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We define in this paper new distance generalizations of the Pell numbers and the companion Pell numbers. We give a graph
interpretation of these numbers with respect to a special 3-edge colouring of the graph.

1. Introduction

The Fibonacci sequence is defined by the following recur-
rence relation 𝐹

𝑛
= 𝐹
𝑛−1

+ 𝐹
𝑛−2

for 𝑛 ≥ 2 with 𝐹
0
= 𝐹
1
=

1. Among sequences of the Fibonacci type there is the Pell
sequence defined by𝑃

𝑛
= 2𝑃
𝑛−1
+𝑃
𝑛−2

for 𝑛 ≥ 2with the initial
conditions 𝑃

0
= 0 and 𝑃

1
= 1. The companion Pell sequence

is closely related to the Pell sequence and is given by formula
𝑄
0
= 𝑄
1
= 2 and 𝑄

𝑛
= 2𝑄

𝑛−1
+ 𝑄
𝑛−2

for 𝑛 ≥ 2. The Pell
sequences play an important role in the number theory and
they have many interesting interpretations.We recall some of
them.

(i) The number of lattice paths from the point 𝑂(0, 0) to
the line 𝑥 = 𝑛 consisting of 𝑎 = [1, 1], 𝑏 = [1, −1], and
𝑐 = [2, 0] steps is equal to 𝑃

𝑛+1
; see [1].

(ii) The number of compositions (i.e., ordered partitions)
of a number 𝑛 into two sorts of of 1’s and one sort of
2’s is equal to 𝑃

𝑛+1
, see [1].

(iii) The number of 𝑛-step non-self-intersecting paths
starting at the point 𝑂(0, 0) with steps of types 𝑝 =

[1, 0], 𝑞 = [−1, 0], or 𝑟 = [0, 1] is equal to (1/2)𝑄
𝑛+1

,
see [1].

Interesting generalizations of the numbers of the
Fibonacci type (also generalizations of the Pell sequences)
are studied, for instance, byKilic in [2–4]. Among others Kilic
in [4] introduced the generalization of the Pell numbers. He
defined the generalized Pell (𝑝, 𝑖)-numbers for any given 𝑝,
where 𝑝 ≥ 1 and for 𝑛 > 𝑝 + 1 and 0 ≤ 𝑖 ≤ 𝑝 in the following

way 𝑃(𝑖)
𝑝
(𝑛) = 2𝑃

(𝑖)

𝑝
(𝑛 − 1) + 𝑃

(𝑖)

𝑝
(𝑛 − 𝑝 − 1) with initial

conditions and 𝑃(𝑖)
𝑝
(1) = ⋅ ⋅ ⋅ = 𝑃

(𝑖)

𝑝
(𝑖) = 0, 𝑃(𝑖)

𝑝
(𝑖 + 1) = ⋅ ⋅ ⋅ =

𝑃
(𝑖)

𝑝
(𝑝 + 1) = 1. If 𝑖 = 0 then 𝑃(𝑖)

𝑝
(1) = ⋅ ⋅ ⋅ = 𝑃

(𝑖)

𝑝
(𝑝 + 1) = 1.

In this paper we describe new kinds of generalized Pell
sequence and the companion Pell sequence. Our general-
ization is closely related to the recurrence given in [4] by
Kilic. By other initial conditions we obtain other generalized
Pell sequences. We give their graph interpretations which are
closely related to a concept of edge colouring in graphs.Graph
interpretations of the Fibonacci numbers and the like are
study intensively; see, for example, [5–9].

2. 𝑘-Distance Pell Sequences 𝑃
𝑘
(𝑛) and 𝑄

𝑘
(𝑛)

Let 𝑘 ≥ 2, 𝑛 ≥ 0 be integers. The 𝑘-distance Pell sequence
𝑃
𝑘
(𝑛) is defined by the 𝑘th order linear recurrence relation:

𝑃
𝑘
(𝑛) = 2𝑃

𝑘
(𝑛 − 1) + 𝑃

𝑘
(𝑛 − 𝑘) for 𝑛 ≥ 𝑘, (1)

with the following initial conditions:

𝑃
𝑘
(𝑛) = {

0 if 𝑛 = 0,
2
𝑛−1 if 𝑛 = 1, 2, 3, . . . , 𝑘 − 1.

(2)

If 𝑘 = 2, then this definition reduces to the classical Pell
numbers; that is, 𝑃

2
(𝑛) = 𝑃

𝑛
.

Table 1 includes a few first words of the 𝑃
𝑘
(𝑛) for special

values of 𝑘.
Firstly we give an interpretation of the 𝑘-distance Pell

sequence, which generalizes result given in (i).
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Table 1: The 𝑘-distance Pell sequence 𝑃
𝑘
(𝑛).

𝑛 0 1 2 3 4 5 6 7 8 9 10 11 12 13

𝑃
𝑛

0 1 2 5 12 29 70 169 408 985 2378 5741 13860 33461

𝑃
3
(𝑛) 0 1 2 4 9 20 44 97 214 472 1041 2296 5064 11169

𝑃
4
(𝑛) 0 1 2 4 8 17 36 76 160 337 710 1496 3152 6641

𝑃
5
(𝑛) 0 1 2 4 8 16 33 68 140 288 592 1217 2502 5144

𝑃
6
(𝑛) 0 1 2 4 8 16 32 65 132 268 514 1104 2240 4545

Table 2: The 𝑘-distance companion Pell sequence 𝑄
𝑘
(𝑛).

