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We consider the second dynamic operators of elliptic type on time scales. We establish basic generalized maximum principles and
apply them to obtain weak comparison principle for second dynamic elliptic operators and to obtain the uniqueness of Dirichlet
boundary value problems for dynamic elliptic equations.

1. Introduction

Maximum principles play an important role in the theories
for differential equations. They can be used to obtain a priori
estimate and uniqueness results for differential equations and
other results. The survey of classical maximum principles
can be found in Protter and Weinberger [1] and references
therein.

Similarly, discrete maximum principles and their rela-
tions to their continuous counterpart are very important in
difference equations. They have been consequently studied;
see in Cheng [2] or Kuo and Trudinger [3].

The theory of time scales was first introduced by Stefan
Hilger in 1988 to unify the continuous and discrete analysis.
Since then much contributions have been made to the
theories of time scales; see [4–6] and references therein.

Because of the importance and the distinct behavior of
maximum principles in differential and difference equations,
it seems natural to study them in the time scales setting.
Reference [7–9] have studied the classical maximum prin-
ciples. Unfortunately, the generalized maximum principles,
that is, maximum principles in 𝐻

1 setting, have not been
studied yet. In this paper, we study the generalizedmaximum
principles for dynamic operators and their applications.
To our knowledge, our results are new even in difference
equations.

The paper is organized as follows. In Section 2, we
give some notations on time scales, introduce the Sobolev
spaces 𝐻1 on time scales, and give some basic properties
of 𝐻1. In Section 3, we establish the generalized maximum
principles for dynamic operators. In Section 4, we establish
the comparison principle for dynamic operators. In Section 5,
we study the uniqueness results to dynamic equations.

2. Preliminaries about Time Scales

We introduce some concepts related to time scales, which
can be found in [5, 6, 10–12]. A time scale 𝑇 is defined as a
closed subset of 𝑅. The forward jump operator 𝜎(𝑡) : 𝑇 → 𝑇

and the backward jump operator 𝜌(𝑡) : 𝑇 → 𝑇 for 𝑡 ∈ 𝑇

are defined as 𝜎(𝑡) := inf{𝜏 > 𝑡 | 𝜏 ∈ 𝑇} and 𝜌(𝑡) :=

sup{𝜏 < 𝑡 | 𝜏 ∈ 𝑇}, respectively, with supplementation inf 0 =
sup 𝑇, sup 0 = inf 𝑇. A point 𝑡 ∈ 𝑇 is called rightscattered,
rightdensed, leftscattered, and leftdensed if 𝜌(𝑡) > 𝑡, 𝜌(𝑡) = 𝑡,
and 𝜎(𝑡) < 𝑡, 𝜎(𝑡) = 𝑡 hold, respectively. We define 𝑇𝑘 = 𝑇

if 𝑇 does not have a left-scattered maximum 𝑡max; otherwise,
𝑇
𝑘
= 𝑇 \ {𝑡max}. The graininess function 𝜇(𝑡) : 𝑇 → [0, +∞)

is defined by 𝜇(𝑡) := 𝜎(𝑡) − 𝑡.
A function 𝑓 : 𝑇 → 𝑅 is called (delta) differentiable at

𝑡 ∈ 𝑇
𝑘 with (delta) derivative 𝑓Δ(𝑡) ∈ 𝑅 if for any 𝜖 > 0, there
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exists a neighborhood 𝑈 of 𝑡 (i.e., 𝑈 = (𝑡 − 𝛿, 𝑡 + 𝛿)⋂𝑇 for
some 𝛿 > 0) such that


𝑓 (𝜎 (𝑡)) − 𝑓 (𝑠) − 𝑓

Δ
(𝑡) [𝜎 (𝑡) − 𝑠]



≤ 𝜖 |𝜎 (𝑡) − 𝑠| , ∀𝑠 ∈ 𝑈.

(1)

The function 𝑓 is differentiable on 𝑇
𝑘 if 𝑓Δ(𝑡) exists for all

𝑡 ∈ 𝑇
𝑘. The following lemma gives some basic properties of

𝑓
Δ
(𝑡); for the proofs, we refer the readers to [5, 11].

Lemma 1. Let 𝑓, 𝑔 : 𝑇 → 𝑅 be two functions, and let 𝑡 ∈ 𝑇𝑘.
Then we have the following:

(i) if 𝑓Δ(𝑡) exists, then 𝑓 is continuous at 𝑡;
(ii) if 𝑡 is right scattered and𝑓 is continuous at 𝑡, then𝑓Δ(𝑡)

exists and 𝑓Δ(𝑡) = (𝑓(𝜎(𝑡)) − 𝑓(𝑡))/𝜇(𝑡);
(iii) if 𝑡 is right dense and 𝑓

Δ
(𝑡) exists, then 𝑓

Δ
(𝑡) =

lim
𝑠→ 𝑡

((𝑓(𝑠) − 𝑓(𝑡))/(𝑠 − 𝑡));
(iv) if 𝑓Δ(𝑡) and 𝑔Δ(𝑡) exist, then 𝐴𝑓 + 𝐵𝑔 is differentiable

at 𝑡 with (𝐴𝑓 + 𝐵𝑔)
Δ
(𝑡) = 𝐴𝑓

Δ
(𝑡) + 𝐵𝑔

Δ
(𝑡) for any

constants 𝐴, 𝐵;
(v) if 𝑓Δ(𝑡) and 𝑔Δ(𝑡) exist, then 𝑓𝑔 is differentiable at 𝑡

with (𝑓𝑔)Δ(𝑡) = 𝑓
𝜎
(𝑡)𝑔
Δ
(𝑡)+𝑓

Δ
(𝑡)𝑔(𝑡) = 𝑓

Δ
(𝑡)𝑔
𝜎
(𝑡)+

𝑓(𝑡)𝑔
Δ
(𝑡);

