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Banach-Saks type is calculated for two types of Banach sequence spaces and Gurarǐı modulus of convexity is estimated from above
for the spaces of one type among them.

1. Introduction

Recently, there has been a lot of interest in investigating
geometric properties of sequence spaces besides topological
and some other usual properties. In the literature, there are
many papers concerning geometric properties of various
Banach sequence spaces. For example, geometry of Orlicz
spaces and of Musielak-Orlicz spaces has been studied in [1–
25]. Several authors including Cui and Hudzik [26–29], Cui
and Meng [30], Suantai [31], and Lee [32] investigated the
geometric properties of Cesàro sequence space ces(𝑝). Also
Cesàro-Orlicz sequence spaces equipped with Luxemburg
norm have been studied in [5, 33–36]. Additionally, geometry
of Orlicz-Lorentz sequence spaces and of generalized Orlicz-
Lorentz sequence space were studied in [37, 38]. Further-
more, Mursaleen et al. [39] studied some geometric proper-
ties of normed Euler sequence space. Additionally, Hudzik
and Narloch [40] have studied relationships between mono-
tonicity and complex rotundity properties with some conse-
quences. Besides, some geometrical properties of Calderon-
Lozanovskii sequence spaces have been investigated in [41–
43].

Quite recently, Karakaya [20] defined a new sequence
space involving lacunary sequence space equipped with the
Luxemburg norm and studied Kadec-Klee (𝐻) and rotundity

(𝑅) properties of these spaces. Further information on topo-
logical and geometric properties of sequence spaces can be
found in [39, 44–62].

Let 𝑋 be a real Banach space and 𝑆(𝑋) and 𝐵(𝑋) be the
unit sphere and the unit ball of 𝑋, respectively. Let ℓ

0, 𝑐
0
, 𝑐,

ℓ
∞
, and ℓ

1
be the spaces of all real sequences, null, convergent,

and bounded sequences and absolutely convergent series,
respectively, and let 𝑐

00
be the space of those real sequences

which have only a finite number of nonzero coordinates and
ℓ
𝑝

= {𝑥 = 𝑥(𝑖) : ∑
∞

𝑖=1
|𝑥(𝑖)|𝑝 < ∞}.

Note that 𝑐
0
, 𝑐, and ℓ

∞
are Banach spaces with the sup-

norm ‖𝑥‖
∞

= sup
𝑖
|𝑥(𝑖)| and ℓ

𝑝
(1 ≤ 𝑝 < ∞) are Banach

spaces with the norm ‖𝑥‖
𝑝

= (∑ |𝑥(𝑖)|
𝑝
)
1/𝑝, while 𝑐

00
is not a

Banach space with respect to any norm.
Let us recall that a sequence {V(𝑖)}∞

𝑖=1
in a Banach space 𝑋

is called 𝑆𝑐ℎ𝑎𝑢𝑑𝑒𝑟 𝑏𝑎𝑠𝑖𝑠 of 𝑋 (or 𝑏𝑎𝑠𝑖𝑠 for short) if for each
𝑥 ∈ 𝑋 there exists a unique sequence {𝜆(𝑖)}

∞

𝑖=1
of scalars such

that 𝑥 = ∑
∞

𝑖=1
𝜆(𝑖)V(𝑖), that is, lim

𝑛→∞
∑
𝑛

𝑖=1
𝜆(𝑖)V(𝑖) = 𝑥.

A sequence space 𝑋 with a linear topology is called a 𝐾-
𝑠𝑝𝑎𝑐𝑒 if each of the projection maps 𝑃

𝑗
: 𝑋 → C defined

by 𝑃
𝑗
(𝑥) = 𝑥(𝑖) for 𝑥 = (𝑥(𝑖))

∞

𝑖=1
∈ 𝑋 is continuous for each

natural 𝑗. A 𝐹𝑟 ́𝑒𝑐ℎ𝑒𝑡 𝑠𝑝𝑎𝑐𝑒 is a complete metric linear space
and themetric is generated by an𝐹-norm and a Fréchet space
which is a𝐾-space is called an 𝐹𝐾-𝑠𝑝𝑎𝑐𝑒; that is, a𝐾-space𝑋
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is called an 𝐹𝐾-space if 𝑋 is a complete linear metric space.
In other words, 𝑋 is an 𝐹𝐾-space if 𝑋 is a Fréchet space with
continuous coordinate projections. All the sequence spaces
mentioned above are 𝐹𝐾 spaces except the space 𝑐

00
.

