and its
inverse by𝑋 = idst(𝑌) both take 𝑂(𝑁 log𝑁) operations for

𝑌 (𝑘) =

𝑁

∑

𝑠=1

𝑋 (𝑠) sin( 𝑘𝜋𝑠

𝑁 + 1
) . (35)

Notice that the coefficients 𝑎
𝑗
for the interpolation

polynomial 𝑄
𝑁
[𝑓](𝑥) = ∑

𝑁+1

𝑛=1

󸀠

𝑎
𝑛−1
𝑇
𝑛−1
(𝑥) at

{cos((2𝑘 − 1)𝜋/(2𝑁 + 2))}𝑁+1
𝑘=1

are represented by

𝑎
𝑛−1
=

2

𝑁 + 1

𝑁+1

∑

𝑠=1

𝑓(cos((2𝑠 − 1) 𝜋
2𝑁 + 2

))

× cos((2𝑠 − 1) (𝑛 − 1) 𝜋
2𝑁 + 2

) ,

𝑛 = 1, 2, . . . , 𝑁 + 1,

(36)
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and 𝑎
𝑛

for the interpolation polynomial 𝑄
𝑁
[𝑓](𝑥) =

∑
𝑁+1

𝑛=1
𝑎
𝑛−1
𝑈
𝑛−1
(𝑥) at {cos(𝑘𝜋/(𝑁 + 2))}𝑁+1

𝑘=1
satisfies

𝑓(cos( 𝑘𝜋

𝑁 + 2
)) sin( 𝑘𝜋

𝑁 + 2
)

=

𝑁+1

∑

𝑠=1

𝑎
𝑠−1

sin( 𝑠𝑘𝜋

𝑁 + 2
) , 𝑘 = 1, 2, . . . , 𝑁 + 1.

(37)

Then both can be efficiently calculated by DCT and IDST,
respectively. The matlab codes on the DCT and IDST are
very short and just need three rows. Now, we give the codes
in Algorithm 4 and Algorithm 5.

For the first kind of Chebyshev points, a matlab code
for computing the coefficients 𝑎

𝑛
by DCT is presented in

Algorithm 4.
As far as the Filippi points, a matlab code for computing

the coefficients 𝑎
𝑛
by IDST is presented in Algorithm 5.

Remark 6. For the modified moments on the second kind
Chebyshev polynomial 𝑀̃

𝑛
:= ∫
1

−1
𝑤(𝑥)𝑈

𝑛
(𝑥)𝑑𝑥, we have

𝑀̃
0
= 𝑀
0
, 𝑀̃

1
= 2𝑀

1
,

𝑀̃
𝑛
= 2𝑀

𝑛
+ 𝑀̃
𝑛−2
, 𝑛 = 2, 3, . . . ;

(38)

here we use the simple equation 𝑈
𝑛+2

= 2𝑇
𝑛+2
+ 𝑈
𝑛
(see [31,

pp. 778]).

3. Numerical Examples

In this section, we illustrate the accuracy and efficiency of
the Clenshaw-Curtis, Fejér’s first- and second-type rules for
the functions tan |𝑥|, 1/(1 + 16𝑥2) and |𝑥 − 0.5|0.6 by the
algorithms presented in this paper, which are compared with
the Gauss-Jacobi quadrature used [𝑥, 𝑤] = jacpts(𝑛, 𝛼, 𝛽) in
chebfun v4.2 [39] (see Figure 1).The first column computed
by Gauss-Jacobi quadrature in Figure 1 takes 85.7386 seconds
and the others totally take 2.9211 seconds in a Lenovo com-
puter with Intel Core 3.20GHz and 3.47GB RAM. Figure 2
shows the convergence errors by the three quadratures, which
takes 7.336958 seconds.
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