(vi) let 𝑓, 𝑔 : 𝑇 → 𝑅 be such that 𝑔(𝑡)𝑔𝜎(𝑡) ̸= 0 and 𝑓Δ(𝑡)
and 𝑔Δ(𝑡) exist; then 𝑓/𝑔 is differentiable at 𝑡 and

(
𝑓

𝑔
)

Δ

(𝑡) =
𝑓
Δ
(𝑡) 𝑔 (𝑡) − 𝑓 (𝑡) 𝑔

Δ
(𝑡)

𝑔 (𝑡) 𝑔
𝜎
(𝑡)

; (2)

(vii) if 𝑓Δ(𝑡) exists, then 𝑓𝜎(𝑡) = 𝑓(𝑡) + 𝜇(𝑡)𝑓
Δ
(𝑡).

Here and in the following, we use the notation 𝑔𝜎(𝑡) = 𝑔(𝜎(𝑡)).

A function 𝑓 : 𝑇 → 𝑅 is called rd-continuous, provided
it is continuous at each right-dense point and its left-sided
limit exists (finite) at each left-dense point in 𝑇, and write
𝑓 ∈ 𝐶rd(𝑇) = 𝐶rd(𝑇, 𝑅). A rd-continuous function 𝑓 with
compact support is written as 𝑓 ∈ 𝐶

0

rd(𝑇) = 𝐶
0

rd(𝑇, 𝑅). We
write 𝑓 ∈ 𝐶

1

rd(𝑇), provided 𝑓
Δ
∈ 𝐶rd(𝑇

𝑘
), write 𝑓 ∈ 𝐶

2

rd(𝑇),
provided 𝑓

Δ is differentiable on 𝑇
𝑘
2

= (𝑇
𝑘
)
𝑘 with 𝑓

Δ
2

=

(𝑓
Δ
)
Δ
∈ 𝐶rd(𝑇

𝑘
2

), and similarly, write 𝑓 ∈ 𝐶
1,0

rd (𝑇
𝑘
), 𝐶2,0rd (𝑇

𝑘
)

if 𝑓, 𝑓Δ, and 𝑓
Δ
2

have compact support, respectively. The
definition of Riemann delta integral on time scales which is
similar to the classical Riemann definition of integrability is
given in [6].We present some properties of the integral in the
following lemma.

Lemma 2 (see [6]). Let 𝑓, 𝑔 : 𝑇 → 𝑅 be two functions and
𝑎, 𝑏 ∈ 𝑇. Then we have the following:

(i) let 𝑓 and 𝑔 be Riemann delta integrable functions on
[𝑎, 𝑏] and 𝛼, 𝛽 ∈ 𝑅. Then 𝛼𝑓 + 𝛽𝑔 are Riemann delta
integrable and

∫

𝑏

𝑎

[𝛼𝑓 (𝑡) + 𝛽𝑔 (𝑡)] Δ𝑡 = 𝛼∫

𝑏

𝑎

𝑓 (𝑡) Δ𝑡 + 𝛽∫

𝑏

𝑎

𝑔 (𝑡) Δ𝑡; (3)

(ii) ∫𝜎(𝑡)
𝑡

𝑓(𝑡)Δ𝑡 = 𝜇(𝑡)𝑓(𝑡) for 𝑡 ∈ 𝑇𝑘;

(iii) let 𝑐 ∈ 𝑇 with 𝑎 < 𝑐 < 𝑏. If 𝑓 is Riemann delta
integrable from 𝑎 to 𝑐 and from 𝑐 to 𝑏, then 𝑓 is
Riemann delta integrable from 𝑎 to 𝑏 and

∫

𝑏

𝑎

𝑓 (𝑡) Δ𝑡 = ∫

𝑐

𝑎

𝑓 (𝑡) Δ𝑡 + ∫

𝑏

𝑐

𝑔 (𝑡) Δ𝑡; (4)

(iv) (fundamental theorem of calculus) let 𝑓 be a con-
tinuous function on [𝑎, 𝑏] ⊂ 𝑇 such that 𝑓 is
(delta) differentiable on [𝑎, 𝑏). If 𝑓Δ is Riemann delta
integrable from 𝑎 to 𝑏, then

∫

𝑏

𝑎

𝑓
Δ
(𝑡) Δ (𝑡) = 𝑓 (𝑏) − 𝑓 (𝑎) ; (5)