An 𝐹𝐾-space 𝑋 which contains the space 𝑐
00

is said to
have the 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝐴𝐾 if, for every sequence {𝑥(𝑖)} ∈ 𝑋, 𝑥 =

∑
∞

𝑖=1
𝑥(𝑖)𝑒(𝑖), where 𝑒(𝑖) = (0, 0, . . . , 1(𝑖th-place), 0, 0, . . .).

The spaces 𝑐
0
equipped with the sup-norm, ℓ

𝑝
(1 ≤ 𝑝 <

∞) equipped with the norm ‖𝑥‖ = (∑
∞

𝑖=1
|𝑥(𝑖)|
𝑝
)
1/𝑝 and ℓ

0

endowed with the metric 𝑑(𝑥, 𝑦) = ∑
∞

𝑖=1
2−𝑖(|𝑥(𝑖) − 𝑦(𝑖)|/(1 +

|𝑥(𝑖) − 𝑦(𝑖)|)) have property 𝐴𝐾, while 𝑐 and ℓ
∞

do not have
property 𝐴𝐾. Banach spaces with continuous coordinate
projections are called 𝐵𝐾-spaces.

A Banach space 𝑋 is said to be a 𝐾 ̈𝑜𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑠𝑝𝑎𝑐𝑒

(see [28, 63]) if 𝑋 is a subspace of ℓ0 such that

(i) if 𝑥 ∈ ℓ0, 𝑦 ∈ 𝑋, and |𝑥(𝑖)| ≤ |𝑦(𝑖)|, for all 𝑖 ∈ N, then
𝑥 ∈ 𝑋 and ‖𝑥‖ ≤ ‖𝑦‖;

(ii) there exists an element 𝑥 ∈ 𝑋 such that 𝑥(𝑖) > 0 for
all 𝑖 ∈ N.

We say that 𝑥 ∈ 𝑋 is order continuous if, for any sequence
(𝑥
𝑛
) in 𝑋

+
(the positive cone in 𝑋) such that 𝑥

𝑛
(𝑖) ≤ |𝑥(𝑖)|

and 𝑥
𝑛
(𝑖) → 0 (𝑛 → ∞) for each 𝑖 ∈ N(𝑛 → ∞), we have

‖𝑥
𝑛
‖ → 0 (𝑛 → ∞) holds.
A Köthe sequence space 𝑋 is said to be order continuous

that if all sequences in𝑋 are order continuous. It is easy to see
that𝑥 ∈ 𝑋 is order continuous if and only if ‖(0, 0, . . . , 0, 𝑥(𝑛+

1), 𝑥(𝑛 + 2), . . .)‖ → 0 as 𝑛 → ∞.
A Köthe sequence space 𝑋 is said to have the

𝐹𝑎𝑡𝑜𝑢 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 if, for any real sequence 𝑥 ∈ ℓ
0 and

any {𝑥
𝑛
} in 𝑋 such that 𝑥

𝑛
↑ 𝑥 coordinatewisely and

sup
𝑛
‖𝑥
𝑛
‖ < ∞, we have the fact that 𝑥 ∈ 𝑋 and ‖𝑥

𝑛
‖ → ‖𝑥‖.

A Banach space 𝑋 is said to have the 𝐵𝑎𝑛𝑎𝑐ℎ-
𝑆𝑎𝑘𝑠 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 if every bounded sequence {𝑥

𝑛
} in𝑋 admits a

subsequence {𝑧
𝑛
} such that the sequence {𝑡

𝑘
(𝑧)} is convergent

in 𝑋 with respect to the norm, where

𝑡
𝑘
(𝑧) =

1

𝑘
(𝑧
1
+ 𝑧
2
+ ⋅ ⋅ ⋅ + 𝑧

𝑘
) , ∀𝑘 ∈ N. (1)

A Banach space 𝑋 is said to have the 𝑤𝑒𝑎𝑘 𝐵𝑎𝑛𝑎𝑐ℎ-𝑆𝑎𝑘𝑠
𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 whenever given any weakly null sequence {𝑥

𝑛
} in

𝑋 there exists its subsequence {𝑧
𝑛
} such that the sequence

{𝑡
𝑘
(𝑧)} converges to zero strongly.
Given any 𝑝 ∈ (1,∞), we say that a Banach space (𝑋,

‖ ⋅ ‖) has the 𝐵𝑎𝑛𝑎𝑐ℎ-𝑆𝑎𝑘𝑠 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑝 if there exists
a constant 𝑐 > 0 such that every weakly null sequence {𝑥

𝑘
}

has a subsequence {𝑥
𝑘ℓ

} such that (see [22])
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑
ℓ=1

𝑥
𝑘ℓ

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑐𝑛
1/𝑝

(∀𝑛 ∈ N) . (2)

The Banach-Saks property of type 𝑝 ∈ (1,∞) and the weak
Banach-Saks property for Cesàro sequence spaces have been
considered in [28]. These properties and stronger property
(𝑆
𝑝
) for Musielak-Orlicz and Nakano sequence spaces have

been studied in [17].
We say that a Banach space𝑋 has the𝑤𝑒𝑎𝑘 𝑓𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡

𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 if every nonexpansive self-mapping defined on

a nonempty weakly compact convex subset𝐴 of𝑋 has a fixed
point in 𝐴.