𝑛 0 1 2 3 4 5 6 7 8 9 10 11

𝑄
𝑛

2 2 6 14 34 82 198 478 1154 2786 6726 16238

𝑄
3
(𝑛) 3 2 4 11 24 52 115 254 560 1235 2724 6008

𝑄
4
(𝑛) 4 2 4 8 20 42 88 184 388 818 1724 3632

𝑄
5
(𝑛) 3 2 4 8 16 37 76 156 320 656 1349 2774

𝑄
6
(𝑛) 6 2 4 8 16 32 70 142 288 584 1184 2400

Theorem 1. Let 𝑘 ≥ 2 and 𝑛 ≥ 1 be integers. Then the
number of lattice paths from the point 𝑂(0, 0) to the line 𝑥 = 𝑛
consisting of 𝑎 = [1, 1], 𝑏 = [1, −1], and 𝑐 = [𝑘, 0] steps is equal
to 𝑃
𝑘
(𝑛 + 1).

Proof. Let 𝑠(𝑘, 𝑛) be the number of paths from the point
𝑂(0, 0) to the line 𝑥 = 𝑛. It is easy to notice that 𝑠(𝑘, 𝑛) =
𝑃
𝑘
(𝑛 + 1) for 𝑛 = 1, 2, . . . , 𝑘.
Let 𝑛 ≥ 𝑘 + 1 and let 𝑠

𝑎
(𝑘, 𝑛), 𝑠

𝑏
(𝑘, 𝑛), and 𝑠

𝑐
(𝑘, 𝑛) denote

the number of such paths from the point 𝑂(0, 0) to the line
𝑥 = 𝑛, for which the last step is of the form 𝑎 = [1, 1], 𝑏 =
[1, −1], and 𝑐 = [𝑘, 0], respectively.

It can be easily seen that 𝑠
𝑎
(𝑘, 𝑛) = 𝑠(𝑘, 𝑛 − 1), 𝑠

𝑏
(𝑘, 𝑛) =

𝑠(𝑘, 𝑛 − 1), and 𝑠
𝑐
(𝑘, 𝑛) = 𝑠(𝑘, 𝑛 − 𝑘). Since 𝑠(𝑘, 𝑛) = 𝑠

𝑎
(𝑘, 𝑛) +

𝑠
𝑏
(𝑘, 𝑛)+𝑠

𝑐
(𝑘, 𝑛) then we have 𝑠(𝑘, 𝑛) = 2𝑠(𝑘, 𝑛−1)+𝑠(𝑘, 𝑛−𝑘)

and consequently 𝑠(𝑘, 𝑛) = 𝑃
𝑘
(𝑛 + 1), for all 𝑛 ≥ 1.

In the same way we can prove the generalization of the
result (ii).

Theorem 2. Let 𝑘 ≥ 2 and 𝑛 ≥ 1 be integers. Then the number
of all compositions of the number 𝑛 into two sorts of 1’s and one
sort of 𝑘’s is equal to 𝑃

𝑘
(𝑛 + 1).

By analogy to the Pell sequence we introduce a general-
ization of the companion Pell sequence which generalizes the
classical companion Pell sequence in the distance sense.

Let 𝑘 ≥ 2, 𝑛 ≥ 0 be integers. The 𝑘-distance companion
Pell sequence 𝑄

𝑘
(𝑛) is defined by the 𝑘th order linear

recurrence relation:

𝑄
𝑘
(𝑛) = 2𝑄

𝑘
(𝑛 − 1) + 𝑄

𝑘
(𝑛 − 𝑘) for 𝑛 ≥ 𝑘, (3)

with the initial conditions

𝑄
𝑘
(𝑛) = {

𝑘 if 𝑛 = 0,
2
𝑛 if 𝑛 = 1, 2, 3, . . . , 𝑘 − 1.

(4)

If 𝑘 = 2 then 𝑄
2
(𝑛) gives the classical companion Pell

numbers 𝑄
𝑛
; that is, 𝑄

2
(𝑛) = 𝑄

𝑛
.

Table 2 includes a few first words of the 𝑄
𝑘
(𝑛) for special

values of 𝑘.
The following theorem gives the basic relation between

𝑃
𝑘
(𝑛) and 𝑄

𝑘
(𝑛).

Theorem 3. Let 𝑘 ≥ 2 and 𝑛 ≥ 𝑘 − 1 be integers. Then

𝑄
𝑘
(𝑛) = 2𝑃

𝑘
(𝑛) + 𝑘𝑃

𝑘
(𝑛 − 𝑘 + 1) . (5)

Proof (by induction on 𝑛). For 𝑛 = 𝑘 − 1 the result follows
immediately by the definitions of 𝑃

𝑘
(𝑛) and 𝑄

𝑘
(𝑛). Let 𝑛 ≥ 𝑘.

Assume that formula (5) is true for 𝑡 = 𝑘, 𝑘+1, . . . , 𝑛. We will
prove that 𝑄

𝑘
(𝑛 + 1) = 2𝑃

𝑘
(𝑛 + 1) + 𝑘𝑃

𝑘
(𝑛 − 𝑘 + 2).

