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A delayed predator-prey system with Holling type II functional response and stage structure for both the predator and the prey
is investigated. By analyzing the corresponding characteristic equations, the local stability of each of the feasible equilibria of the
system is addressed and the existence of a Hopf bifurcation at the coexistence equilibrium is established. By means of persistence
theory on infinite dimensional systems, it is proved that the system is permanent. By using Lyapunov functions and the LaSalle
invariant principle, the global stability of each of the feasible equilibria of the model is discussed. Numerical simulations are carried
out to illustrate the main theoretical results.

1. Introduction

The predator-prey system is very important in population
modelling and has been studied by many authors (see, e.g.,
[1–6]). A predator-prey model generally takes the form

�̇� = 𝑥𝑓 (𝑥) − 𝑝 (𝑥) 𝑦,

̇𝑦 = 𝑘𝑝 (𝑥) 𝑦 − 𝑦𝑔 (𝑦) ,

(1)

where 𝑥(𝑡) and 𝑦(𝑡) are the densities of prey and predator
populations at time 𝑡, respectively. The function 𝑓(𝑥) repre-
sents the growth rate of the prey; 𝑔(𝑦) represents the death
rate and intraspecific competition rate of the predator; 𝑝(𝑥)
denotes the predator response function. In 1965, Holling [7]
used the function 𝑝(𝑥) = 𝑚𝑥/(𝑎 + 𝑥) as one of the predator
response functions. It is now referred to as a Holling type II
functional response. We note that in the models mentioned
above, it is assumed that both the immature and the mature
predators have the same ability to attack prey individuals.
However, in the real world, almost all animals have stage
structure of immature andmature, and onlymature predators
can attack prey and have reproductive ability. Stage-struc-
tured models have received great attention in recent years

(see, e.g., [2–6]). In [2], Wang proposed a predator-prey sys-
tem with Holling type II functional response and stage struc-
ture under the assumptions that the predator is divided into
two groups, one is immature and the other is mature, and that
only mature predators can attack prey and have reproductive
ability, while immature predators do not attack prey and have
no reproductive ability.

It is generally recognized that some kinds of time delays
are inevitable in population interactions and tend to be des-
tabilizing in the sense that longer delays may destroy the
stability of positive equilibria (see [8]). Time delay due to
gestation is a common example, because generally the con-
sumption of prey by the predator throughout its past history
governs the present birth rate of the predator. Recently, great
attention has been received and a large body of work has been
carried out on the existence of Hopf bifurcations in delayed
population models (see, e.g., [5, 6, 8, 9] and references cited
therein).

Motivated by the work of [2, 6], in the present paper, we
are concerned with the combined effects of stage structure
for both the predator and the prey and time delay due to
the gestation of the predator on the global dynamics of
a predator-prey model with Holling type II functional
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response. To this end, we consider the following differential
system:

�̇�

1
(𝑡) = 𝑟𝑥

2
(𝑡) − (𝑟

1
+ 𝑑

1
) 𝑥

1
(𝑡) − 𝑎𝑥

2

1
(𝑡) −

𝑎

1
𝑥

1
(𝑡) 𝑦

2
(𝑡)

1 + 𝑚𝑥

1
(𝑡)

,

�̇�

2
(𝑡) = 𝑟

1
𝑥

1
(𝑡) − 𝑑

2
𝑥

2
(𝑡) ,

̇𝑦

1
(𝑡) =

𝑎

2
𝑥

1
(𝑡 − 𝜏) 𝑦

2
(𝑡 − 𝜏)

1 + 𝑚𝑥

1
(𝑡 − 𝜏)

− (𝑟

2
+ 𝑑

3
) 𝑦

1
(𝑡) ,

̇𝑦

2
(𝑡) = 𝑟

2
𝑦

1
(𝑡) − 𝑑

4
𝑦

2
(𝑡) ,

(2)

where 𝑥
1
(𝑡) and 𝑥

2
(𝑡) represent the densities of the immature

and the mature prey at time 𝑡, respectively; 𝑦
1
(𝑡) and 𝑦

2
(𝑡)

represent the densities of the immature and the mature
predators at time 𝑡, respectively. The parameters 𝑎, 𝑎

1
, 𝑎
2
, 𝑑
1
,

𝑑

2
, 𝑑
3
, 𝑑
4
, 𝑟, 𝑟
1
, and 𝑟

2
are positive constants, in which 𝑟 is the

birth rate of the prey; 𝑎 is the intraspecific competition rate of
the mature prey; 𝑑

1
, 𝑑
2
, 𝑑
3
, and 𝑑

4
are the death rates of the

immature prey,mature prey, immature predators, andmature
predators, respectively; 𝑟

1
and 𝑟

2
are the transformation rates

from the immature individuals to mature individuals for the
prey and the predators, respectively; 𝑎

1
is the capturing rate

of the predators; 𝑎
2
/𝑎

1
is the conversion rate of nutrients into

the reproduction of the predators; 𝜏 ≥ 0 is a constant delay
due to the gestation of the predators. It is assumed in (2) that
the mature individual predators feed on immature prey and
have the ability to reproduce.

The initial conditions for system (2) take the form

𝑥

1
(𝜃) = 𝜙

1
(𝜃) ≥ 0, 𝑥

2
(𝜃) = 𝜙

2
(𝜃) ≥ 0,

𝑦

1
(𝜃) = 𝜑

1
(𝜃) ≥ 0, 𝑦

2
(𝜃) = 𝜑

2
(𝜃) ≥ 0,

𝜃 ∈ [−𝜏, 0) ,

𝜙

1
(0) > 0, 𝜙

2
(0) > 0, 𝜑

1
(0) > 0, 𝜑

2
(0) > 0,

(𝜙

1
(𝜃) , 𝜙

2
(𝜃) , 𝜑

1
(𝜃) , 𝜑

2
(𝜃)) ∈ 𝐶 ([−𝜏, 0] , 𝑅

4

+0
) ,

(3)

where 𝑅

4

+0
= {(𝑥

1
, 𝑥

2
, 𝑥

3
, 𝑥

4
) : 𝑥

𝑖
≥ 0, 𝑖 = 1, 2, 3, 4}.

It is well known by the fundamental theory of functional
differential equations [10] that system (2) has a unique
solution (𝑥

1
(𝑡), 𝑥

2
(𝑡), 𝑦

1
(𝑡), 𝑦

2
(𝑡)) satisfying initial conditions

(3). It is easy to show that all solutions of system (2) corres-
ponding to initial conditions (3) are defined on [0, +∞] and
remain positive for all 𝑡 ≥ 0.

The organization of this paper is as follows. In the next
section, we investigate the local stability of each of the feasible
equilibria of system (2). The existence of a Hopf bifurcation
at the coexistence equilibrium is studied. In Section 3, by
means of persistence theory on infinite dimensional systems,
we prove that system (2) is permanent when the coexistence
equilibrium exists. In Section 4, by using Lyapunov function-
als and the LaSalle invariant principle, we show that both the
prey and the predators go to extinction, if both the predator-
extinction equilibrium and the coexistence equilibrium are
not feasible, and that the predator-extinction equilibrium is

globally asymptotically stable when the coexistence equilib-
rium does not exist, and sufficient conditions are obtained for
the global asymptotic stability of the coexistence equilibrium
of system (2). A brief discussion is given in Section 5 to
conclude this work.

2. Local Stability

In this section, we discuss the local stability of each equilib-
rium of system (2) and the existence of a Hopf bifurcation.
It is easy to show that system (2) always has a trivial equi-
librium 𝐸

0
(0, 0, 0, 0) and a predator-extinction equilibrium

𝐸

1
(𝑥

+

1
, 𝑥

+

2
, 0, 0) when 𝑟𝑟

1
> 𝑑

2
(𝑟

1
+ 𝑑

1
), where

𝑥
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𝑟𝑟
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, 𝑥

+

2
=

𝑟
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[𝑟𝑟

1
− 𝑑

2
(𝑟

1
+ 𝑑

1
)]

𝑎𝑑

2

2

.