In [64], Garcia-Falset introduced the following coefficient
for a Banach space (𝑋, ‖ ⋅ ‖):

𝑅 (𝑋) = sup {lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 : 𝑥 ∈ 𝐵 (𝑋) ,

{𝑥
𝑛
} ⊂ 𝐵 (𝑋) , 𝑥

𝑛
󳨀→ 0 weakly}

(3)

and he proved (see [64, 65]) that a Banach space 𝑋 with
𝑅(𝑋) < 2 has the weak fixed point property.

Clarkson 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝑐𝑜𝑛V𝑒𝑥𝑖𝑡𝑦 of a normed space
(𝑋, ‖ ⋅ ‖) is defined (see Clarkson [66] and Day [67]) by the
formula

𝛿
𝑋 (𝜀)

= inf {1 −

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2
; 𝑥, 𝑦 ∈ 𝑆 (𝑋) ,

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 = 𝜀}

(4)

for any 𝜀 ∈ [0, 2]. The inequality 𝛿
𝑋
(𝜀) > 0 for all 𝜀 ∈ (0, 2]

characterizes the uniform convexity of 𝑋 and the equality
𝛿
𝑋
(2) = 1 characterizes strict convexity (=rotundity) of 𝑋.
The Gurarǐı modulus of convexity of a normed space𝑋 is

defined (see [68, 69]) by

𝛽
𝑋

(𝜀) = inf {1 − inf
𝛼∈[0,1]

󵄩󵄩󵄩󵄩𝛼𝑥 + (1 − 𝛼) 𝑦
󵄩󵄩󵄩󵄩 ;

𝑥, 𝑦 ∈ 𝑆 (𝑋) ,
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 = 𝜀}

(5)

for any 𝜀 ∈ [0, 2]. It is obvious that 𝛿
𝑋
(𝜀) ≤ 𝛽

𝑋
(𝜀) for any

Banach space 𝑋 and any 𝜀 ∈ [0, 2]. It is also known that
𝛽
𝑋
(𝜀) ≤ 2𝛿

𝑋
(𝜀) for any 𝜀 ∈ [0, 2] and that 𝑋 is rotund if and

only if 𝛽
𝑋
(𝜀) = 2 and as well as that 𝑋 is uniformly convex if

and only if 𝛽
𝑋
(𝜀) > 0 for any 𝜀 ∈ [0, 2]. Gurarǐı [68] proved

that if 𝑋 = 𝑐
0
is renormed by the norm

‖𝑥‖ = ‖𝑥‖∞ + (∑
𝑛=0

(
𝑃𝑥
𝑛

2𝑛
)
2

)

1/2

, ∀ {𝑥
𝑛
} ∈ 𝑐
0
, (6)

then 𝛽
𝑋
(𝜀) = 0 for any 𝜀 ∈ [0, 2) and 𝛽

𝑋
(2) = 1.

Gurarǐı and Sozonov [70] proved that a normed linear
space (𝑋, ‖ ⋅ ‖) is an inner product space if and only if, for
every 𝑥, 𝑦 ∈ 𝑆(𝑋)

inf
𝛼∈[0,1]

󵄩󵄩󵄩󵄩𝛼𝑥 + (1 − 𝛼) 𝑦
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2
. (7)

Zanco and Zucchi [71] showed an example of a normed space
𝑋 with 𝛿

𝑋
(2) ̸= 𝛽

𝑋
(2).