By the induction hypothesis and the definitions of 𝑃
𝑘
(𝑛)

and 𝑄
𝑘
(𝑛), we have that

2𝑃
𝑘
(𝑛 + 1) + 𝑘𝑃

𝑘
(𝑛 − 𝑘 + 2)

= 2 [2𝑃
𝑘
(𝑛) + 𝑃

𝑘
(𝑛 − 𝑘 + 1)]

+ 𝑘 [2𝑃
𝑘
(𝑛 − 𝑘 + 1) + 𝑃

𝑘
(𝑛 − 2𝑘 + 2)]

= 2 [2𝑃
𝑘
(𝑛) + 𝑘𝑃

𝑘
(𝑛 − 𝑘 + 1)]

+ 2𝑃
𝑘
(𝑛 − 𝑘 + 1) + 𝑘𝑃

𝑘
(𝑛 − 2𝑘 + 2)

= 2𝑄
𝑘
(𝑛) + 𝑄

𝑘
(𝑛 − 𝑘 + 1) = 𝑄

𝑘
(𝑛 + 1) ,

(6)

which ends the proof.

For 𝑘 = 2 Theorem 3 gives the well-known relation
between the classical Pell numbers and the companion Pell
numbers; namely, 𝑄

𝑛
= 2(𝑃
𝑛
+ 𝑃
𝑛−1
).

Theorem 4. Let 𝑘 ≥ 2,𝑚 ≥ 1, and 𝑛 ≥ 0 be integers. Then

𝑃
𝑘
(𝑛) + 2

𝑚

∑

𝑖=1

𝑃
𝑘
(𝑛 + 𝑘𝑖 − 1) = 𝑃

𝑘
(𝑛 + 𝑘𝑚) , (7)

𝑄
𝑘
(𝑛) + 2

𝑚

∑

𝑖=1

𝑄
𝑘
(𝑛 + 𝑘𝑖 − 1) = 𝑄

𝑘
(𝑛 + 𝑘𝑚) . (8)
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Proof of (7) (by induction on𝑚). If 𝑚 = 1 then the equation
is obvious. Let 𝑚 ≥ 2. Assume that formula (7) is true for an
arbitrary𝑚. We will prove that 𝑃

𝑘
(𝑛)+2∑

𝑚+1

𝑖=1
𝑃
𝑘
(𝑛+ 𝑖𝑘−1) =

𝑃
𝑘
(𝑛 + (𝑚 + 1)𝑘).
By the induction hypothesis and the definition of 𝑃

𝑘
(𝑛)

we have

𝑃
𝑘
(𝑛) + 2

𝑚+1

∑

𝑖=1

𝑃
𝑘
(𝑛 + 𝑖𝑘 − 1)

= 𝑃
𝑘
(𝑛) + 2

𝑚

∑

𝑖=1

𝑃
𝑘
(𝑛 + 𝑖𝑘 − 1)

+ 2𝑃
𝑘
(𝑛 + (𝑚 + 1) 𝑘 − 1)

= 𝑃
𝑘
(𝑛 + 𝑚𝑘) + 2𝑃

𝑘
(𝑛 + (𝑚 + 1) 𝑘 − 1)

= 𝑃
𝑘
(𝑛 + (𝑚 + 1) 𝑘) ,

(9)

which ends the proof of (7).
In the same way we can prove the equality (8), so we omit

the proof.

If 𝑛 = 0 or 𝑛 = 1, respectively, then from Theorem 4 the
following follows.

Corollary 5. Let 𝑘 ≥ 2 and𝑚 ≥ 1 be integers. Then

2

𝑚

∑

𝑖=1

𝑃
𝑘
(𝑘𝑖 − 1) = 𝑃

𝑘
(𝑚𝑘) ,

2

𝑚

∑

𝑖=1

𝑃
𝑘
(𝑘𝑖) = 𝑃

𝑘
(𝑚𝑘 + 1) − 1,

2

𝑚

∑

𝑖=1

𝑄
𝑘
(𝑘𝑖 − 1) = 𝑄

𝑘
(𝑚𝑘) − 𝑘,

2

𝑚

∑

𝑖=1

𝑄
𝑘
(𝑘𝑖) = 𝑄

𝑘
(𝑚𝑘 + 1) − 2.

(10)

For 𝑘 = 2 we obtain the well-known identities for the
classical Pell numbers and the companion Pell numbers;
namely,

2

𝑚

∑

𝑖=1

𝑃
2𝑖−1

= 𝑃
2𝑚
,

2

𝑚

∑

𝑖=1

𝑃
2𝑖
= 𝑃
2𝑚+1

− 1,

2

𝑚

∑

𝑖=1

𝑄
2𝑖−1

= 𝑄
2𝑚
− 2,

2

𝑚

∑

𝑖=1

𝑄
2𝑖
= 𝑄
2𝑚+1

− 2.