(4)

Furthermore, if the following holds:

(𝐻

1
) (𝑟𝑟

1
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1
+𝑑

1
))/𝑎𝑑

2
> 𝑑

4
(𝑟
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+𝑑

3
)/(𝑎

2
𝑟

2
−𝑚𝑑

4
(𝑟

2
+

𝑑

3
)) > 0,

then system (2) has a unique coexistence equilibrium 𝐸

∗
(𝑥

∗

1
,

𝑥

∗

2
, 𝑦

∗

1
, 𝑦

∗

2
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𝑥

∗
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𝑑

4
(𝑟
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3
)

𝑎

2
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.

(5)

The characteristic equation of system (2) at the equilib-
rium 𝐸

0
(0, 0, 0, 0) is of the form

[𝜆
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(7)

It is easy to show that roots of 𝜆2+(𝑟

1
+𝑑

1
+𝑑

2
+2𝑎𝑥

+

1
)𝜆+𝑟𝑟
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1
+𝑑

1
) = 0have only negative real parts if 𝑟𝑟
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1
+𝑑

2
).

If (𝐻
1
) holds, we have 𝑝

0
+ 𝑞

0
< 0; thus (7) has at least one
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positive real root.Therefore,𝐸
1
is unstable. If 0 < (𝑟𝑟

1
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𝑑
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when 𝜏 = 0. It is easy to show that 𝑝2
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3
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equilibrium 𝐸
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The characteristic equation of system (2) at the equilib-
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(8)
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positive root 𝜔
0
; that is, (8) has a pair of purely imaginary

roots of the form ±𝑖𝜔

0
. Denote

𝜏

𝑘

=

2𝑘𝜋

𝜔

0

+

1

𝜔

0

× arccos
(𝑞

2
𝜔

2

0
− 𝑞

0
)(𝜔

4

0
− 𝑝

2
𝜔

2

0
+ 𝑝

0
) + 𝑞

1
𝜔

2

0
(𝑝

3
𝜔

2

0
− 𝑝

1
)

(𝑞

1
𝜔

0
)

2

+ (𝑞

2
𝜔

2

0
− 𝑞

0
)

2
,

𝑘 = 0, 1, 2 . . . .

(15)

ByTheorem 3.4.1 in Kuang [8], we see that 𝐸∗ remains stable
for 𝜏 < 𝜏

0
.

We now claim that

𝑑 (Re (𝜆))
𝑑𝜏















𝜏=𝜏0

> 0. (16)

This will show that there exists at least one eigenvalue with
a positive real part for 𝜏 > 𝜏

0
. Moreover, the conditions

for the existence of a Hopf bifurcation [10] are then satisfied
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yielding a periodic solution. To this end, differentiating (8)
with respect to 𝜏, it follows that

(

𝑑𝜆

𝑑𝜏

)

−1

=

4𝜆

3
+ 3𝑝

3
𝜆

2
+ 2𝑝

2
𝜆 + 𝑝

1

−𝜆 (𝜆

4
+ 𝑝

3
𝜆

3
+ 𝑝

2
𝜆

2
+ 𝑝

1
𝜆 + 𝑝

0
)

+

2𝑞

2
𝜆 + 𝑞

1

𝜆 (𝑞

2
𝜆

2
+ 𝑞

1
𝜆 + 𝑞

0
)

−

𝜏

𝜆

.

(17)

Hence, a direct calculation shows that

sgn{

𝑑 (Re 𝜆)
𝑑𝜏

}

𝜆=𝑖𝜔0

= sgn{Re(𝑑𝜆

𝑑𝜏

)

−1

}

𝜆=𝑖𝜔0

= sgn{

(3𝑝

3
𝜔

2

0
− 𝑝

1
) (𝑝

3
𝜔

2

0
− 𝑝

1
) + 2 (2𝜔

2

0
− 𝑝

2
) (𝜔

4

0
− 𝑝

2
𝜔

2

0
+ 𝑝

0
)

𝜔

2

0
(𝑝

1
− 𝑝

3
𝜔

2

0
)

2
+ (𝜔

4

0
− 𝑝

2
𝜔

2

0
+ 𝑝

0
)

2

+

−𝑞

2

1
+ 2𝑞

2
𝑞

0
− 2𝑞

2

2
𝜔

2

0

(𝑞

1
𝜔

0
)

2
+ (𝑞

2
𝜔

2

0
− 𝑞

0
)

2
} .

(18)

We derive from (12) that

𝜔

2

0
(𝑝

1
− 𝑝

3
𝜔

2

0
)

2

+ (𝜔

4

0
− 𝑝

2
𝜔

2

0
+ 𝑝

0
)

2

= (𝑞

1
𝜔

0
)

2

+ (𝑞

2
𝜔

2

0
− 𝑞

0
)

2

.

(19)

Hence it follows that

sgn{

𝑑 (Re 𝜆)
𝑑𝜏

}

𝜆=𝑖𝜔0

= sgn{

4𝜔

6

0
+ 3ℎ

3
𝜔

4

0
+ 2ℎ

2
𝜔

2

0
+ ℎ

1

(𝑞

1
𝜔

0
)

2

+ (𝑞

2
𝜔

2

0
− 𝑞

0
)

2
} > 0.

(20)

Therefore, the transversal condition holds and a Hopf bifur-
cation occurs at 𝜔 = 𝜔

0
, 𝜏 = 𝜏

0
.

In conclusion, we have the following results.

Theorem 1. For system (2), one has the following.

(i) If 𝑟𝑟

1
< 𝑑

2
(𝑟

1
+ 𝑑

1
), then the trivial equilibrium

𝐸

0
(0, 0, 0, 0, ) is locally asymptotically stable; if 𝑟𝑟

1
>

𝑑

2
(𝑟

1
+ 𝑑

1
), then 𝐸

0
is unstable.

(ii) If 0 < (𝑟𝑟

1
− 𝑑

2
(𝑟

1
+ 𝑑

1
))/𝑎𝑑

2
< 𝑑

4
(𝑟

2
+ 𝑑

3
)/(𝑎

2
𝑟

2
−

𝑚𝑑

4
(𝑟

2
+𝑑

3
)), then the predator-extinction equilibrium

𝐸

1
(𝑥

+

1
, 𝑥

+

2
, 0, 0) is locally asymptotically stable;

if (𝑟𝑟
1
−𝑑

2
(𝑟

1
+𝑑

1
))/𝑎𝑑

2
> 𝑑

4
(𝑟

2
+𝑑

3
)/(𝑎

2
𝑟

2
−𝑚𝑑

4
(𝑟

2
+

𝑑

3
)) > 0, then 𝐸

1
is unstable.

(iii) Let (𝐻

1
) hold. If (𝐻

3
) holds, then the coexistence

equilibrium𝐸

∗
(𝑥

∗

1
, 𝑥

∗

2
, 𝑦

∗

1
, 𝑦

∗

2
) is locally asymptotically

stable for all 𝜏 ≥ 0; if (𝐻
2
) holds and the inequality

in (𝐻

3
) is reversed, then there exists a positive number

𝜏

0
, such that 𝐸∗ is locally asymptotically stable if 0 <

𝜏 < 𝜏

0
and is unstable if 𝜏 > 𝜏

0
. Further, system (2)

undergoes a Hopf bifurcation at 𝐸∗ when 𝜏 = 𝜏

0
.

We now give an example to illustrate the main results in
Theorem 1.