(v) (integration by parts) let 𝑓 and 𝑔 be continuous
functions on [𝑎, 𝑏] that are differentiable on [𝑎, 𝑏). If
𝑓
Δ and 𝑔Δ are Riemann delta integrable from 𝑎 to 𝑏,

then

∫

𝑏

𝑎

𝑓 (𝑡) 𝑔
Δ
(𝑡) Δ𝑡 = [𝑓 (𝑡) 𝑔 (𝑡)]

𝑏

𝑎
− ∫

𝑏

𝑎

𝑓
Δ
(𝑡) 𝑔
𝜎
(𝑡) Δ𝑡; (6)

(vi) if 𝑓 is Riemann delta integrable on [𝑎, 𝑏], then is |𝑓|
and



∫

𝑏

𝑎

𝑓 (𝑡) Δ𝑡



≤ ∫

𝑏

𝑎

𝑓
 Δ𝑡.

(7)

The construction of theΔ-measure on𝑇 and the following
concepts are derived from [6]:

(i) for each 𝑡
0
∈ 𝑇 \ {max𝑇}, the single-point set 𝑡

0
is

Δ-measurable, and its Δ-measure is given by

𝜇
Δ
({𝑡
0
}) = 𝜎 (𝑡

0
) − 𝑡
0
= 𝜇 (𝑡

0
) ; (8)

(ii) if 𝑎, 𝑏 ∈ 𝑇 and 𝑎 ≤ 𝑏, then

𝜇
Δ
([𝑎, 𝑏)) = 𝑏 − 𝑎, 𝜇

Δ
((𝑎, 𝑏)) = 𝑏 − 𝜎 (𝑎) ; (9)

(iii) if 𝑎, 𝑏 ∈ 𝑇 \ {max𝑇} and 𝑎 ≤ 𝑏, then

𝜇
Δ
((𝑎, 𝑏]) = 𝜎 (𝑏) − 𝜎 (𝑎) , 𝜇

Δ
([𝑎, 𝑏]) = 𝜎 (𝑏) − 𝑎. (10)

The Lebesgue integral associated with the measure 𝜇
Δ
on

𝑇 is called the Lebesgue delta integral. For a (measurable)
set 𝐸 ⊂ 𝑇 and a measurable function 𝑓 : 𝐸 → 𝑅, the
Lebesgue delta integral of 𝑓 on 𝐸 is denoted by ∫

𝐸
𝑓Δ𝑡. All

the theorems of Lebesgue integral hold also for the Lebesgue
delta integral on 𝑇. Comparing the Lebesgue delta integral
with the Riemann delta integral on 𝑇, we have the following.

Lemma 3 (see [6]). Let [𝑎, 𝑏] be a closed bounded interval
in 𝑇, and let 𝑓 be a bounded real-valued function defined on
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[𝑎, 𝑏]. If 𝑓 is Riemann delta integrable on [𝑎, 𝑏], then 𝑓 is
Lebsgue delta integrable on [𝑎, 𝑏), and

(𝑅) ∫

𝑏

𝑎

𝑓Δ𝑡 = (𝐿) ∫
[𝑎,𝑏)

𝑓Δ𝑡, (11)

where 𝑅 and 𝐿 indicate the Riemann delta integral and
Lebesgue delta integral from 𝑎 to 𝑏, respectively.

Assume 1 ≤ 𝑝 < +∞. Let 𝐿𝑝([𝑎, 𝑏]) denote the set

{𝑓 : [𝑎, 𝑏] → 𝑅 |
𝑓


𝑝

𝑖𝑠 𝐿𝑒𝑏𝑒𝑠𝑔𝑢𝑒 𝑑𝑒𝑙𝑡𝑎 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑙𝑒 𝑜𝑛

[𝑎, 𝑏) 𝑖𝑛 𝑡𝑖𝑚𝑒 𝑠𝑐𝑎𝑙𝑒 𝑠𝑒𝑛𝑠𝑒} .

(12)

Then the space 𝐿𝑝([𝑎, 𝑏]) is a complete linear space with the
norm ‖ ⋅ ‖

𝑝
defined by

𝑓
𝑝

= (∫
[𝑎,𝑏)

𝑓 (𝑡)


𝑝

Δ𝑡)

1/𝑝

. (13)

Lemma 4 (Hölder inequality [4, 5]). Let 𝑓, 𝑔 ∈ 𝐶
𝑟𝑑
([𝑎, 𝑏]),

𝑝 > 1, and 𝑞 be the conjugate number of 𝑝. Then

∫

𝑏

𝑎

𝑓 (𝑡) 𝑔 (𝑡)
 Δ𝑡

≤ (∫

𝑏

𝑎

𝑓(𝑡)


𝑝

Δ𝑡)

1/𝑝

(∫

𝑏

𝑎

|𝑔(𝑡)|
𝑞
Δ𝑡)

1/𝑞

.

(14)

Lemma 5 (see [13]). For any 𝑝 ≥ 1,

(a) 𝐶0(𝑇) ⊂ 𝐶
0

𝑟𝑑
(𝑇) ⊂ 𝐿

𝑝
(𝑇);

(b) 𝐶0(𝑇) is dense in 𝐿𝑝(𝑇).