Now, we will define Köthe sequence spaces 𝑚(𝜙, 𝑝) and
ℓ
𝑝
(𝑢, V) that will be considered in this paper.
Let C denote the set whose elements are finite sets of

distinct positive integers. Given any element 𝜎 of C, we
denote by 𝑐(𝜎) the sequence {𝑐

𝑛
(𝜎)} such that 𝑐

𝑛
(𝜎) = 1 for

𝑛 ∈ 𝜎, and 𝑐
𝑛
(𝜎) = 0 otherwise. Further, we define

C
𝜏
= {𝜎 ∈ C :

∞

∑
𝑛=1

𝑐
𝑛 (𝜎) ≤ 𝜏} ; (8)
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that is,C
𝜏
is the set of those 𝜎 whose support has cardinality

at most 𝜏. Let us define

Φ = {𝜙 = {𝜙
𝑛
}
∞

𝑛=1
∈ ℓ
0
: 𝜙
1
> 0,

Δ𝜙
𝑘

≥ 0, Δ(
𝜙
𝑘

𝑘
) ≤ 0, ∀𝑘 ∈ N} ,

(9)

where Δ𝜙
𝑛

= 𝜙
𝑛
− 𝜙
𝑛−1

.
Given any 𝜙 ∈ Φ, we define the following sequence space,

introduced in [55]:

𝑚(𝜙)

= {𝑥 = {𝑥
𝑛
}
∞

𝑛=1
∈ ℓ
0
: sup
𝜏≥1

( sup
𝜎∈C𝜏

(
1

𝜙
𝜏

∑
𝑛∈𝜎

󵄨󵄨󵄨󵄨𝑥𝑛
󵄨󵄨󵄨󵄨)) < ∞} .

(10)

Sargent [55] established the relationship of this space to the
space ℓ

𝑝
(1 ≤ 𝑝 ≤ ∞) and characterized some matrix

transformations. In [49], matrix classes (𝑋,𝑚(𝜙)) have been
characterized, where 𝑋 is assumed to be any 𝐹𝐾-space.

Recently in [52], some of the geometric properties of𝑚(𝜙)

have been investigated. In [61], Tripathy and Sen extended the
space 𝑚(𝜙) to 𝑚(𝜙, 𝑝) as follows:

𝑚(𝜙, 𝑝)

:= {𝑥 = {𝑥
𝑛
}
∞

𝑛=1
∈ ℓ
0
: sup
𝜏≥1

( sup
𝜎∈C𝜏

(
1

𝜙
𝜏

∑
𝑛∈𝜎

󵄨󵄨󵄨󵄨𝑥𝑛
󵄨󵄨󵄨󵄨
𝑝
)) < ∞} ,

(11)

for 𝜙 ∈ Φ and 𝑝 > 0.
It has been proved in [61] that, for 1 ≤ 𝑝 < ∞, 𝑚(𝜙, 𝑝) is

a Banach space if it is endowed with the norm

‖𝑥‖𝑚(𝜙,𝑝) = sup
𝜏≥1

( sup
𝜎∈C𝜏

(
1

𝜙
𝜏

∑
𝑛∈𝜎

󵄨󵄨󵄨󵄨𝑥𝑛
󵄨󵄨󵄨󵄨
𝑝
)

1/𝑝

) , (12)

and that one has the following.
(i) If 𝜙

𝑛
= 1, for all 𝑛 ∈ N, then 𝑚(𝜙, 𝑝) = ℓ

𝑝
. Moreover,

ℓ
𝑝

⊆ 𝑚(𝜙, 𝑝) ⊆ ℓ
∞
.

(ii) If 𝑝 = 1, then 𝑚(𝜙, 𝑝) = 𝑚(𝜙). Also, for any 𝑝 ≥

1,𝑚(𝜙) ⊆ 𝑚(𝜙, 𝑝).
(iii) 𝑚(𝜙, 𝑝) ⊆ 𝑚(𝜓, 𝑝) if and only if sup

𝜏≥1
(𝜙
𝜏
/𝜓
𝜏
) < ∞.

It is easy to see that 𝑚(𝜙, 𝑝) is a Köthe sequence space,
indeed a 𝐵𝐾-space with respect to its natural norm (see [55]).
Note that throughout the present paper we will study the
space 𝑚(𝜙, 𝑝) except the case 𝜙

𝑛
= 𝑛, for which it is reduced

to the space ℓ∞.
Now we will introduce the space ℓ

𝑝
(𝑢, V). Let 𝑢 = {𝑢

𝑛
}
∞

𝑛=0

and let V = {V
𝑛
}
∞

𝑛=0
be arbitrary real sequences with all

coordinates 𝑢
𝑘
and V

𝑘
different from zero and let, for any

𝑝 ∈ [1,∞),

ℓ
𝑝 (𝑢, V)

= {𝑥 = {𝑥
𝑘
}
∞

𝑘=1
:

∞

∑
𝑛=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑘=1

𝑢
𝑛
V
𝑘
𝑥 (𝑘)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

< ∞} .
(13)

It is obvious that this is a linear space. It is known (see [48])
that the functional

‖𝑥‖ℓ𝑝(𝑢,V) = (∑
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑘=1

𝑢
𝑛
V
𝑘
𝑥 (𝑘)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

)

1/𝑝

(14)

is a norm in ℓ
𝑝
(𝑢, V) and that the couple (ℓ

𝑝
(𝑢, V), ‖ ⋅ ‖

ℓ𝑝(𝑢,V)) is
a Banach space.The space ℓ

𝑝
(𝑢, V) is a generalization of three

spaces. Namely, one has the following.