Example 2. In (2), let 𝑎 = 16, 𝑎
1

= 16, 𝑎
2

= 3, 𝑑
1

= 1/8,
𝑑

2
= 1/2, 𝑑

3
= 1/8, 𝑑

4
= 1/8, 𝑟 = 5, 𝑟

1
= 1, 𝑟

2
= 1, and

𝑚 = 1/10. It is easy to show that (𝑟𝑟
1
− 𝑑

2
(𝑟

1
+ 𝑑

1
))/𝑎𝑑

2
≈

0.5547 and 𝑑

4
(𝑟

2
+ 𝑑

3
)/(𝑎

2
𝑟

2
− 𝑚𝑑

4
(𝑟

2
+ 𝑑

3
)) ≈ 0.0471; that

is, the condition (𝐻

1
) holds. Hence, system (2) has a unique

coexistence equilibrium 𝐸

∗
(0.0471, 0.0942, 0.0637, 0.5100).

By calculation, we have𝑝
3
(𝑝

2
+𝑞

2
)−(𝑝

1
+𝑞

1
) ≈ 177.6328 > 0,

𝑝

3
(𝑝

2
+𝑞

2
)(𝑝

1
+𝑞

1
)− (𝑝

1
+𝑞

1
)

2
−𝑝

2

3
(𝑝

0
+𝑞

0
) ≈ 193.0344 > 0,

2(𝛼𝑑

2
− 𝑟𝑟

1
) − 𝑎

1
𝑑

2
𝑦

∗

2
/(1 + 𝑚𝑥

∗

1
)

2
≈ −3.3262 < 0 and

𝜏

0
≈ 2.3729. ByTheorem 1, 𝐸∗ is locally asymptotically stable

if 0 < 𝜏 < 𝜏

0
and is unstable if 𝜏 > 𝜏

0
, and system (2)

undergoes a Hopf bifurcation at 𝐸∗ when 𝜏 = 𝜏

0
. Numerical

simulation illustrates this fact (see Figure 1).

3. Permanence

In this section, we are concerned with the permanence of
system (2).

Definition 3. System (2) is said to be permanent if there
are positive constants 𝑚

1
, 𝑚
2
, 𝑀
1
, and 𝑀

2
, such that each

positive solution of system (2) satisfies

𝑚

1
≤ lim inf
𝑡→+∞

𝑥

𝑖
(𝑡) ≤ lim sup

𝑡→+∞

𝑥

𝑖
(𝑡) ≤ 𝑀

1
, 𝑖 = 1, 2,

𝑚

2
≤ lim inf
𝑡→+∞

𝑦

𝑖
(𝑡) ≤ lim sup

𝑡→+∞

𝑦

𝑖
(𝑡) ≤ 𝑀

2
, 𝑖 = 1, 2.

(21)

Lemma 4. There are positive constants𝑀
1
and𝑀

2
, such that,

for any positive solution (𝑥

1
(𝑡), 𝑥

2
(𝑡), 𝑦

1
(𝑡), 𝑦

2
(𝑡)) of system (2),

lim sup
𝑡→+∞

𝑥

𝑖
(𝑡) ≤ 𝑀

1
, lim sup
𝑡→+∞

𝑦

𝑖
(𝑡) ≤ 𝑀

2
, 𝑖 = 1, 2.

(22)

Proof. Let (𝑥
1
(𝑡), 𝑥

2
(𝑡), 𝑦

1
(𝑡), 𝑦

2
(𝑡)) be any positive solution

of system (2) with initial conditions (3). Define

𝑉 (𝑡) = 𝑥

1
(𝑡 − 𝜏) +

𝑟 + 𝑑

2

𝑑

2

𝑥

2
(𝑡 − 𝜏) +

𝑎

1

𝑎

2

𝑦

1
(𝑡) +

𝑎

1

𝑎

2

𝑦

2
(𝑡) .

(23)

Calculating the derivative of 𝑉(𝑡) along positive solutions of
system (2), it follows that

̇

𝑉 (𝑡) = −𝑑

1
𝑥

1
(𝑡 − 𝜏) − 𝑑

2
𝑥

2
(𝑡 − 𝜏) −

𝑎

1

𝑎

2

𝑑

3
𝑦

1
(𝑡)

−

𝑎

1

𝑎

2

𝑑

4
𝑦

2
(𝑡) +

𝑟𝑟

1

𝑑

2

𝑥

1
(𝑡 − 𝜏) − 𝑎𝑥

2

1
(𝑡 − 𝜏)

≤ −𝑑𝑉 (𝑡) − 𝑎(𝑥

1
(𝑡 − 𝜏) −

𝑟𝑟

1

2𝑎𝑑

2

)

2

+

(𝑟𝑟

1
)

2

4𝑎𝑑

2

2

≤ −𝑑𝑉 (𝑡) +

(𝑟𝑟

1
)

2

4𝑎𝑑

2

2

,

(24)
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Figure 1: The temporal solution found by numerical integration of system (2) with 𝜏 = 0.1 and 𝜏 = 3, respectively; (𝜙
1
, 𝜙

2
, 𝜑

1
, 𝜑

2
) =

(0.1, 0.1, 0.1, 0.1).

where 𝑑 = min {𝑑

1
, 𝑑

2

2
/(𝑟 + 𝑑

2
), 𝑑

3
, 𝑑

4
}. This inequality yields

lim sup
𝑡→+∞

𝑉(𝑡) ≤ (𝑟𝑟

1
)

2
/(4𝑎𝑑𝑑

2

2
). If we choose 𝑀

1
=

(𝑟𝑟

1
)

2
/(4𝑎𝑑𝑑

2
(𝑟 + 𝑑

2
)) and 𝑀

2
= 𝑎

2
(𝑟𝑟

1
)

2
/(4𝑎𝑎

1
𝑑𝑑

2

2
), then

(22) follows. This completes the proof.

In order to study the permanence of system (2), we refer to
persistence theory on infinite dimensional systems developed
by Hale and Waltman in [11].

Let𝑋 be a complete metric space with metric 𝑑. Suppose
that 𝑇 : [0, +∞] × 𝑋 → 𝑋 is a continuous map with the
following properties:

𝑇

𝑡
∘ 𝑇

𝑠
= 𝑇

𝑡+𝑠
, 𝑡, 𝑠 ≥ 0, 𝑇

0
(𝑥) = 𝑥, 𝑥 ∈ 𝑋, (25)

where 𝑇

𝑡
denotes the mapping from 𝑋 to 𝑋 given by 𝑇

𝑡
(𝑥) =

𝑇(𝑡, 𝑥). The distance 𝑑(𝑥, 𝑌) of a point 𝑥 ∈ 𝑋 from a subset
𝑌 of 𝑋 is defined by 𝑑(𝑥, 𝑌) = inf

𝑦∈𝑌
𝑑(𝑥, 𝑦). Recall that

the positive orbit 𝛾

+
(𝑥) = ⋃

𝑡≥0
{𝑇(𝑡)𝑥}, and its 𝜔-limit set

is 𝜔(𝑥) = ⋂

𝑠≥0
⋃

𝑡≥𝑠
{𝑇(𝑡)𝑥}. Define 𝑊

𝑠
(𝐴), the strong stable

set of a compact invariant set 𝐴, to be 𝑊

𝑠
(𝐴) = {𝑥 : 𝑥 ∈

𝑋, 𝜔(𝑥) ̸=⌀, 𝜔(𝑥) ⊂ 𝐴}.
(𝐴1) Assume that 𝑋

0 is open and dense in 𝑋 and
𝑋

0
⋃𝑋

0
= 𝑋, 𝑋0⋂𝑋

0
= ⌀. Moreover, the 𝐶

0 semigroup
𝑇(𝑡) on𝑋 satisfies

𝑇 (𝑡) : 𝑋

0
→ 𝑋

0
, 𝑇 (𝑡) : 𝑋

0
→ 𝑋

0
. (26)

Let 𝑇
𝑏
(𝑡) = 𝑇(𝑡)|

𝑋0
and 𝐴

𝑏
be the global attractor for 𝑇

𝑏
(𝑡).

Define ̃

𝐴

𝑏
= ⋃

𝑥∈𝐴𝑏
𝜔(𝑥).