(11)

Theorem 6. Let 𝑘 ≥ 2 and𝑚 = 0, 1, 2, . . . , 𝑘. Then

𝑃
𝑘
(𝑘 + 𝑚) = 2

𝑘+𝑚−1

+ 𝑚2
𝑚−1

, (12)

𝑄
𝑘
(𝑘 + 𝑚) = 2

𝑘+𝑚+1

+ 𝑘2
𝑚

+ 𝑚2
𝑚

. (13)

Proof of (12) (by induction on𝑚). If 𝑚 = 0 then the result is
obvious. Assume that 𝑃

𝑘
(𝑘 + 𝑚) = 2

𝑘+𝑚−1

+ 𝑚2
𝑚−1 for an

arbitrary 𝑚, such that 1 ≤ 𝑚 ≤ 𝑘 − 1. We will prove that
𝑃
𝑘
(𝑘 + 𝑚 + 1) = 2

𝑘+𝑚

+ (𝑚 + 1)2
𝑚.

By the induction hypothesis and the definition of 𝑃
𝑘
(𝑛),

we have

𝑃
𝑘
(𝑘 + 𝑚 + 1) = 2𝑃

𝑘
(𝑘 + 𝑚) + 𝑃

𝑘
(𝑚 + 1)

= 2 [2
𝑘+𝑚−1

+ 𝑚2
𝑚−1

] + 2
𝑚

= 2
𝑘+𝑚

+ (𝑚 + 1) 2
𝑚

,

(14)

which ends the proof.
In the same way we can prove the equality (13).

If 𝑚 = 0, 𝑚 = 1, or 𝑚 = 𝑘 − 1, respectively, then from
Theorem 6 we obtain the following corollary.

Corollary 7. Let 𝑘 ≥ 2. Then

𝑃
𝑘
(𝑘) = 2

𝑘−1

,

𝑃
𝑘
(𝑘 + 1) = 2

𝑘

+ 1,

𝑃
𝑘
(2𝑘 − 1) = 2

𝑘−2

(2
𝑘

+ 𝑘 − 1) ,

𝑄
𝑘
(𝑘) = 2

𝑘+1

+ 𝑘,

𝑄
𝑘
(𝑘 + 1) = 2

𝑘+2

+ 2𝑘 + 2,

𝑄
𝑘
(2𝑘 − 1) = 2

2𝑘

+ 2
𝑘−1

(2𝑘 − 1) .

(15)

Theorem 8. Let 𝑘 ≥ 2 and 𝑛 ≥ 2𝑘 − 1 be integers. Then

𝑃
𝑘
(𝑛) = (2

𝑘

+ 1) 𝑃
𝑘
(𝑛 − 𝑘) +

𝑘−1

∑

𝑖=1

2
𝑖

𝑃
𝑘
(𝑛 − 𝑘 − 𝑖) , (16)

𝑄
𝑘
(𝑛) = (2

𝑘

+ 1)𝑄
𝑘
(𝑛 − 𝑘) +

𝑘−1

∑

𝑖=1

2
𝑖

𝑄
𝑘
(𝑛 − 𝑘 − 𝑖) . (17)

Proof of (16) (by induction on 𝑛). For 𝑛 = 2𝑘 − 1 we have the
equation

𝑃
𝑘
(2𝑘 − 1) = (2

𝑘

+ 1) 𝑃
𝑘
(𝑘 − 1) +

𝑘−1

∑

𝑖=1

2
𝑖

𝑃
𝑘
(𝑘 − 1 − 𝑖) . (18)

By the initial conditions of the sequence𝑃
𝑘
(𝑛) andTheorem 6

we can see that this equation is an identity (because it is
equivalent to third identity from Corollary 7).

Let 𝑛 ≥ 2𝑘. Assume that formula (16) is true for
an arbitrary 𝑡 where 2𝑘 ≤ 𝑡 ≤ 𝑛. We will prove that



4 Journal of Applied Mathematics

𝑃
𝑘
(𝑛 + 1) = (2

𝑘

+ 1)𝑃
𝑘
(𝑛 + 1 − 𝑘) +∑

𝑘−1

𝑖=1
2
𝑖

𝑃
𝑘
(𝑛 + 1 − 𝑘 − 𝑖). By

the induction hypothesis and the definition of 𝑃
𝑘
(𝑛), we have

(2
𝑘

+ 1) 𝑃
𝑘
(𝑛 + 1 − 𝑘) +

𝑘−1

∑

𝑖=1

2
𝑖

𝑃
𝑘
(𝑛 + 1 − 𝑘 − 𝑖)

= (2
𝑘

+ 1) [2𝑃
𝑘
(𝑛 − 𝑘) + 𝑃

𝑘
(𝑛 + 1 − 2𝑘)]

+

𝑘−1

∑

𝑖=1

2
𝑖

[2𝑃
𝑘
(𝑛 − 𝑘 − 𝑖) + 𝑃

𝑘
(𝑛 + 1 − 2𝑘 − 𝑖)]

= 2 [(2
𝑘

+ 1) 𝑃
𝑘
(𝑛 − 𝑘) +

𝑘−1

∑

𝑖=1

2
𝑖

𝑃
𝑘
(𝑛 − 𝑘 − 𝑖)]

+ (2
𝑘

+ 1) 𝑃
𝑘
(𝑛 − 2𝑘 + 1)

+

𝑘−1

∑

𝑖=1

2
𝑖

𝑃
𝑘
(𝑛 + 1 − 2𝑘 − 𝑖)

= 2𝑃
𝑘
(𝑛) + 𝑃

𝑘
(𝑛 + 1 − 𝑘) = 𝑃

𝑘
(𝑛 + 1) ,

(19)

which ends the proof of (16). In the same way we can prove
(17) which completes the proof of the theorem.