From Lemma 5, we see that Lemma 4 still holds for 𝑓 ∈

𝐿
𝑝
([𝑎, 𝑏]), 𝑔 ∈ 𝐿𝑞([𝑎, 𝑏]).

Lemma 6 (see [13]). Suppose that (𝑢
𝑛
) is a sequence in 𝐿𝑝(𝑇),

for some 𝑝 ≥ 1.

(a) If ‖𝑢
𝑛
− 𝑢‖
𝑝
→ 0, for some 𝑢 ∈ 𝐿

𝑝
(𝑇), and if 𝑡 ∈ 𝑇 is

right-scattered, then 𝑢
𝑛
(𝑡) → 𝑢(𝑡).

(b) If (𝑢
𝑛
) is a Cauchy sequence in 𝐿𝑝(𝑇) (with respect to

the norm ‖ ⋅ ‖
𝑝
), then there exists a unique 𝑢 ∈ 𝐿

𝑝
(𝑇)

such that ‖𝑢
𝑛
− 𝑢‖
𝑝
→ 0.

Following [13], we now define the generalized derivative
of Lebesgue delta integrable functions.

Definition 7. Define the norm ‖ ⋅ ‖
1,𝑇

on 𝐶1rd(𝑇
𝑘
) by

‖𝑢‖
2

1,𝑇
:= ‖𝑢‖

2

𝑇
+

𝑢
Δ

2

𝑇
, 𝑢 ∈ 𝐶

1

rd (𝑇
𝑘
) , (15)

and define the space𝐻1(𝑇𝑘) ⊂ 𝐿
2
(𝑇) to be the completion of

𝐶
1

rd(𝑇
𝑘
)with respect to the norm ‖ ⋅ ‖

1,𝑇
and𝐻1

0
(𝑇
𝑘
) to be the

completion of 𝐶1,0rd (𝑇
𝑘
) with respect to the norm ‖ ⋅ ‖

1,𝑇
.

Lemma 8 (see [13]). (a) 𝑢 ∈ 𝐻
1
(𝑇
𝑘
) if and only if there exists

a function 𝑢Δ𝑔 ∈ 𝐿2(𝑇) such that the following condition holds:
there exists a sequence (𝑢

𝑛
) in 𝐶1

𝑟𝑑
(𝑇
𝑘
) such that 𝑢

𝑛
→ 𝑢 and

𝑢
Δ

𝑛
→ 𝑢
Δ
𝑔 in 𝐿2(𝑇). If 𝑢 ∈ 𝐻

1
(𝑇
𝑘
), then the function 𝑢Δ𝑔 is

unique (in 𝐿2(𝑇) sense).
(b) If 𝑢 ∈ 𝐶1

𝑟𝑑
(𝑇
𝑘
), then 𝑢Δ𝑔 = 𝑢

Δ.

Definition 9. For any 𝑢 ∈ 𝐻
1
(𝑇
𝑘
), the function 𝑢

Δ
𝑔 in

Lemma 8 will be called the generalized derivative of 𝑢.

Remark 10. We can also define the generalized derivative of
𝑢 and the spaces𝐻1(𝑇𝑘) as in [14].

The following two lemmas present basic properties of
𝐻
1
(𝑇
𝑘
).

Lemma 11 (see [13]). If 𝑢 ∈ 𝐻
1
(𝑇
𝑘
), then 𝑢 ∈ 𝐶

0
(𝑇), and

there exists 𝐶 > 0 such that

|𝑢|0,𝑇 ≤ 𝐶‖𝑢‖1,𝑇, 𝑢 ∈ 𝐻
1
(𝑇
𝑘
) . (16)

Furthermore,

𝑢 (𝑡) − 𝑢 (𝑠) = ∫

𝑡

𝑠

𝑢
Δ
𝑔Δ, 𝑠, 𝑡 ∈ 𝑇. (17)

Lemma 12 (see [13]). Suppose 𝑢, V ∈ 𝐻1(𝑇𝑘). Then

(a) if the sequence (𝑢
𝑛
) in 𝐶1(𝑇𝑘) is as in Lemma 8, then

𝑢
𝑛
→ 𝑢 in 𝐶0(𝑇);

(b) if 𝑢Δ𝑔 = 0, then 𝑢 ≡ constant;
(c) if 𝑡 is right scattered, then 𝑢Δ𝑔(𝑡) = 𝑢

Δ
(𝑡) = (𝑢

𝜎
(𝑡) −

𝑢(𝑡))/(𝜎(𝑡) − 𝑡);
(d) if 𝛼, 𝛽 ∈ 𝑅, then 𝛼𝑢 + 𝛽V ∈ 𝐻1(𝑇𝑘) and (𝛼𝑢 + 𝛽V)Δ𝑔 =

𝛼𝑢
Δ
𝑔 + 𝛽VΔ𝑔 ;

(e) (𝑢V)Δ𝑔 = 𝑢
Δ
𝑔V + 𝑢𝜎VΔ𝑔 = 𝑢VΔ𝑔 + 𝑢Δ𝑔V𝜎;

(f) ∫𝑡
𝑠
𝑢
Δ
𝑔VΔ = [𝑢V]𝑡

𝑠
− ∫
𝑡

𝑠
𝑢
𝜎VΔ𝑔Δ, 𝑠, 𝑡 ∈ 𝑇𝑘.