Lemma5 (Hale andWaltman [11]). Suppose that𝑇(𝑡) satisfies
(𝐴1) and the following conditions:

(i) there is a 𝑡

0
≥ 0 such that 𝑇(𝑡) is compact for 𝑡 > 𝑡

0
;

(ii) T(t) is point dissipative in 𝑋;
(iii) 𝐴

𝑏
is isolated and has an acyclic covering ̂

𝑀, where
̂

𝑀 = {

̂

𝑀

1
,

̂

𝑀

2
, . . . ,

̂

𝑀

𝑛
};

(iv) 𝑊

𝑠
(

̂

𝑀

𝑖
)⋂𝑋

0
= ⌀ for 𝑖 = 1, 2, . . . , 𝑛.

Then 𝑋

0
is a uniform repeller with respect to 𝑋

0; that is, there
is an 𝜀 > 0 such that, for any 𝑥 ∈ 𝑋

0, lim inf
𝑡→+∞

𝑑(𝑇(𝑡)𝑥,

𝑋

0
) ≥ 𝜀.

We are now able to state and prove the result on the per-
manence of system (2).

Theorem 6. If (𝐻
1
) holds, then system (2) is permanent.

Proof. We need only to show that the boundaries of 𝑅

4

+0

repel positive solutions of system (2) uniformly. Let
𝐶

+
([−𝜏, 0], 𝑅

4

+0
) denote the space of continuous functions

mapping [−𝜏, 0] into 𝑅

4

+0
. Define

𝐶

1
= {(𝜙

1
, 𝜙

2
, 𝜑

1
, 𝜑

2
) ∈ 𝐶

+
([−𝜏, 0] , 𝑅

4

+0
) : 𝜙

𝑖
(𝜃) ≡ 0,

𝜃 ∈ [−𝜏, 0] , 𝑖 = 1, 2} ,

𝐶

2
= {(𝜙

1
, 𝜙

2
, 𝜑

1
, 𝜑

2
) ∈ 𝐶

+
([−𝜏, 0] , 𝑅

4

+0
) : 𝜙

𝑖
(𝜃) > 0,

𝜑

𝑖
(𝜃) ≡ 0, 𝜃 ∈ [−𝜏, 0] , 𝑖 = 1, 2} .

(27)

Denote 𝐶

0
= 𝐶

1
⋃𝐶

2
and 𝐶

0
= int𝐶+([−𝜏, 0], 𝑅4

+0
).

In the following, we show that the conditions in Lemma 5
are satisfied. By the definition of 𝐶0 and 𝐶

0
, it is easy to see

that 𝐶0 and 𝐶

0
are positively invariant and the condition (ii)

in Lemma 5 is clearly satisfied. Using the smoothing property
of solutions of delay differential equations introduced in
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Kuang [8] (Theorem 2.2.8), it follows that condition (i)
in Lemma 5 is satisfied. Thus, we need only to show that
the conditions (iii) and (iv) hold. Clearly, corresponding to
𝑥

𝑖
(𝑡) = 𝑦

𝑖
(𝑡) = 0 and 𝑥

1
(𝑡) = 𝑥

+

1
, 𝑥
2
(𝑡) = 𝑥

+

2
, 𝑦
𝑖
(𝑡) = 0,

respectively, there are two constant solutions in 𝐶

0
:

̃

𝐸

0
∈ 𝐶

1

and ̃

𝐸

1
∈ 𝐶

2
satisfying

̃

𝐸

0
= {(𝜙

1
, 𝜙

2
, 𝜑

1
, 𝜑

2
) ∈ 𝐶

+
([−𝜏, 0] , 𝑅

4

+0
) : 𝜙

𝑖
(𝜃) ≡ 0,

𝜑

𝑖
(𝜃) ≡ 0, 𝜃 ∈ [−𝜏, 0] } ,

̃

𝐸

1
= {(𝜙

1
, 𝜙

2
, 𝜑

1
, 𝜑

2
) ∈ 𝐶

+
([−𝜏, 0] , 𝑅

4

+0
) : 𝜙

1
(𝜃) = 𝑥

+

1
,

𝜙

2
(𝜃) = 𝑥

+

2
, 𝜑

𝑖
(𝜃) ≡ 0, 𝜃 ∈ [−𝜏, 0] } .

(28)

We now verify the condition (iii) in Lemma 5. If (𝑥
1
(𝑡), 𝑥

2
(𝑡),

𝑦

1
(𝑡), 𝑦

2
(𝑡)) is a solution of system (2) initiating from𝐶

1
, then

̇𝑦

1
(𝑡) = −(𝑑

3
+ 𝑟

2
)𝑦

1
(𝑡) and ̇𝑦

2
(𝑡) = 𝑟

2
𝑦

1
(𝑡) − 𝑑

4
𝑦

2
(𝑡), which

yields lim
𝑡→+∞

𝑦

𝑖
(𝑡) = 0, 𝑖 = 1, 2. If (𝑥

1
(𝑡), 𝑥

2
(𝑡), 𝑦

1
(𝑡), 𝑦

2
(𝑡))

is a solution of system (2) initiating from 𝐶

2
with 𝜙

𝑖
(0) > 0,

then it follows from the first and second equations of system
(2) that �̇�

1
(𝑡) = 𝑟𝑥

2
(𝑡) − (𝑟

1
+ 𝑑

1
)𝑥

1
(𝑡) − 𝑎𝑥

2

1
(𝑡) and �̇�

2
(𝑡) =

𝑟

1
𝑥

1
(𝑡)−𝑑

2
𝑥

2
(𝑡). If 𝑟𝑟

1
> 𝑑

2
(𝑟

1
+𝑑

1
) holds, then 𝑥

1
(𝑡) → 𝑥

+

1
,

𝑥

2
(𝑡) → 𝑥

+

2
as 𝑡 → +∞. Noting that 𝐶

1
⋂𝐶

2
= ⌀, we see

that the invariant sets ̃

𝐸

0
and ̃

𝐸

1
are isolated. Hence, { ̃𝐸

0
,

̃

𝐸

1
}

is isolated and is an acyclic covering satisfying the condition
(iii) in Lemma 5.

We now verify that𝑊𝑠( ̃𝐸
0
)⋂𝐶

0
= ⌀ and𝑊

𝑠
(

̃

𝐸

1
)⋂𝐶

0
=

⌀. Here, we only prove the second equation since the proof of
the first equation is simple. Assume 𝑊

𝑠
(

̃

𝐸

1
)⋂𝐶

0
̸= ⌀. Then

there is a positive solution (𝑥

1
(𝑡), 𝑥

2
(𝑡), 𝑦

1
(𝑡), 𝑦

2
(𝑡)) satisfying

lim
𝑡→+∞

(𝑥

1
(𝑡) , 𝑥

2
(𝑡) , 𝑦

1
(𝑡) , 𝑦

2
(𝑡)) = (𝑥

+

1
, 𝑥

+

2
, 0, 0) . (29)

Hence, for 𝜀 > 0 sufficiently small, there is a 𝑡

0
> 0 such that,

if 𝑡 > 𝑡

0
, 𝑥+
1
− 𝜀 < 𝑥

2
(𝑡) < 𝑥

+

1
+ 𝜀.

Since (𝐻

1
) holds, we can choose 𝜀 > 0 sufficiently small,

such that

𝑎

2
𝑟

2
(𝑥

+

1
− 𝜀)

1 + 𝑚 (𝑥

+

1
− 𝜀)

> 𝑑

4
(𝑟

2
+ 𝑑

3
) . (30)

For 𝜀 > 0 sufficiently small satisfying (30), it follows from the
third and the fourth equations of system (2) that, for 𝑡 > 𝑡

0
+𝜏,

̇𝑦

1
(𝑡) ≥

𝑎

2
(𝑥

+

1
− 𝜀)

1 + 𝑚 (𝑥

+

1
− 𝜀)

𝑦

2
(𝑡 − 𝜏) − (𝑟

2
+ 𝑑

3
) 𝑦

2
(𝑡) ,

̇𝑦

2
(𝑡) = 𝑟

2
𝑦

1
(𝑡) − 𝑑

4
𝑦

1
(𝑡) .