If 𝑘 = 2 then from Theorem 8 we obtain the following
formula for the classical Pell numbers and companion Pell
numbers:

𝑃
𝑛
= 5𝑃
𝑛−2

+ 2𝑃
𝑛−3
,

𝑄
𝑛
= 5𝑄
𝑛−2

+ 2𝑄
𝑛−3
, 𝑛 ≥ 3.

(20)

3. (𝐴, 𝐵, 𝑘𝐶)-Coloured Graphs

For concepts not defined here see [10]. The numbers of the
Fibonacci type have many applications in distinct areas of
mathematics. There is a large interest of modern science
in the applications of the numbers of the Fibonacci type.
These numbers are studied intensively in a wide sense also
in graphs and combinatorials problem. In graphs Prodinger
and Tichy initiated studying the Fibonacci numbers and the
like. In [11] they showed the relations between the number of
independent sets inP

𝑛
and C

𝑛
with the Fibonacci numbers

and the Lucas numbers, whereP
𝑛
andC

𝑛
denote an 𝑛-vertex

path and an 𝑛-vertex cycle, respectively.This short paper gave
an impetus for counting problems related to the numbers
of the Fibonacci type. Many of these problems and results
are closely related with the Merrifield-Simmons index 𝜎(𝐺)
and the Hosoya index 𝑍(𝐺) in graphs; see [6, 12]. The Pell
numbers also have a graph interpretation. It is well-known
that 𝑍(P

𝑛
∘ 𝐾
1
) = 𝑃
𝑛+1

, where 𝐺 ∘ 𝐻 denotes the corona of
two graphs.

In this section we give a graph interpretation of the 𝑘-
distance Pell numbers with respect to special edge colouring
of a graph.

Let 𝐺 be a 3-edge coloured graph with the set of colours
{𝐴, 𝐵, 𝐶}. Let 𝑀 ∈ {𝐴, 𝐵, 𝐶}. We say that a path is 𝑀-
monochromatic if all its edges are coloured alike by colour
𝑀. By 𝑙(𝑀) we denote the length of the𝑀-monochromatic

path. For 𝑥𝑦 ∈ 𝐸(𝐺) notation𝑀(𝑥𝑦)means that the edge 𝑥𝑦
has the colour𝑀.

Let 𝑘 ≥ 1 be an integer. In the graph 𝐺 we define a
(𝐴, 𝐵, 𝑘𝐶)-edge colouring, such that 𝑙(𝐴) ≥ 0, 𝑙(𝐵) ≥ 0, and
𝑙(𝐶) = 𝑞𝑘, where 𝑞 ≥ 0 is an integer.

Theorem 9. Let 𝑘 ≥ 2 and 𝑛 ≥ 2 be integers. The number of
all (𝐴, 𝐵, 𝑘𝐶)-edge colouring of the graphP

𝑛
is equal to 𝑃

𝑘
(𝑛).

Proof. Let 𝑉(P
𝑛
) = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
} be the set of vertices

of a graph P
𝑛
with the numbering in the natural fashion.

Then 𝐸(P
𝑛
) = {𝑥

1
𝑥
2
, 𝑥
2
𝑥
3
, . . . , 𝑥

𝑛−1
𝑥
𝑛
}. Let 𝜎(𝑘, 𝑛) be the

number of all (𝐴, 𝐵, 𝑘𝐶)-edge colouring of the graphP
𝑛
. By

inspection we obtain that 𝜎(𝑘, 𝑛) = 𝑃
𝑘
(𝑛) for 𝑛 = 2, . . . , 𝑘 + 1.

Let 𝑛 ≥ 𝑘+2 and let 𝜎
𝐴
(𝑘, 𝑛), 𝜎

𝐵
(𝑘, 𝑛), and 𝜎

𝐶
(𝑘, 𝑛) denote

the number of (𝐴, 𝐵, 𝑘𝐶)-edge colouring of the graph P
𝑛
,

with 𝐴(𝑥
𝑛−1
𝑥
𝑛
), 𝐵(𝑥

𝑛−1
𝑥
𝑛
), and 𝐶(𝑥

𝑛−1
𝑥
𝑛
), respectively. It is

obvious that 𝜎
𝐴
(𝑘, 𝑛) = 𝜎

𝐵
(𝑘, 𝑛).

Clearly 𝜎
𝐴
(𝑘, 𝑛) and 𝜎

𝐵
(𝑘, 𝑛) are equal to the number of

all (𝐴, 𝐵, 𝑘𝐶)-edge colouring of the graph P
𝑛−1

and 𝜎
𝐶
(𝑘, 𝑛)

is equal to the number of all (𝐴, 𝐵, 𝑘𝐶)-edge colouring of
the graph P

𝑛−𝑘
. In the other words 𝜎

𝐴
(𝑘, 𝑛) = 𝜎(𝑘, 𝑛 − 1),

𝜎
𝐵
(𝑘, 𝑛) = 𝜎(𝑘, 𝑛 − 1), and 𝜎

𝐶
(𝑘, 𝑛) = 𝜎(𝑘, 𝑛 − 𝑘). Since

𝜎 (𝑘, 𝑛) = 𝜎
𝐴
(𝑘, 𝑛) + 𝜎

𝐵
(𝑘, 𝑛) + 𝜎

𝐶
(𝑘, 𝑛) , (21)

then we have 𝜎(𝑘, 𝑛) = 2𝜎(𝑘, 𝑛 − 1) +𝜎(𝑘, 𝑛 − 𝑘). By the initial
conditions we have that 𝜎(𝑘, 𝑛) = 𝑃

𝑘
(𝑛), for all 𝑛 ≥ 2, which

ends the proof.