(i) If (V
𝑘
) = (1, 1, 1, . . .) and (𝑢

𝑛
) = (1/𝑛), then ℓ

𝑝
(𝑢, V)

is the Cesáro sequence space 𝑋
𝑝
of nonabsolute type

(see [32]) and ‖𝑥‖
ℓ𝑝(𝑢,V) = ‖𝑥‖

𝑋𝑝
.

(ii) Let {𝑝
𝑛
} be a real sequence with 𝑝

1
> 0 and 𝑝

𝑛
̸= 0

for all 𝑛 ∈ N. If (V
𝑘
) = {𝑝

𝑘
} and (𝑢

𝑛
) = (1/𝑄

𝑛
),

where 𝑄
𝑛

= 𝑝
1

+ 𝑝
2

+ ⋅ ⋅ ⋅ + 𝑝
𝑛
for any 𝑛 ∈ N.

Then we obtain that ℓ
𝑝
(𝑢, V) is the Riesz sequence

space of nonabsolute type denoted by 𝛾𝑝(V) and that
‖𝑥‖
ℓ𝑝(𝑢,V) = ‖𝑥‖

𝛾
𝑝
(V) (see [44]).

(iii) Let {𝑝
𝑛
} be a real sequence with 𝑝

1
> 0 and 𝑝

𝑛
̸= 0,

for all 𝑛 ∈ N, 𝑛 ≥ 2. If (V
𝑘
) = (𝑝

𝑛−𝑘+1
) and (𝑢

𝑛
) =

(1/𝑄
𝑛
), where𝑄

𝑛
= 𝑝
𝑛
+𝑝
𝑛−1

+ ⋅ ⋅ ⋅ +𝑝
1
for any 𝑛 ∈ N.

Then ℓ
𝑝
(𝑢, V) reduces to the Nörlund sequence space

of nonabsolute type denoted by 𝑁
𝑝
and ‖𝑥‖

ℓ𝑝(𝑢,V) =

‖𝑥‖
𝑁𝑝
(see [60]).

2. Banach-Saks Type of Sequence Space 𝑚(𝜙,𝑝)

In this section, we investigate some properties of the space
𝑚(𝜙, 𝑝) such as the Fatou property, the Banach-Saks property
of type 𝑝, and the weak fixed point property. Let us start with
the following lemma.

Lemma 1. If a 𝐵𝐾-space 𝑋 containing 𝑐
00

has the 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦

𝐴𝐾, then it is order continuous, that is, ‖(0, 0, . . . , 𝑥(𝑛), 𝑥(𝑛 +

1), . . .)‖ → 0 as 𝑛 → ∞ for any 𝑥 ∈ 𝑋.

Proof. From the definition of property 𝐴𝐾, we have that
every 𝑥 = {𝑥(𝑖)} ∈ 𝑋 has the unique representation
𝑥 = ∑

∞

𝑖=1
𝑥(𝑖)𝑒(𝑖), that is, 𝑥[𝑛] = ∑

𝑛

𝑖=1
𝑥(𝑖)𝑒(𝑖) → 𝑥 as

𝑛 → ∞. Hence ‖𝑥 − 𝑥[𝑛]‖
𝑋

→ 0 as 𝑛 → ∞, that is,
‖(0, 0, . . . , 𝑥(𝑛), 𝑥(𝑛+ 1), . . .)‖ → 0 as 𝑛 → ∞, which means
that 𝑋 is order continuous.

Corollary 2. The space 𝑚(𝜙, 𝑝) is order continuous.

Proof. It is easy to see that𝑚(𝜙, 𝑝) contains 𝑐
00
and that every

𝑥 = {𝑥(𝑖)} ∈ 𝑚(𝜙, 𝑝) has the unique representation 𝑥 =

∑
∞

𝑖=1
𝑥(𝑖)𝑒(𝑖), that is, 𝑥[𝑛] = ∑

𝑛

𝑖=1
𝑥(𝑖)𝑒(𝑖) → 𝑥 as 𝑛 → ∞,

which means that 𝑚(𝜙, 𝑝) has the property 𝐴𝐾. Hence, from
the above lemma, 𝑚(𝜙, 𝑝) is order continuous.