(31)

Define

𝐴

𝜖
= (

− (𝑟

2
+ 𝑑

3
)

𝑎

2
(𝑥

+

1
− 𝜀)

1 + 𝑚 (𝑥

+

1
− 𝜀)

𝑟

2
− 𝑑

4

). (32)

Since 𝐴

𝜖
has positive off-diagonal elements, by the Perron-

Frobenius theorem, there is a positive eigenvector 𝜂 for the

maximum eigenvalue 𝜇 of𝐴
𝜖
. Noting that (30) holds, a direct

calculation shows that 𝜇 > 0. Using a similar argument
as that in the proof of Theorem 2.1 in [2], one can show
that lim

𝑡→+∞
𝑦

𝑖
(𝑡) = +∞ (𝑖 = 1, 2). This contradicts

Lemma 4. Hence, we have 𝑊

𝑠
(

̃

𝐸

1
)⋂𝐶

0
= ⌀. By Lemma 5,

we conclude that 𝐶
0
repels positive solutions of system (2)

uniformly. Therefore, system (2) is permanent. The proof is
complete.

4. Global Stability

In this section, we are concerned with the global stability
of each of the feasible equilibria of system (2). The strategy
of proofs is to use Lyapunov functionals and the LaSalle
invariant principle.

Theorem 7. If 𝑟𝑟
1
< 𝑑

2
(𝑟

1
+ 𝑑

1
), then the trivial equilibrium

𝐸

0
(0, 0, 0, 0) of system (2) is globally asymptotically stable.

Proof. Let (𝑥
1
(𝑡), 𝑥

2
(𝑡), 𝑦

1
(𝑡), 𝑦

2
(𝑡)) be any positive solution

of system (2) with initial conditions (3). By Theorem 1, we
see that if 𝑟𝑟

1
< 𝑑

2
(𝑟

1
+ 𝑑

1
), then 𝐸

0
is locally asymptotically

stable. Define

𝑉

1
(𝑡) = 𝑥

1
(𝑡) +

𝑟

𝑑

2

𝑥

2
(𝑡) +

𝑎

1

𝑎

2

𝑦

1
(𝑡) +

𝑎

1
(𝑟

2
+ 𝑑

3
)

𝑎

2
𝑟

2

𝑦

2
(𝑡)

+ 𝑎

1
∫

𝑡

𝑡−𝜏

𝑥

1
(𝑠) 𝑦

2
(𝑠)

1 + 𝑚𝑥

1
(𝑠)

𝑑𝑠.

(33)

Calculating the derivative of 𝑉
1
(𝑡) along positive solutions of

system (2), it follows that

̇

𝑉

1
(𝑡) = �̇�

1
(𝑡) +

𝑟

𝑑

2

�̇�

2
(𝑡) +

𝑎

1

𝑎

2

̇𝑦

1
(𝑡) +

𝑎

1
(𝑟

2
+ 𝑑

3
)

𝑎

2
𝑟

2

̇𝑦

2
(𝑡)

+

𝑎

1
𝑥

1
(𝑡) 𝑦

2
(𝑡)

1 + 𝑚𝑥

1
(𝑡)

−

𝑎

1
𝑥

1
(𝑡 − 𝜏) 𝑦

2
(𝑡 − 𝜏)

1 + 𝑚𝑥

1
(𝑡 − 𝜏)

=

𝑟𝑟

1
− 𝑑

2
(𝑟

1
+ 𝑑

1
)

𝑑

2

𝑥

1
(𝑡) − 𝑎𝑥

2

1
(𝑡)

−

𝑎

1
𝑑

4
(𝑟

2
+ 𝑑

3
)

𝑎

2
𝑟

2

𝑦

2
(𝑡) .

(34)

If 𝑟𝑟
1
< 𝑑

2
(𝑟

1
+ 𝑑

1
), it then follows from (34) that ̇

𝑉

1
(𝑡) ≤ 0.

By Theorem 5.3.1 in [10], solutions approach 𝑀, the largest
invariant subset of { ̇

𝑉

1
(𝑡) = 0}. Clearly, we see from (34) that

̇

𝑉

1
(𝑡) = 0 if and only if 𝑥

1
(𝑡) = 0, 𝑦

2
(𝑡) = 0. Noting that 𝑀 is

invariant, for each element in𝑀, we have 𝑥
1
(𝑡) = 0,𝑦

2
(𝑡) = 0.

It therefore follows from the second and fourth equations of
system (2) that

0 = �̇�

1
(𝑡) = 𝑟𝑥

2
(𝑡) , 0 = ̇𝑦

2
(𝑡) = 𝑟

2
𝑦

1
(𝑡) , (35)

which yields 𝑥

2
(𝑡) = 0, 𝑦

1
(𝑡) = 0. Hence, ̇

𝑉

1
(𝑡) = 0 if and

only if (𝑥

1
(𝑡), 𝑥

2
(𝑡), 𝑦

1
(𝑡), 𝑦

2
(𝑡)) = (0, 0, 0, 0). Accordingly,

the global asymptotic stability of 𝐸

0
follows from LaSalle’s

invariant principle. This completes the proof.
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Theorem 8. The predator-extinction equilibrium 𝐸

1
(𝑥

+

1
, 𝑥

+

2
,

0, 0) of system (2) is globally asymptotically stable provided that

(𝐻

4
) 0 < (𝑟𝑟

1
− 𝑑

2
(𝑟

1
+ 𝑑

1
))/𝑎𝑑

2
< 𝑑

4
(𝑟

2
+ 𝑑

3
)/(𝑎

2
𝑟

2
−

𝑚𝑑

4
(𝑟

2
+ 𝑑

3
)).

Proof. Assume that (𝑥

1
(𝑡), 𝑥

2
(𝑡), 𝑦

1
(𝑡), 𝑦

2
(𝑡)) is any posi-

tive solution of system (2) with initial conditions (3). By
Theorem 1, we see that if (𝐻

4
) holds, then 𝐸

1
is locally

asymptotically stable. System (2) can be rewritten as

�̇�

1
(𝑡) =

𝑟

𝑥

+

1

[−𝑥

2
(𝑡) (𝑥

1
(𝑡) − 𝑥

+

1
) + 𝑥

1
(𝑡) (𝑥

2
(𝑡) − 𝑥

+

2
)]

+ 𝑥

1
(𝑡) [−𝑎 (𝑥

1
(𝑡) − 𝑥

+

1
)] −

𝑎

1
𝑥

1
(𝑡) 𝑦

2
(𝑡)

1 + 𝑚𝑥

1
(𝑡)

,

�̇�

2
(𝑡) =

𝑟

1

𝑥

+

2

[−𝑥

1
(𝑡) (𝑥

2
(𝑡) − 𝑥

+

2
) + 𝑥

2
(𝑡) (𝑥

1
(𝑡) − 𝑥

+

1
)] ,

̇𝑦

1
(𝑡) =

𝑎

2
𝑥

1
(𝑡 − 𝜏) 𝑦

2
(𝑡 − 𝜏)

1 + 𝑚𝑥

1
(𝑡 − 𝜏)

− (𝑟

2
+ 𝑑

3
) 𝑦

1
(𝑡) ,

̇𝑦

2
(𝑡) = 𝑟

2
𝑦

1
(𝑡) − 𝑑

4
𝑦

2
(𝑡) .