Corollary 10. Let 𝑛 ≥ 2 be integer. The number of all
(𝐴, 𝐵, 2𝐶)-edge colouring of the graphP

𝑛
is equal to 𝑃

𝑛
.

Using the concept of (𝐴, 𝐵, 𝑘𝐶)-edge colouring of the
graph P

𝑛
we can obtain the direct formula for the numbers

𝑃
𝑘
(𝑛) and 𝑄

𝑘
(𝑛).

Let 𝑘 ≥ 1, 𝑛 ≥ 2, and 0 ≤ 𝑡 ≤ [(𝑛 − 1)/𝑘] be integers
and let 𝑝

𝑘
(𝑛, 𝑡) be the number of (𝐴, 𝐵, 𝑘𝐶)-edge colouring of

graph P
𝑛
, such that 𝐶-monochromatic path appears in this

colouring exactly 𝑡 times. In the other words 𝑡𝑘 edges of P
𝑛

have colour 𝐶.

Theorem 11. Let 𝑛 ≥ 2 and 0 ≤ 𝑡 ≤ 𝑛 − 1 be integers. Then
𝑝
1
(𝑛, 𝑡) = (

𝑛−1

𝑡
) 2
𝑛−1−𝑡.

Proof. Since P
𝑛
has 𝑛 − 1 edges, then for 𝑡 = 0, 1, 2, . . . we

obtain that

𝑝
1
(𝑛, 0) = 2

𝑛−1

,

𝑝
1
(𝑛, 1) = (

𝑛 − 1

1
) 2
𝑛−2

,

𝑝
1
(𝑛, 2) = (

𝑛 − 1

2
) 2
𝑛−3

, . . . ,

(22)

and so 𝑝
1
(𝑛, 𝑡) = (

𝑛−1

𝑡
) 2
𝑛−1−𝑡.

Theorem 12. Let 𝑘 ≥ 1, 𝑛 ≥ 2, and 0 ≤ 𝑡 ≤ [(𝑛 − 1)/𝑘]

be integers. Then for all 𝑠 = 0, 1, 2, . . . , 𝑘 − 1 holds 𝑝
𝑘
(𝑛, 𝑡) =

𝑝
𝑘−𝑠
(𝑛 − 𝑡𝑠, 𝑡).
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Proof. Consider the graph P
𝑛

with the (𝐴, 𝐵, 𝑘𝐶)-edge
colouring. By contracting the 𝐶-monochromatic paths of
length 𝑘 to the𝐶-monochromatic paths of length 𝑘−𝑠we can
see that the number of (𝐴, 𝐵, 𝑘𝐶)-edge colouring of graphP

𝑛
,

such that 𝐶-monochromatic path appears in this colouring
exactly 𝑡 times is equal to the number of (𝐴, 𝐵, (𝑘 − 𝑠)𝐶)-edge
colouring of graph P

𝑛−𝑡𝑠
, such that 𝐶-monochromatic path

appears in this colouring exactly 𝑡 times and the Theorem
follows.

If 𝑠 = 𝑘−1 or 𝑠 = 𝑘−2 thenTheorem 12 gives the following
result.

Corollary 13. Let 𝑘 ≥ 1, 𝑛 ≥ 2, and 0 ≤ 𝑡 ≤ [(𝑛 − 1)/𝑘] be
integers. Then

𝑝
𝑘
(𝑛, 𝑡) = 𝑝

1
(𝑛 − 𝑡 (𝑘 − 1) , 𝑡) , (23)

𝑝
𝑘
(𝑛, 𝑡) = 𝑝

2
(𝑛 − 𝑡 (𝑘 − 2) , 𝑡) . (24)

By (23) and Theorem 11 we obtain the direct formula for
𝑝
𝑘
(𝑛, 𝑡).

Corollary 14. Let 𝑘 ≥ 1, 𝑛 ≥ 2, 0 ≤ 𝑡 ≤ [(𝑛−1)/𝑘] be integers.
Then

𝑝
𝑘
(𝑛, 𝑡) = (

𝑛 − 1 − (𝑘 − 1) 𝑡

𝑡
) 2
𝑛−1−𝑘𝑡

. (25)

Moreover Theorem 9 immediately gives that

∑

𝑡≥0

𝑝
𝑘
(𝑛, 𝑡) = 𝜎 (𝑘, 𝑛) = 𝑃

𝑘
(𝑛) . (26)

Using (26) and Corollary 14 we can give the direct
formula for the number 𝑃

𝑘
(𝑛).