Theorem 3. The space 𝑚(𝜙, 𝑝) has the Fatou property.

Proof. Let x be any real sequence from (𝑙0)
+
and {𝑥

𝑛
} be

any non-decreasing sequence of non-negative elements from
𝑚(Φ, 𝑝) such that 𝑥

𝑛
(𝑖) → 𝑥(𝑖) as 𝑛 → ∞ coordinatewisely

and sup
𝑛
‖𝑥
𝑛
‖
𝑚(Φ,𝑝)

< ∞.
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Let us denote 𝑠 = sup
𝑛
‖𝑥
𝑛
‖
𝑚(Φ,𝑝)

. Then, since the
supremum is homogeneous, we have

1

𝑠
sup
𝜏≥1

( sup
𝜎∈C𝜏

(
1

Φ
𝜏

∑
𝑖∈𝜎

|𝑥
𝑛
(𝑖)|
𝑝
)

1/𝑝

)

= sup
𝜏≥1

( sup
𝜎∈C𝜏

(
1

Φ
𝜏

∑
𝑖∈𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑛
(𝑖)

𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

)

1/𝑝

)

≤ sup
𝜏≥1

( sup
𝜎∈C𝜏

(
1

Φ
𝜏

∑
𝑖∈𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑛
(𝑖)

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩𝑚(Φ,𝑝)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

)

1/𝑝

)

=
1

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩𝑚(Φ,𝑝)

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩𝑚(Φ,𝑝) = 1.

(15)

Moreover, by the assumptions that {𝑥
𝑛
} is non-decreasing

and convergent to 𝑥 coordinatewisely and by the Beppo-Levi
theorem, we have

1

𝑠
lim
𝑛→∞

[

[

sup
𝜏≥1

( sup
𝜎∈C𝜏

(
1

Φ
𝜏

∑
𝑖∈𝜎

|𝑥
𝑛
(𝑖)|
𝑝
)

1/𝑝

)]

]

= sup
𝜏≥1

( sup
𝜎∈C𝜏

(
1

Φ
𝜏

∑
𝑖∈𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥(𝑖)

𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

)

1/𝑝

)

=
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥

𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑚(Φ,𝑝)
≤ 1,

(16)

whence
‖𝑥‖𝑚(Φ,𝑝) ≤ 𝑠 = sup

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩𝑚(Φ,𝑝) = lim

𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩𝑚(Φ,𝑝) < ∞. (17)

Therefore, 𝑥 ∈ 𝑚(Φ, 𝑝). On the other hand, since 0 ≤

𝑥
𝑛

≤ 𝑥 for any natural number 𝑛 and the sequence {𝑥
𝑛
}

is non-decreasing, we obtain that the sequence {‖𝑥
𝑛
‖
𝑚(Φ,𝑝)

}

is bounded from above by ‖𝑥‖
𝑚(Φ,𝑝)

. In consequence
lim
𝑛→∞

‖𝑥
𝑛
‖
𝑚(Φ,𝑝)

≤ ‖𝑥‖
𝑚(Φ,𝑝)

, which together with the
opposite inequality proved already, yields that ‖𝑥‖

𝑚(Φ,𝑝)
=

lim
𝑛
‖𝑥
𝑛
‖
𝑚(Φ,𝑝)

.

Theorem 4. The space 𝑚(𝜙, 𝑝) has the Banach-Saks property
of the type 𝑝.

Proof. Let {𝜖
𝑛
} be a sequence of positive numbers with

∑
∞

𝑛=1
𝜖
𝑛

≤ 1/2. Let {𝑥
𝑛
} be a weakly null sequence in

𝐵(𝑚(𝜙, 𝑝)). Let us set 𝑥
0

= 0 and 𝑧
1

= 𝑥
𝑛1

= 𝑥
1
. Then, there

exists 𝜏
1
∈ N such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∑
𝑖∈𝑠1

𝑧
1
(𝑖) 𝑒 (𝑖)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑚(𝜙,𝑝)

< 𝜖
1
, (18)

where 𝑠
1
consist of the elements of 𝜎 which exceed 𝜏

1
. Since

𝑥
𝑛

𝜔

󳨀→ 0 implies that 𝑥
𝑛

→ 0 coordinatewise, there is 𝑛
2

∈ N

such that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜏1

∑
𝑖=1

𝑥
𝑛 (𝑖) 𝑒 (𝑖)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑚(𝜙,𝑝)

< 𝜖
1
, (19)

for all 𝑛 ≥ 𝑛
2
. Set 𝑧

2
= 𝑥
𝑛2
. Then there exists 𝜏

2
> 𝜏
1
such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∑
𝑖∈𝑠2

𝑧
2
(𝑖) 𝑒 (𝑖)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑚(𝜙,𝑝)

< 𝜖
2
, (20)

where 𝑠
2
consist of all elements of 𝜎 which exceed 𝜏

2
. Using

again the fact that 𝑥
𝑛

→ 0 coordinatewise, there exists 𝑛
3

>

𝑛
2
such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜏2

∑
𝑖=1

𝑥
𝑛
(𝑖) 𝑒 (𝑖)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑚(𝜙,𝑝)

< 𝜖
2
, (21)

for all 𝑛 ≥ 𝑛
3
.