(36)

Define

𝑉

21
(𝑡) = 𝑥

1
− 𝑥

+

1
− 𝑥

+

1
ln 𝑥

1

𝑥

+

1

+ 𝑐

1
(𝑥

2
− 𝑥

+

2
− 𝑥

+

2
ln 𝑥

2

𝑥

+

2

)

+ 𝑘

1
𝑦

1
+ 𝑘

2
𝑦

2
,

(37)

where 𝑐

1
= 𝑟𝑥

+

2
/(𝑟

1
𝑥

+

1
), 𝑘
1
= 𝑎

1
(1 + 𝑚𝑥

+

1
)/𝑎

2
, and 𝑘

2
= (𝑟

2
+

𝑑

3
)𝑘

1
/𝑟

2
. Calculating the derivative of 𝑉

21
(𝑡) along positive

solutions of system (2), it follows that
̇

𝑉

21
(𝑡)

=

𝑟 (𝑥

1
(𝑡) − 𝑥

+

1
)

𝑥

+

1
𝑥

1
(𝑡)

× [−𝑥

2
(𝑡) (𝑥

1
(𝑡) − 𝑥

+

1
) + 𝑥

1
(𝑡) (𝑥

2
(𝑡) − 𝑥

+

2
)]

− 𝑎(𝑥

1
(𝑡) − 𝑥

+

1
)

2

−

(𝑥

1
(𝑡) − 𝑥

+

1
) 𝑎

1
𝑥

1
(𝑡) 𝑦

2
(𝑡)

𝑥

1
(𝑡) (1 + 𝑚𝑥

1
(𝑡))

+

𝑟 (𝑥

2
(𝑡) − 𝑥

+

2
)

𝑥

+

1
𝑥

2
(𝑡)

× [−𝑥

1
(𝑡) (𝑥

2
(𝑡) − 𝑥

+

2
) + 𝑥

2
(𝑡) (𝑥

1
(𝑡) − 𝑥

+

1
)]

+

𝑎

2
𝑘

1
𝑥

1
(𝑡 − 𝜏) 𝑦

2
(𝑡 − 𝜏)

1 + 𝑚𝑥

1
(𝑡 − 𝜏)

− 𝑘

2
𝑑

4
𝑦

2
(𝑡)

= −

𝑟

𝑥

+

1

[
√

𝑥

2
(𝑡)

𝑥

1
(𝑡)

(𝑥

1
(𝑡) − 𝑥

+

1
) −

√

𝑥

1
(𝑡)

𝑥

2
(𝑡)

(𝑥

2
(𝑡) − 𝑥

+

2
)]

2

− 𝑎(𝑥

1
(𝑡) − 𝑥

+

1
)

2

− 𝑎

1
(1 + 𝑚𝑥

+

1
) [

𝑥

1
(𝑡) 𝑦

2
(𝑡)

1 + 𝑚𝑥

1
(𝑡)

−

𝑥

1
(𝑡 − 𝜏) 𝑦

2
(𝑡 − 𝜏)

1 + 𝑚𝑥

1
(𝑡 − 𝜏)

]

+ (𝑎

1
𝑥

+

1
− 𝑘

2
𝑑

4
) 𝑦

2
(𝑡) .

(38)

Define

𝑉

2
(𝑡) = 𝑉

21
(𝑡) + 𝑎

1
(1 + 𝑚𝑥

+

1
) ∫

𝑡

𝑡−𝜏

𝑥

1
(𝑠) 𝑦

2
(𝑠)

1 + 𝑚𝑥

1
(𝑠)

𝑑𝑠. (39)

We derive from (38) and (39) that

̇

𝑉

2
(𝑡) = −

𝑟

𝑥

+

1

[
√

𝑥

2
(𝑡)

𝑥

1
(𝑡)

(𝑥

1
(𝑡) − 𝑥

+

1
)

−
√

𝑥

1
(𝑡)

𝑥

2
(𝑡)

(𝑥

2
(𝑡) − 𝑥

+

2
)]

2

− 𝑎(𝑥

1
(𝑡) − 𝑥

+

1
)

2

− (𝑘

2
𝑑

4
− 𝑎

1
𝑥

+

1
) 𝑦

2
(𝑡) .

(40)

If (𝐻

4
) holds, it then follows from (40) that ̇

𝑉

2
(𝑡) ≤ 0.

By Theorem 5.3.1 in [10], solutions approach 𝑀, the largest
invariant subset of { ̇

𝑉

2
(𝑡) = 0}. Clearly, we see from (40) that

̇

𝑉

2
(𝑡) = 0 with equality if only if 𝑥

1
= 𝑥

+

1
, 𝑥
2

= 𝑥

+

2
, and

𝑦

2
= 0. It follows from the fourth equation of system (2) that

0 = ̇𝑦

2
(𝑡) = 𝑟

2
𝑦

1
(𝑡), which yields 𝑦

1
= 0. Hence, ̇

𝑉

2
(𝑡) = 0

if only if 𝑥
1

= 𝑥

+

1
, 𝑥
2

= 𝑥

+

2
, 𝑦
1

= 0, and 𝑦

2
= 0. Using the

LaSalle invariant principle, the global asymptotic stability of
𝐸

1
follows. This completes the proof.

Theorem 9. The coexistence equilibrium 𝐸

∗
(𝑥

∗

1
, 𝑥

∗

2
, 𝑦

∗

1
, 𝑦

∗

2
) of

system (2) is globally asymptotically stable provided that

(𝐻

5
) 𝑥

1
> (𝑟𝑟

1
− 𝑑

2
(𝑟

1
+ 𝑑

1
))/𝑎𝑑

2
− 𝑑

4
(𝑟

2
+ 𝑑

3
)/(𝑎

2
𝑟

2
−

𝑚𝑑

4
(𝑟

2
+ 𝑑

3
)).

Here, 𝑥
1
is the uniform persistency constant for 𝑥

1
satisfying

lim inf
𝑡→∞

𝑥

1
(𝑡) ≥ 𝑥

1
.

Proof. Let (𝑥
1
(𝑡), 𝑥

2
(𝑡), 𝑦

1
(𝑡), 𝑦

2
(𝑡)) be any positive solution

of system (2) with initial conditions (3). Since (𝐻

5
) holds,

there is a 𝑡

1
> 0, such that

𝑥

1
(𝑡) >

𝑟𝑟

1
− 𝑑

2
(𝑟

1
+ 𝑑

1
)

𝑎𝑑

2

−

𝑑

4
(𝑟

2
+ 𝑑

3
)

𝑎

2
𝑟

2
− 𝑚𝑑

4
(𝑟

2
+ 𝑑

3
)

(41)

for all 𝑡 ≥ 𝑡

1
. Accordingly, we have

𝑥

∗

1
>

𝑟𝑟

1
− 𝑑

2
(𝑟

1
+ 𝑑

1
)

𝑎𝑑

2

−

𝑑

4
(𝑟

2
+ 𝑑

3
)

𝑎

2
𝑟

2
− 𝑚𝑑

4
(𝑟

2
+ 𝑑

3
)

. (42)

In this case, it is easy to show that (𝐻
1
) and (𝐻

3
) hold. By

Theorem 1, 𝐸∗ is locally asymptotically stable for all 𝜏 > 0.
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System (2) can be rewritten as

�̇�

1
(𝑡) =

𝑟

𝑥

∗

1

[−𝑥

2
(𝑡) (𝑥

1
(𝑡) − 𝑥

∗

1
) + 𝑥

1
(𝑡) (𝑥

2
(𝑡) − 𝑥

∗

2
)]

+ 𝑥

1
(𝑡) [−𝑎 (𝑥

1
(𝑡) − 𝑥

∗

1
)]

+

𝑎

1
𝑦

∗

2

1 + 𝑚𝑥

∗

1

𝑥

1
(𝑡) −

𝑎

1
𝑥

1
(𝑡) 𝑦

2
(𝑡)

1 + 𝑚𝑥

1
(𝑡)

,

�̇�

2
(𝑡) =

𝑟

1

𝑥

∗

2

[−𝑥

1
(𝑡) (𝑥

2
(𝑡) − 𝑥

∗

2
) + 𝑥

2
(𝑡) (𝑥

1
(𝑡) − 𝑥

∗

1
)] ,

̇𝑦

1
(𝑡) =

𝑎

2
𝑥

1
(𝑡 − 𝜏) 𝑦

2
(𝑡 − 𝜏)

1 + 𝑚𝑥

1
(𝑡 − 𝜏)

− (𝑟

2
+ 𝑑

3
) 𝑦

1
(𝑡) ,

̇𝑦

2
(𝑡) = 𝑟

2
𝑦

1
(𝑡) − 𝑑

4
𝑦

2
(𝑡) .