Theorem 15. Let 𝑘 ≥ 2 and 𝑛 ≥ 1 be integers. Then

𝑃
𝑘
(𝑛) =

[(𝑛−1)/𝑘]

∑

𝑖=0

(
𝑛 − 1 − (𝑘 − 1) 𝑖

𝑖
) 2
𝑛−1−𝑘𝑖

. (27)

If 𝑘 = 2 then we obtain the direct formula for the classical
Pell numbers of the form

𝑃
𝑛
=

[(𝑛−1)/2]

∑

𝑖=0

(
𝑛 − 1 − 𝑖

𝑖
) 2
𝑛−1−2𝑖

=

[(𝑛−1)/2]

∑

𝑖=0

(
𝑛

2𝑖 + 1
) 2
𝑖

. (28)

FromTheorems 3 and 15 follows the direct formula for the
sequence 𝑄

𝑘
(𝑛).

Theorem 16. Let 𝑘 ≥ 2 and 𝑛 ≥ 1 be integers. Then

𝑄
𝑘
(𝑛) = 2

[(𝑛−1)/𝑘]

∑

𝑖=0

(
𝑛 − 1 − (𝑘 − 1) 𝑖

𝑖
) 2
𝑛−1−𝑘𝑖

+ 𝑘

[(𝑛−𝑘)/𝑘]

∑

𝑖=0

(
𝑛 − 𝑘 − (𝑘 − 1) 𝑖

𝑖
) 2
𝑛−𝑘−𝑘𝑖

.

(29)

If 𝑘 = 2 then using the above theorem and after some
calculations we obtain that

𝑄
𝑛
= 2(

[(𝑛−1)/2]

∑

𝑖=0

(
𝑛 − 1 − 𝑖

𝑖
) 2
𝑛−1−2𝑖

+

[(𝑛−2)/2]

∑

𝑖=0

(
𝑛 − 2 − 𝑖

𝑖
) 2
𝑛−2−2𝑖

) .

(30)

Now we give the recurrence relation for the number
𝑝
𝑘
(𝑛, 𝑘).

Theorem 17. Let 𝑘 ≥ 1, 𝑛 ≥ 𝑘 + 2, and 0 ≤ 𝑡 ≤ [(𝑛 − 1)/𝑘] be
integers. Then

𝑝
𝑘
(𝑛, 𝑡) = 2𝑝

𝑘
(𝑛 − 1, 𝑡) + 𝑝

𝑘
(𝑛 − 𝑘, 𝑡 − 1) . (31)

Proof. Let 𝑉(P
𝑛
) = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
} be the set of vertices of

a graphP
𝑛
with the numbering in the natural fashion. Then

𝐸(P
𝑛
) = {𝑥

1
𝑥
2
, 𝑥
2
𝑥
3
, . . . , 𝑥

𝑛−1
𝑥
𝑛
}.

Let 𝑝𝐴
𝑘
(𝑛, 𝑡), 𝑝𝐵

𝑘
(𝑛, 𝑡), and 𝑝

𝐶

𝑘
(𝑛, 𝑡) denote the number

of (𝐴, 𝐵, 𝑘𝐶)-edge colouring of the graph P
𝑛
, such that 𝐶-

monochromatic path appears in this colouring exactly 𝑡 times
with 𝐴(𝑥

𝑛−1
𝑥
𝑛
), 𝐵(𝑥

𝑛−1
𝑥
𝑛
), and 𝐶(𝑥

𝑛−1
𝑥
𝑛
), respectively.

It can be easily seen that both 𝑝𝐴
𝑘
(𝑛, 𝑡) and 𝑝𝐵

𝑘
(𝑛, 𝑡) are

equal to the number of all (𝐴, 𝐵, 𝑘𝐶)-edge colouring of the
graphP

𝑛−1
, such that𝐶-monochromatic path appears in this

colouring exactly 𝑡 times and 𝑝𝐶
𝑘
(𝑛, 𝑡) is equal to the number

of all (𝐴, 𝐵, 𝑘𝐶)-edge colouring of the graphP
𝑛−𝑘

, such that
𝐶-monochromatic path appears in this colouring exactly 𝑡−1
times. In the other words 𝑝𝐴

𝑘
(𝑛, 𝑡) = 𝑝

𝑘
(𝑛 − 1, 𝑡), 𝑝𝐵

𝑘
(𝑛, 𝑡) =

𝑝
𝑘
(𝑛 − 1, 𝑡), and 𝑝𝐶

𝑘
(𝑘, 𝑛) = 𝑝

𝑘
(𝑛 − 𝑘, 𝑡 − 1). Since

𝑝
𝑘
(𝑛, 𝑡) = 𝑝

𝐴

𝑘
(𝑛, 𝑡) + 𝑝

𝐵

𝑘
(𝑛, 𝑡) + 𝑝

𝐶

𝑘
(𝑛, 𝑡) , (32)

so the result immediately follows.

By (24) and byTheorem 17 we obtain the following.

Corollary 18. Let 𝑘 ≥ 1, 𝑛 ≥ 𝑘 + 2, and 0 ≤ 𝑡 ≤ [(𝑛 − 1)/𝑘] be
integers. Then

𝑝
𝑘
(𝑛, 𝑡) = 2𝑝

2
(𝑛 − 𝑡 (𝑘 − 2) − 1, 𝑡)

+ 𝑝
2
(𝑛 − 𝑡 (𝑘 − 2) − 𝑘, 𝑡 − 1) .