Continuing this process, we can find two increasing
sequences {𝜏

𝑗
} and {𝑛

𝑗
} such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜏𝑗

∑
𝑖=1

𝑥
𝑛
(𝑖) 𝑒 (𝑖)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑚(𝜙,𝑝)

< 𝜖
𝑗
, for each 𝑛 ≥ 𝑛

𝑗+1
,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∑
𝑖∈𝑠𝑗

𝑧
𝑗
(𝑖) 𝑒 (𝑖)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑚(𝜙,𝑝)

< 𝜖
𝑗,

(22)

where 𝑧
𝑗

= 𝑥
𝑛𝑗

and 𝑠
𝑗
consist of the elements of 𝜎 which

exceed 𝜏
𝑗
. Since 𝜖

𝑗−1
+ 𝜖
𝑗
< 1, we have

(
1

𝜙
𝜏

∑
𝑛∈𝜎

󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗
(𝑛)

󵄨󵄨󵄨󵄨󵄨
) ≤ 𝜖
𝑗−1

+ 𝜖
𝑗
< 1, (23)

for all 𝑗 ∈ N and 𝜏 ≥ 1. Hence

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑
𝑗=1

𝑧
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑚(𝜙,𝑝)

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑
𝑗=1

(

𝜏𝑗−1

∑
𝑖=1

𝑧
𝑗 (𝑖) 𝑒 (𝑖) +

𝜏𝑗

∑
𝑖=𝜏𝑗−1+1

𝑧
𝑗 (𝑖) 𝑒 (𝑖)

+∑
𝑖∈𝑠𝑗

𝑧
𝑗
(𝑖) 𝑒 (𝑖))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑚(𝜙,𝑝)

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑
𝑗=1

(

𝜏𝑗−1

∑
𝑖=1

𝑧
𝑗 (𝑖) 𝑒 (𝑖))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑚(𝜙,𝑝)

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑
𝑗=1

(

𝜏𝑗

∑
𝑖=𝜏𝑗−1+1

𝑧
𝑗
(𝑖) 𝑒 (𝑖))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑚(𝜙,𝑝)

≤

𝑛

∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

𝜏𝑗

∑
𝑖=𝜏𝑗−1+1

𝑧
𝑗
(𝑖) 𝑒 (𝑖))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑚(𝜙,𝑝)

+ 2

𝑛

∑
𝑗=1

𝜖
𝑗
.

(24)
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By using the norm of the space 𝑚(𝜙, 𝑝), we have

𝑛

∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

𝜏𝑗

∑
𝑖=𝜏𝑗−1+1

𝑧
𝑗 (𝑖) 𝑒 (𝑖))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑚(𝜙,𝑝)

=

𝑛

∑
𝑗=1

sup
𝜏≥1

sup
𝑠𝑗−1∈C𝜏

(
1

𝜙
𝜏

∑
𝑛∈𝑠𝑗−1

󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗 (𝑛)

󵄨󵄨󵄨󵄨󵄨

𝑝

)

≤

𝑛

∑
𝑗=1

sup
𝜏≥1

sup
𝜎∈C𝜏

(
1

𝜙
𝜏

∑
𝑛∈𝜎

󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗 (𝑛)

󵄨󵄨󵄨󵄨󵄨

𝑝

) ≤ 𝑛.

(25)

Therefore,
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑
𝑗=1

𝑧
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑚(𝜙,𝑝)

≤ 𝑛
1/𝑝

+ 1 ≤ 2𝑛
1/𝑝

. (26)

This completes the proof of the theorem.

Theorem 5. For 1 < 𝑝 < ∞, the space 𝑚(𝜙, 𝑝) has the weak
fixed point property, if 𝐾 > 21−𝑝, where 𝐾 = sup

𝜏≥1
𝜙
𝜏
< ∞.