(43)

Define

𝑉

31
(𝑡) = 𝑥

1
− 𝑥

∗

1
− 𝑥

∗

1
ln 𝑥

1

𝑥

∗

1

+ 𝑐

1
(𝑥

2
− 𝑥

∗

2
− 𝑥

∗

2
ln 𝑥

2

𝑥

∗

2

)

+ 𝑘

1
(𝑦

1
− 𝑦

∗

1
− 𝑦

∗

1
ln

𝑦

1

𝑦

∗

1

)

+ 𝑘

2
(𝑦

2
− 𝑦

∗

2
− 𝑦

∗

2
ln

𝑦

2

𝑦

∗

2

) ,

(44)

where 𝑐

1
= 𝑟𝑥

∗

2
/(𝑟

1
𝑥

∗

1
), 𝑘
1

= 𝑎

1
(1 + 𝑚𝑥

∗

1
)/𝑎

2
, 𝑘
2

= 𝑘

1
(𝑟

2
+

𝑑

3
)/𝑟

2
. Calculating the derivative of 𝑉

31
(𝑡) along positive

solutions of system (2), it follows that

̇

𝑉

31
(𝑡)

=

𝑥

1
(𝑡) − 𝑥

∗

1

𝑥

1
(𝑡)

�̇�

1
(𝑡) + 𝑐

1

𝑥

2
(𝑡) − 𝑥

∗

2

𝑥

2
(𝑡)

�̇�

2
(𝑡)

+ 𝑘

1

𝑦

1
(𝑡) − 𝑦

∗

1

𝑦

1
(𝑡)

̇𝑦

1
(𝑡) +

𝑦

2
(𝑡) − 𝑦

∗

2

𝑦

2
(𝑡)

̇𝑦

2
(𝑡)

=

𝑟 (𝑥

1
(𝑡) − 𝑥

∗

1
)

𝑥

∗

1
𝑥

1
(𝑡)

× [−𝑥

2
(𝑡) (𝑥

1
(𝑡) − 𝑥

∗

1
) + 𝑥

1
(𝑡) (𝑥

2
(𝑡) − 𝑥

∗

2
)]

− 𝑎(𝑥

1
(𝑡) − 𝑥

∗

1
)

2

+

𝑎

1
𝑦

∗

2
(𝑥

1
(𝑡) − 𝑥

∗

1
)

1 + 𝑚𝑥

∗

1

−

𝑎

1
𝑦

2
(𝑡) (𝑥

1
(𝑡) − 𝑥

∗

1
)

1 + 𝑚𝑥

1
(𝑡)

+

𝑟 (𝑥

2
(𝑡) − 𝑥

∗

2
)

𝑥

∗

1
𝑥

2
(𝑡)

× [−𝑥

1
(𝑡) (𝑥

2
(𝑡) − 𝑥

∗

2
) + 𝑥

2
(𝑡) (𝑥

1
(𝑡) − 𝑥

∗

1
)]

+

𝑎

2
𝑘

1
(𝑦

1
(𝑡) − 𝑦

∗

1
) 𝑥

1
(𝑡 − 𝜏) 𝑦

2
(𝑡 − 𝜏)

𝑦

1
(𝑡) (1 + 𝑚𝑥

1
(𝑡 − 𝜏))

+ 𝑘

2
𝑟

2

𝑦

1
(𝑡)

𝑦

2
(𝑡)

(𝑦

2
(𝑡) − 𝑦

∗

2
)

− 𝑘

1
(𝑟

2
+ 𝑑

3
) (𝑦

1
(𝑡) − 𝑦

∗

1
) − 𝑘

2
𝑑

4
(𝑦

2
(𝑡) − 𝑦

∗

2
)

= −

𝑟

𝑥

∗

1

[
√

𝑥

2
(𝑡)

𝑥

1
(𝑡)

(𝑥

1
(𝑡) − 𝑥

∗

1
) −

√

𝑥

1
(𝑡)

𝑥

2
(𝑡)

(𝑥

2
(𝑡) − 𝑥

∗

2
)]

2

− 𝑎

1
(1 + 𝑚𝑥

∗

1
)

𝑦

∗

1
𝑥

1
(𝑡 − 𝜏) 𝑦

2
(𝑡 − 𝜏)

𝑦

1
(𝑡) (1 + 𝑚𝑥

1
(𝑡 − 𝜏))

− 𝑎

1
(1 + 𝑚𝑥

∗

1
)

𝑥

1
(𝑡) 𝑦

2
(𝑡)

1 + 𝑚𝑥

1
(𝑡)

+ 𝑎

2
𝑘

1

𝑥

1
(𝑡 − 𝜏) 𝑦

2
(𝑡 − 𝜏)

1 + 𝑚𝑥

1
(𝑡 − 𝜏)

+

𝑎

1
𝑦

∗

2

1 + 𝑚𝑥

∗

1

(𝑥

1
(𝑡) − 𝑥

∗

1
) − 𝑘

2
𝑟

2
𝑦

∗

2

𝑦

1
(𝑡)

𝑦

2
(𝑡)

− 𝑎(𝑥

1
(𝑡) − 𝑥

∗

1
)

2

+ 𝑘

1
(𝑟

2
+ 𝑑

3
) 𝑦

∗

1
+ 𝑘

2
𝑑

4
𝑦

∗

2
.

(45)

Define
𝑉

3
(𝑡)

= 𝑉

31
(𝑡) + 𝑎

2
𝑘

1
∫

𝑡

𝑡−𝜏

[

𝑥

1
(𝑠) 𝑦

2
(𝑠)

1 + 𝑚𝑥

1
(𝑠)

−

𝑥

∗

1
𝑦

∗

2

1 + 𝑚𝑥

∗

1

−

𝑥

∗

1
𝑦

∗

2

1 + 𝑚𝑥

∗

1

× ln
(1 + 𝑚𝑥

∗

1
) 𝑥

1
(𝑠) 𝑦

2
(𝑠)

𝑥

∗

1
𝑦

∗

2
(1 + 𝑚𝑥

1
(𝑠))

] 𝑑𝑠.

(46)

We derive from (45) and (46) that
̇

𝑉

3
(𝑡)

= −

𝑟

𝑥

∗

1

[
√

𝑥

2
(𝑡)

𝑥

1
(𝑡)

(𝑥

1
(𝑡) − 𝑥

∗

1
) −

√

𝑥

1
(𝑡)

𝑥

2
(𝑡)

(𝑥

2
(𝑡) − 𝑥

∗

2
)]

2

− 𝑎

1
𝑥

∗

1
𝑦

∗

2
[

𝑦

∗

2
𝑦

1
(𝑡)

𝑦

∗

1
𝑦

2
(𝑡)

− 1 − ln
𝑦

∗

2
𝑦

1
(𝑡)

𝑦

∗

1
𝑦

2
(𝑡)

]

− 𝑎

1
𝑥

∗

1
𝑦

∗

2
[

𝑦

∗

1
(1 + 𝑚𝑥

∗

1
) 𝑥

1
(𝑡 − 𝜏) 𝑦

2
(𝑡 − 𝜏)

𝑥

∗

1
𝑦

∗

2
𝑦

1
(𝑡) (1 + 𝑚𝑥

1
(𝑡 − 𝜏))

−1 − ln
𝑦

∗

1
(1 + 𝑚𝑥

∗

1
) 𝑥

1
(𝑡 − 𝜏) 𝑦

2
(𝑡 − 𝜏)

𝑥

∗

1
𝑦

∗

2
𝑦

1
(𝑡) (1 + 𝑚𝑥

1
(𝑡 − 𝜏))

]

− 𝑎

1
𝑥

∗

1
𝑦

∗

2
[

𝑥

∗

1
(1 + 𝑚𝑥

1
(𝑡))

𝑥

1
(𝑡) (1 + 𝑚𝑥

∗

1
)

− 1 − ln
𝑥

∗

1
(1 + 𝑚𝑥

1
(𝑡))

𝑥

1
(𝑡) (1 + 𝑚𝑥

∗

1
)

]

− (𝑥

1
(𝑡) − 𝑥

∗

1
)

2

[𝑎 −

𝑎

1
𝑦

∗

2

𝑥

1
(𝑡) (1 + 𝑚𝑥

∗

1
)

] .