Remark 13. From (f), if V ∈ 𝐻1
0
(𝑇
𝑘
), then we have ∫𝑡

𝑠
𝑢
Δ
𝑔VΔ =

−∫
𝑡

𝑠
𝑢
𝜎VΔ𝑔Δ, 𝑠, 𝑡 ∈ 𝑇

𝑘; hence, we can also define weak
derivatives as usual Sobolev space [15].

Definition 14 (see [16]). A function 𝑓 : 𝑇 → 𝑅 is said to
be absolutely continuous on 𝑇 if for every 𝜖 > 0, there exists
a 𝛿 > 0 such that if {(𝑎

𝑘
, 𝑏
𝑘
)}
𝑚

𝑘=1
with 𝑎

𝑘
, 𝑏
𝑘
∈ 𝑇 is a finite

pairwise of subintervals satisfying
𝑚

∑

𝑘=1

(𝑏
𝑘
− 𝑎
𝑘
) < 𝛿, then

𝑚

∑

𝑘=1

𝑓 (𝑏𝑘) − 𝑓 (𝑎𝑘)
 < 𝜖. (18)

Lemma 15 (see [17]). If 𝑔 ∈ 𝐿
1
(𝑇, 𝑅) and 𝑓 : 𝑇 → 𝑅 is the

function defined by

𝑓 (𝑡) := ∫
[𝑎,𝑡)∩𝑇

𝑔 (𝑠) Δ𝑠, (19)

then 𝑓 is absolutely continuous and 𝑓
Δ
(𝑡) = 𝑔(𝑡) Δ-almost

everywhere on 𝑇𝑘.
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Proposition 16 (see [16]). A function𝑓 : 𝑇 → 𝑅 is absolutely
continuous on 𝑇 if and only if 𝑓 is Δ-differentiable Δ-almost
everywhere on 𝑇𝑘, 𝑓Δ ∈ 𝐿1(𝑇𝑘) and

∫
[𝑎,𝑡)∩𝑇

𝑓
Δ
(𝑠) Δ𝑠 = 𝑓 (𝑡) − 𝑓 (𝑎) , 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑡 ∈ 𝑇. (20)

In the following sections, we still write 𝑢Δ𝑔 as 𝑢Δ.

3. Generalized Maximum Principle

Let 𝑇 be a bounded time scale and set 𝑎 = min𝑇, 𝑏 = max𝑇;
that is, 𝑇 = [𝑎, 𝑏], where [𝑎, 𝑏] is a time scale interval. In this
section, we consider the generalized maximum principle for
the dynamic operators 𝐿 on 𝑇𝑘 = [𝑎, 𝜌(𝑏)]:

𝐿𝑢 := (𝑎 (𝑡) 𝑢
Δ
)
Δ

+ 𝑏 (𝑡) 𝑢
Δ
+ 𝑐 (𝑡) 𝑢. (21)

To study the generalized maximum principle, we should
make clear what it means when we say a 𝐿𝑝(𝑇) function takes
some value on the boundary of𝑇. It is well known that a usual
𝐿
𝑝
(Ω) function that takes some value on the boundary 𝜕Ω is

understood in the trace sense, that is, the limitation of some
suitable smooth functionwith definite value on the boundary
𝜕Ω. The boundary value of a 𝐿𝑝(𝑇) function is understood
in the same way; that is, if 𝑢 ∈ 𝐿

𝑝
([𝑎, 𝑏]), 𝑢

𝑛
∈ 𝐶rd([𝑎, 𝑏]),

𝑢
𝑛
→ 𝑢 in𝐿𝑝, and𝑢

𝑛
(𝑎) = 𝑐, 𝑢

𝑛
(𝑏) = 𝑑, thenwe say𝑢(𝑎) = 𝑐,

𝑢(𝑏) = 𝑑. And 𝑢(𝑎) ≥ 𝑐, 𝑢(𝑏) ≤ 𝑑 are understood in the same
way.

We define the bilinear form associated with the operator
𝐿 as follows:

£ [𝑢, V] := ∫

𝜌(𝑏)

𝑎

[𝑎 (𝑡) 𝑢
ΔVΔ − 𝑏 (𝑡) 𝑢ΔV𝜎 − 𝑐 (𝑡) 𝑢V𝜎] Δ𝑡.