(33)

Using (26) and Corollary 18 we have the following.

Corollary 19. Let 𝑘 ≥ 2, 𝑛 ≥ 𝑘 + 2, and 0 ≤ 𝑡 ≤ [(𝑛 − 1)/𝑘] be
integers. Then

𝑃
𝑘
(𝑛) =

[(𝑛−1)/𝑘]

∑

𝑡=0

(2𝑝
2
(𝑛 − 𝑡 (𝑘 − 2) − 1, 𝑡)

+ 𝑝
2
(𝑛 − 𝑡 (𝑘 − 2) − 𝑘, 𝑡 − 1)) .

(34)

Now we consider the (𝐴, 𝐵, 𝑘𝐶)-edge colouring of the
cycleC

𝑛
with the numbering of edges in the natural fashion.

For explanation for cycle C
4
with 𝐸(C

4
) = {𝑒

1
, 𝑒
2
, 𝑒
3
, 𝑒
4
}

there are two distinct (𝐴, 𝐵, 2𝐶)-edge colouring using only
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colour 𝐶. The first (𝐴, 𝐵, 2𝐶)-edge colouring gives a partition
of the set𝐸(C

4
) = {𝑒

1
, 𝑒
2
}∪{𝑒
3
, 𝑒
4
} and the second (𝐴, 𝐵, 2𝐶)-

edge colouring gives a partition 𝐸(C
4
) = {𝑒

2
, 𝑒
3
} ∪ {𝑒
4
, 𝑒
1
}.

Let 𝜌(𝑘, 𝑛) be the number of all (𝐴, 𝐵, 2𝐶)-edge colouring
of the cycleC

𝑛
.

Theorem 20. Let 𝑘 ≥ 2 and 𝑛 ≥ 3 be integers. The number of
all (𝐴, 𝐵, 𝑘𝐶)-edge colouring of the cycleC

𝑛
is equal to 𝑄

𝑘
(𝑛).

Proof. Let 𝑉(C
𝑛
) = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
} be the set of vertices of

a graph C
𝑛
with the numbering in the natural fashion. Then

𝐸(C
𝑛
) = {𝑥

1
𝑥
2
, 𝑥
2
𝑥
3
, . . . , 𝑥

𝑛−1
𝑥
𝑛
, 𝑥
𝑛
𝑥
1
}.

It is easy to check that 𝜌(𝑘, 𝑛) = 𝑄
𝑘
(𝑛) for 𝑛 = 3, . . . , 𝑘.

Let 𝑛 ≥ 𝑘+1 and let 𝜌
𝐴
(𝑘, 𝑛), 𝜌

𝐵
(𝑘, 𝑛), and 𝜌

𝐶
(𝑘, 𝑛) denote

the number of (𝐴, 𝐵, 𝑘𝐶)-edge colouring of the cycleC
𝑛
with

𝐴(𝑥
𝑛
𝑥
1
), 𝐵(𝑥

𝑛
𝑥
1
), and 𝐶(𝑥

𝑛
𝑥
1
), respectively.

It can be easily seen that 𝜌
𝐴
(𝑘, 𝑛) and 𝜌

𝐵
(𝑘, 𝑛) are equal

to the number of all (𝐴, 𝐵, 𝑘𝐶)-edge colouring of the graph
P
𝑛
and 𝜌
𝐶
(𝑘, 𝑛) is equal to the number of all (𝐴, 𝐵, 𝑘𝐶)-edge

colouring of the graphP
𝑛−𝑘+1

multiplied by 𝑘. ByTheorem 9
we have 𝜌

𝐴
(𝑘, 𝑛) = 𝑃

𝑘
(𝑛), 𝜌
𝐵
(𝑘, 𝑛) = 𝑃

𝑘
(𝑛), and 𝜌

𝐶
(𝑘, 𝑛) =

𝑘𝑃
𝑘
(𝑛 − 𝑘 + 1). Since

𝜌 (𝑘, 𝑛) = 𝜌
𝐴
(𝑘, 𝑛) + 𝜌

𝐵
(𝑘, 𝑛) + 𝜌

𝐶
(𝑘, 𝑛) , (35)

then we have 𝜌(𝑘, 𝑛) = 2𝑃
𝑘
(𝑛) + 𝑘𝑃

𝑘
(𝑛 − 𝑘 + 1) and so by

Theorem 3 we have 𝜌(𝑘, 𝑛) = 𝑄
𝑘
(𝑛) for all 𝑛 ≥ 3.

Corollary 21. Let 𝑛 ≥ 3 be an integer. Then the number of all
(𝐴, 𝐵, 2𝐶)-edge colouring of the cycleC

𝑛
is equal to 𝑄

𝑛
, 𝑛 ≥ 3.

4. Concluding Remarks

The interpretation of the generalized Pell numbers with
respect to (𝐴, 𝐵, 𝑘𝐶)-colouring of a 3-edge coloured graph
gives a motivation for studying this type of colouring in
graphs. For an arbitrary 𝑘 ≥ 2 this problem seems to be
difficult and more interesting results can be obtained for
special value of 𝑘 (e.g., if we study (𝐴, 𝐵, 2𝐶)-colouring in
graphs). In the class of trees some interesting results can be
obtained.
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