(47)

If (𝐻

5
) holds, for 𝑡 sufficiently enough, we have 𝑎 >

𝑎

1
𝑦

∗

2
/(𝑥

1
(𝑡)(1 + 𝑚𝑥

∗

1
)). This, together with (47), implies that

̇

𝑉

3
(𝑡) ≤ 0, with equality if and only if

𝑥

1
= 𝑥

∗

1
, 𝑥

2
= 𝑥

∗

2
,

𝑦

∗

2
𝑦

1
(𝑡)

𝑦

∗

1
𝑦

2
(𝑡)

=

𝑦

∗

1
(1 + 𝑚𝑥

∗

1
) 𝑥

1
(𝑡 − 𝜏) 𝑦

2
(𝑡 − 𝜏)

𝑥

∗

1
𝑦

∗

2
𝑦

1
(𝑡) (1 + 𝑚𝑥

1
(𝑡 − 𝜏))

= 1.

(48)
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We now look for the invariant subset 𝑀 within the set

𝑀 = { (𝑥

1
, 𝑥

2
, 𝑦

1
, 𝑦

2
) : 𝑥

1
= 𝑥

∗

1
, 𝑥

2
= 𝑥

∗

2
,

𝑦

∗

2
𝑦

1
(𝑡)

𝑦

∗

1
𝑦

2
(𝑡)

=

𝑦

∗

1
(1 + 𝑚𝑥

∗

1
) 𝑥

1
(𝑡 − 𝜏) 𝑦

2
(𝑡 − 𝜏)

𝑥

∗

1
𝑦

∗

2
𝑦

1
(𝑡) (1 + 𝑚𝑥

1
(𝑡 − 𝜏))

= 1} .

(49)

Since 𝑥

1
= 𝑥

∗

1
and 𝑥

2
= 𝑥

∗

2
on 𝑀 and consequently 0 =

�̇�

1
(𝑡) = 𝑥

∗

1
[𝑟𝑟

1
/𝑑

2
− (𝑟

1
+ 𝑑

1
) − 𝑎𝑥

∗

1
− 𝑎

1
𝑦

2
(𝑡)/(1 + 𝑚𝑥

∗

1
)],

which yields 𝑦
2
(𝑡) = 𝑦

∗

2
, it follows from the fourth equation

of system (2) that 0 = ̇𝑦

2
(𝑡) = 𝑟

2
𝑦

1
(𝑡) − 𝑑

4
𝑦

∗

2
, which leads

to 𝑦

1
= 𝑦

∗

1
. Hence, the only invariant set in 𝑀 is 𝑀 =

{(𝑥

∗

1
, 𝑥

∗

2
, 𝑦

∗

1
, 𝑦

∗

2
)}. Using the LaSalle invariant principle, the

global asymptotic stability of 𝐸∗ follows. This completes the
proof.

We give an example to illustrate the result in Theorem 9.

Example 10. In (2), let 𝑎 = 160, 𝑎
1

= 5, 𝑎
2

= 3, 𝑑
1

= 1/8,
𝑑

2
= 1/4, 𝑑

3
= 1/8, 𝑑

4
= 1/8, 𝑟 = 2.2, 𝑟

1
= 1, 𝑟

2
= 1, and

𝑚 = 1/10. It is easy to show that (𝑟𝑟
1
− 𝑑

2
(𝑟

1
+ 𝑑

1
))/𝑎𝑑

2
≈

0.0480 and 𝑑

4
(𝑟

2
+ 𝑑

3
)/(𝑎

2
𝑟

2
− 𝑚𝑑

4
(𝑟

2
+ 𝑑

3
)) ≈ 0.0471;

that is, condition (𝐻

1
) holds. Hence, system (2) has a unique

coexistence equilibrium 𝐸

∗
(0.0471, 0.1884, 0.0035, 0.0281).

Hence, by Theorem 6, system (2) is permanent. From the
proof of Lemma 4, we have lim sup

𝑡→∞
𝑦

2
(𝑡) ≤ 𝑀

2
:=

𝑎

2
𝑟

2
/(4𝑎𝑎

1
𝑑𝑑

2

2
) ≈ 1.4520. Hence, for 𝜀 > 0 sufficiently small,

there is a 𝑡

1
> 0 such that, if 𝑡 > 𝑡

1
, 𝑦
2
(𝑡) < 𝑀

2
+ 𝜀. It follows

from system (2) that, for 𝑡 > 𝑡

1
,

�̇�

1
(𝑡) > 𝑟𝑥

2
(𝑡) − (𝑟

1
+ 𝑑

1
) 𝑥

1
(𝑡) − 𝑎𝑥

2

1
(𝑡)

− 𝑎

1
(𝑀

2
+ 𝜀) 𝑥

1
(𝑡) ,

�̇�

2
(𝑡) = 𝑟

1
𝑥

1
(𝑡) − 𝑑

2
𝑥

2
(𝑡) ,

(50)

which yields

lim inf
𝑡→∞

𝑥

1
(𝑡) ≥

𝑟𝑟

1
− 𝑑

2
(𝑎

1
𝑀

2
+ 𝑟

1
+ 𝑑

1
)

𝑎𝑑

2

:= 𝑥

1
. (51)

By calculation, we derive that 𝑥
1
≈ 0.0026 and (𝑟𝑟

1
− 𝑑

2
(𝑟

1
+

𝑑

1
))/𝑎𝑑

2
− 𝑑

4
(𝑟

2
+ 𝑑

3
)/(𝑎

2
𝑟

2
− 𝑚𝑑

4
(𝑟

2
+ 𝑑

3
)) ≈ 0.00087. By

Theorem 9, 𝐸∗ is globally asymptotically stable. Numerical
simulation illustrates this fact (see Figure 2).

5. Discussion

In this paper, we have incorporated stage structure for both
the predators and the prey into a predator-prey model with
time delay due to the gestation of the predator and Holling
type II functional response. By using Lyapunov functionals
and the LaSalle invariant principle, we have established
sufficient conditions for the globally stability of each of the
feasible equilibria of the system. As a result, we have shown
the threshold for the permanence and extinction of the
system. ByTheorems 7–9, we see that (i) if 𝑟𝑟

1
< 𝑑

2
(𝑟

1
+ 𝑑

1
),
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Figure 2: The temporal solution found by numerical integration of
system (2) with 𝜏 = 3.

then both the prey and the predator population go to
extinction; (ii) the prey species is permanent but the predator
becomes extinct if and only if 0 < (𝑟𝑟

1
− 𝑑

2
(𝑟

1
+ 𝑑

1
))/𝑎𝑑

2
<

𝑑

4
(𝑟

2
+ 𝑑

3
)/(𝑎

2
𝑟

2
− 𝑚𝑑

4
(𝑟

2
+ 𝑑

3
)); (iii) if 𝑥

1
> (𝑟𝑟

1
− 𝑑

2
(𝑟

1
+

𝑑

1
))/𝑎𝑑

2
−𝑑

4
(𝑟

2
+𝑑

3
)/(𝑎

2
𝑟

2
−𝑚𝑑

4
(𝑟

2
+𝑑

3
)) holds, then both

the prey and predator species of system (2) are permanent.
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