(22)

We assume that 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡) ∈ 𝐿
∞
([𝑎, 𝑏]) satisfy the

following conditions:

𝑎 (𝑡) ≥ 𝜆 > 0, 0 ≤ 𝑏 (𝑡) ≤ 𝜆𝜇, 𝑐 (𝑡) < 0. (23)

Theorem 17 (generalized weak maximum principle). If 𝑢 ∈

𝐻
1
(𝑇
𝑘
) satisfies 𝐿𝑢 ≥ 0 (≤0) in weak sense; that is, £[𝑢, V] ≤

0 (≥0) for all 0 ≤ V ∈ 𝐻1
0
(𝑇
𝑘
), then

sup
𝑇

𝑢 ≤ sup
𝜕𝑇

𝑢
+

(inf
𝑇

𝑢 ≥ inf
𝜕𝑇

𝑢
−
) . (24)

Proof. If 𝑢 ∈ 𝐻
1
(𝑇
𝑘
), V ∈ 𝐻1

0
(𝑇
𝑘
), we have 𝑢V ∈ 𝐻1

0
(𝑇
𝑘
) and

(𝑢V)Δ = 𝑢
ΔV𝜎 + 𝑢VΔ; hence we can rewrite £[𝑢, V] ≤ 0 as

∫

𝜌(𝑏)

𝑎

[𝑎 (𝑡) 𝑢
ΔVΔ − 𝑏 (𝑡) 𝑢ΔV𝜎] Δ𝑡 ≤ ∫

𝜌(𝑏)

𝑎

𝑐 (𝑡) 𝑢V𝜎Δ𝑡 ≤ 0.

(25)

Equation (25) holds for all V ≥ 0 which satisfys 𝑢V ≥ 0.
Conditions (23) and (25) imply

∫

𝜌(𝑏)

𝑎

𝑎 (𝑡) 𝑢
ΔVΔΔ𝑡 ≤ 𝜆𝜇∫

𝜌(𝑏)

𝑎


𝑢
Δ
V𝜎Δ𝑡. (26)

In the special case that 𝑏(𝑡) ≡ 0, we can easily obtain the result
by choosing V = max{𝑢 − 𝑙, 0}, where 𝑙 = sup

𝜕𝑇
𝑢
+. In general

case, we deduce by contradiction. Suppose that 𝑙 < sup
𝑇
𝑢 :=

𝑀; we can then choose 𝑘 satisfying 𝑙 < 𝑘 < 𝑀 and set V =

(𝑢 − 𝑘)
+. Then we have V ∈ 𝐻1

0
(𝑇
𝑘
) and

VΔ = {
𝑢
Δ
, 𝑢 > 𝑘,

0, 𝑢 ≤ 𝑘,
(27)

and hence, we obtain by (26) that

∫

𝜌(𝑏)

𝑎

𝑎 (𝑡)

VΔ


2

Δ𝑡 ≤ 𝜆𝜇∫

𝜌(𝑏)

𝑎


VΔ

V𝜎Δ𝑡. (28)

The condition on 𝑎(𝑡) and Hölder’s inequality imply

∫

𝜌(𝑏)

𝑎


VΔ


2

Δ𝑡 ≤ 𝜇∫

𝜌(𝑏)

𝑎


VΔ

V𝜎Δ𝑡 ≤ 𝜇

V
𝜎2


VΔ
2
, (29)

from which, we have

VΔ
2
≤ 𝜇

V
𝜎2

. (30)

Applying embedding theorem andHölder’s inequality, we get
V
𝜎2

≤ 𝐶
V
𝜎𝑞

≤ 𝐶

VΔ
2
≤ 𝐶

V
𝜎2

≤ 𝐶
supp V

𝜎

(1/2)−(1/𝑞)V
𝜎𝑞

,

(31)

where 𝐶 = 𝐶(𝑇, 𝜇), |𝐸| denotes the 𝜇
Δ
measure of set 𝐸.

Hence,
supp V

𝜎 ≥ 𝐶
2𝑞/(𝑞−2)

. (32)

Since the above inequality does not depend on 𝑘, it still
holds as 𝑘 tends to 𝑀, that is, 𝑢𝜎, that is, 𝑢 must attains its
superemum on a set of positive 𝜇

Δ
measure. Hence, the set

of the points on which 𝑢 attains its superemummust contain
either an interval [𝑐, 𝑑] ⊂ [𝑎, 𝜌(𝑏)] (in time scale sense) or at
least one right-scattered point 𝑡

0
.

In the first case where 𝑢(𝑡) ≡ 𝑀 in [𝑐, 𝑑], then 𝑢Δ(𝑡) ≡ 0

and 𝑢 > 0 in [𝑐, 𝑑]. Choosing 0 ≤ V ∈ 𝐻1
0
([𝑐, 𝑑]), we have

0 < −∫

𝑑

𝑐

𝑐 (𝑡) 𝑢V𝜎Δ𝑡

= ∫

𝑑

𝑐

[𝑎 (𝑡) 𝑢
ΔVΔ − 𝑏 (𝑡) 𝑢ΔV𝜎 − 𝑐 (𝑡) 𝑢V𝜎] Δ𝑡 ≤ 0,

(33)

which is a contradiction.
In the second case, we have 𝑢(𝑡

0
) = 𝑀; if 𝑢𝜎(𝑡

0
) = 𝑢(𝑡

0
),

then proceeding as before in the interval [𝑐, 𝑑] = [𝑡
0
, 𝜎(𝑡
0
)],

we then get a contradiction. If 𝑢𝜎(𝑡
0
) < 𝑢(𝑡

0
), then 𝑢Δ(𝑡

0
) <

0. Set V = 𝑋
[𝑡
0
,𝜎(𝑡
0
))
(𝑢 − 𝑙)

+, where 𝑋(𝐸) is the characteristic
function of the set 𝐸; then we have 0 ≤ V ∈ 𝐻

1

0
(𝑇
𝑘
); hence,

we deduce from £[𝑢, V] ≤ 0 that

∫

𝜎(𝑡
0
)

𝑡
0

{𝑎 (𝑡)

𝑢
Δ

2

− 𝑏 (𝑡) 𝑢
Δ
[(𝑢 − 𝑙)

+
]
𝜎

− 𝑐 (𝑡) 𝑢[(𝑢 − 𝑙)
+
]
𝜎

}Δ𝑡 ≤ 0,

(34)
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while

∫

𝜎(𝑡
0
)

𝑡
0

{𝑎 (𝑡)

𝑢
Δ

2

− 𝑏 (𝑡) 𝑢
Δ
[(𝑢 − 𝑙)

+
]
𝜎

−𝑐 (𝑡) 𝑢[(𝑢 − 𝑙)
+
]
𝜎

}Δ𝑡

= 𝑎 (𝑡
0
)

𝑢
Δ
(𝑡
0
)


2

− 𝑏 (𝑡
0
) 𝑢
Δ
(𝑡
0
) [𝑢
𝜎
(𝑡
0
) − 𝑙]
+

− 𝑐 (𝑡
0
) 𝑢 (𝑡
0
) [𝑢
𝜎
(𝑡
0
) − 𝑙]
+

(𝜎 (𝑡
0
) − 𝑡
0
) > 0;

(35)

the above two inequalities contradict each other.

Theorem 18 (strong maximum principle). If 𝑢 ∈ 𝐻
1
(𝑇
𝑘
)

satisfies 𝐿𝑢 ≥ 0 (≤0) in weak sense; that is, £[𝑢, V] ≤ 0 (≥0)

for all 0 ≤ V ∈ 𝐻
1

0
(𝑇
𝑘
), suppose further that 𝑢 attains its

nonnegative maximum (nonpositive minimum) at inner point
of (𝑎, 𝑏) and at 𝑎 (at 𝑏), and then 𝑢 is a constant.

Proof. Suppose that 𝑢 is not a constant and 𝑢 attains its
maximum 𝑀 at 𝑡

0
∈ [𝑎, 𝑏). Then there exists at least one

point 𝑡
1
∈ (𝑎, 𝑏) such that 𝑢(𝑡

1
) < 𝑀 = 𝑢(𝑡

0
). Then we may

assume 𝑡
0
< 𝑡
1
< 𝑏. In the first case, wemay assume 𝑢(𝑡) < 𝑀

in (𝑡
0
, 𝑡
1
). If 𝑡
0
is right scattered, then 𝑢Δ(𝑡

0
) < 0. Choosing

V = 𝑋
[𝑡
0
,𝜎(𝑡
0
))
𝑢
+, we deduce from £[𝑢, V] ≤ 0 that

∫

𝜎(𝑡
0
)

𝑡
0

{𝑎 (𝑡)

𝑢
Δ

2

− 𝑏 (𝑡) 𝑢
Δ
(𝑢
+
)
𝜎

− 𝑐 (𝑡) 𝑢(𝑢
+
)
𝜎

}Δ𝑡 ≤ 0,

(36)

while

∫

𝜎(𝑡
0
)

𝑡
0

{𝑎 (𝑡)

𝑢
Δ

2

− 𝑏 (𝑡) 𝑢
Δ
(𝑢
+
)
𝜎

− 𝑐 (𝑡) 𝑢(𝑢
+
)
𝜎

}Δ𝑡

= {𝑎 (𝑡
0
)

𝑢
Δ
(𝑡
0
)


2

− 𝑏 (𝑡
0
) 𝑢
Δ
(𝑡
0
) 𝑢
𝜎
(𝑡
0
)
+

− 𝑐 (𝑡
0
) 𝑢 (𝑡
0
) 𝑢
𝜎
(𝑡
0
)
+

} (𝜎 (𝑡
0
) − 𝑡
0
) > 0;

(37)

the above two inequalities contradict each other. If 𝑡
0
is right

dense, Lemma 11 implies that 𝑢 is continuous on [𝑎, 𝜌(𝑏)),
especially at 𝑡

0
, and there exists a neighbourhood [𝑡

0
, 𝑡
0
+

ℎ) (ℎ > 0) of 𝑡
0
such that 𝑢 > 0 and is decreasing on [𝑡

0
, 𝑡
0
+

ℎ]; hence 𝑢 is uniformly continuous on [𝑡
0
, 𝑡
0
+ ℎ] and so

absolutely continuous on [𝑡
0
, 𝑡
0
+ℎ]; therefore, Proposition 16

implies 𝑢
Δ

≤ 0 𝜇
Δ
a.e. on [𝑡

0
, 𝑡
0
+ ℎ). Choosing V =

𝑋
[𝑡
0
,𝑡
0
+ℎ)
𝑢
+, we can also obtain a similar contradiction.

Remark 19. From the proof of Theorem 18, we see that the
result is also true if only that 𝑢 attains its nonnegative
maximum at 𝑎 (nonpositive minimum at 𝑏).

4. Weak Comparison Principle

It is well known that the comparison principle plays essential
role in the theory of partial differential equations. In this
section we study the counterpart for dynamic equations on
𝑇 = [𝑎, 𝑏] by applying the weak maximum principle.

Theorem 20. If 𝑢 ∈ 𝐻
1
(𝑇
𝑘
) satisfies 𝐿𝑢 ≥ 0 (≤ 0) in weak

sense, that is, £[𝑢, V] ≤ 0 (≥0), for all 0 < V ∈ 𝐻1
0
(𝑇
𝑘
), 𝑢(𝑎) ≤

0 (≥0), and 𝑢(𝑏) ≤ 0 (≥0), then 𝑢(𝑡) ≤ 0 (≥0) for all 𝑡 ∈ 𝑇.

Proof. We assume that 𝑢 ∈ 𝐻
1
(𝑇
𝑘
) satisfies 𝐿𝑢 ≥ 0 in weak

sense; then byTheorem 17, we have

𝑢 (𝑡) ≤ sup
𝑇

𝑢 ≤ sup
𝜕𝑇

𝑢
+
= 0. (38)

We can easily deduce fromTheorem 20 the following.

Corollary 21. If𝑢, V ∈ 𝐻1(𝑇𝑘) satisfies𝐿𝑢 ≥ 0,𝐿V ≤ 0 inweak
sense, that is, £[𝑢, ℎ] ≤ 0, £[V, ℎ] ≥ 0, for all 0 < ℎ ∈ 𝐻

1

0
(𝑇
𝑘
),

𝑢(𝑎) ≤ V(𝑎), and 𝑢(𝑏) ≤ V(𝑏), then 𝑢(𝑡) ≤ V(𝑡) for all 𝑡 ∈ 𝑇.

Corollary 22. If 𝑢, V ∈ 𝐻
1

0
(𝑇
𝑘
) satisfies 𝐿𝑢 ≥ 0, 𝐿V ≤ 0 in

weak sense, that is, £[𝑢, ℎ] ≤ 0, £[V, ℎ] ≥ 0, for all 0 < ℎ ∈

𝐻
1

0
(𝑇
𝑘
), then 𝑢(𝑡) ≤ 0, V(𝑡) ≥ 0 for all 𝑡 ∈ 𝑇.

Corollary 23. If 𝑢, V ∈ 𝐻
1
(𝑇
𝑘
) satisfies 𝐿𝑢 ≥ 𝑓(𝑡), 𝐿V ≤

𝑓(𝑡), 𝑓(𝑡) ∈ 𝐿
2
(𝑇
𝑘
) in weak sense, that is, £[𝑢, ℎ] ≤

∫
𝜌(𝑏)

𝑎
𝑓(𝜏)ℎ(𝜏)Δ𝜏, £[V, ℎ] ≥ ∫

𝜌(𝑏)

𝑎
𝑓(𝜏)ℎ(𝜏)Δ𝜏, for all 0 < ℎ ∈

𝐻
1

0
(𝑇
𝑘
), 𝑢(𝑎) ≤ V(𝑎), and 𝑢(𝑏) ≤ V(𝑏)), then 𝑢(𝑡) ≤ V(𝑡) for all

𝑡 ∈ 𝑇.

Definition 24. If 𝑢 ∈ 𝐻
1
(𝑇
𝑘
) satisfies 𝐿𝑢 ≥ 𝑓(𝑡)(≤ 𝑓(𝑡)),

𝑓(𝑡) ∈ 𝐿
2
(𝑇
𝑘
) in weak sense, we say that 𝑢 is a weak

subsolution (supper solution) to dynamic equation 𝐿𝑢 =

𝑓(𝑡).

Corollary 23 asserts that if the supper-solution and subso-
lution to dynamic equation 𝐿𝑢 = 𝑓(𝑡) attain the same value
on the boundary of𝑇, then the supper solution is not less than
the subsolution.

5. Uniqueness Results

We now consider the following dynamic equation:

𝐿𝑢 = 𝑓 (𝑡) , 𝑡 ∈ 𝑇
𝑘
,

𝑢 (𝑎) = 𝑢 (𝜌 (𝑏)) = 0,

(39)

where 𝑓(𝑡) ∈ 𝐿2(𝑇𝑘).

Theorem 25. There exists at most one solution to dynamic
equation (39) in𝐻1

0
(𝑇
𝑘
).

Proof. Suppose that there exist two solutions 𝑢, V ∈ 𝐻
1

0
(𝑇
𝑘
)

to (39). Set 𝑤 = 𝑢 − V; then 𝑤 satisfies

𝐿𝑤 = 0, 𝑡 ∈ 𝑇
𝑘
,

𝑤 (𝑎) = 𝑤 (𝜌 (𝑏)) = 0.

(40)

Then Theorem 17 implies 0 = inf
𝜕𝑇
𝑤
−
≤ inf
𝑇
𝑤 ≤ 𝑤(𝑡) ≤

sup
𝑇
𝑤 ≤ sup

𝜕𝑇
𝑤
+
= 0, from which we deduce that 𝑢 ≡

V.
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