Proof. If 𝜓
𝜏
= 1, for all 𝜏 ∈ N, it follows that

𝑚(𝜙, 𝑝) ⊆ ℓ
𝑝

iff sup
𝜏≥1

(𝜙
𝜏
)
1/𝑝

< ∞,

‖𝑥‖𝑚(𝜙,𝑝) = sup
𝜏≥1

(
1

𝜙
𝜏

)

1/𝑝

‖𝑥‖ℓ𝑝 .

(27)

Hence

𝑅 (𝑚 (𝜙, 𝑝)) = sup
𝜏≥1

(
1

𝜙
𝜏

)

1/𝑝

𝑅 (ℓ
𝑝
)

= (
2

𝐾
)
1/𝑝

< 2, since 𝑅 (ℓ
𝑝
) = 2
1/𝑝

,

(28)

where 𝑅(𝑋) stands for the Garcia-Falset coefficient of 𝑋.
Therefore, 𝑚(𝜙, 𝑝) has in this case the weak fixed point
property.

3. Banach-Saks Type and Gurari< Modulus of
Sequence Spaces ℓ

𝑝
(𝑢,V)

Theorem 6. The space ℓ
𝑝
(𝑢, V) has the Banach-Saks property

of the type 𝑝.

Proof. Let (𝜀
𝑛
) be a sequence of positive numbers for which

∑
∞

𝑛=1
𝜀
𝑛

≤ (1/2). Let {𝑥
𝑛
} be a weakly null sequence in

𝐵(ℓ
𝑝
(𝑢, V)). Set 𝑡

0
= 𝑥
0

= 0 and 𝑡
1

= 𝑥
𝑛1

= 𝑥
1
. Then there

exists 𝑟
1
∈ N such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑
𝑖=𝑟1+1

𝑡
1
(𝑖) 𝑒 (𝑖)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩ℓ𝑝(𝑢,V)

< 𝜀
1. (29)

Since the fact that {𝑥
𝑛
} is a weakly null sequence implies that

𝑥
𝑛

→ 0, coordinatewise, there is an 𝑛
2
∈ N such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑟1

∑
𝑖=1

𝑥
𝑛
(𝑖) 𝑒 (𝑖)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩ℓ𝑝(𝑢,V)

< 𝜀
1
, (30)

for all 𝑛 ≥ 𝑛
2
. Set 𝑡

2
= 𝑥
𝑛2
. Then there exists an 𝑟

2
> 𝑟
1
such

that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑
𝑖=𝑟2+1

𝑡
2
(𝑖) 𝑒 (𝑖)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩ℓ𝑝(𝑢,V)

< 𝜀
2. (31)

By using the fact that 𝑥
𝑛

→ 0 coordinatewise, there exists an
𝑛
3
> 𝑛
2
such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑟2

∑
𝑖=1

𝑥
𝑛 (𝑖) 𝑒 (𝑖)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩ℓ𝑝(𝑢,V)

< 𝜀
2, (32)

for all 𝑛 ≥ 𝑛
3
. Continuing this process, we can find by

induction two increasing subsequences (𝑟
𝑖
) and (𝑛

𝑖
) of natural

numbers such that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑟𝑗

∑
𝑖=1

𝑥
𝑛 (𝑖) 𝑒 (𝑖)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩ℓ𝑝(𝑢,V)

< 𝜀
𝑗, (33)

for all 𝑛 ≥ 𝑛
𝑗+1

and

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑
𝑖=𝑟𝑗+1

𝑡
𝑗 (𝑖) 𝑒 (𝑖)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩ℓ𝑝(𝑢,V)

< 𝜀
𝑗, (34)

where 𝑡
𝑗
= 𝑥
𝑛𝑗
. Hence,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑
𝑗=0

𝑡
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩ℓ𝑝(𝑢,V)

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑
𝑗=0

(

𝑟𝑗−1

∑
𝑖=0

𝑡
𝑗
(𝑖) 𝑒 (𝑖) +

𝑟𝑗

∑
𝑖=𝑟𝑗−1+1

𝑡
𝑗
(𝑖) 𝑒 (𝑖)

+

∞

∑
𝑖=𝑟𝑗+1

𝑡
𝑗
(𝑖) 𝑒 (𝑖))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩ℓ𝑝(𝑢,V)

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑
𝑗=0

(

𝑟𝑗

∑
𝑖=𝑟𝑗−1+1

𝑡
𝑗
(𝑖) 𝑒 (𝑖))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩ℓ𝑝(𝑢,V)

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑
𝑗=0

(

𝑟𝑗−1

∑
𝑖=0

𝑡
𝑗
(𝑖) 𝑒 (𝑖))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩ℓ𝑝(𝑢,V)

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑
𝑗=0

(

∞

∑
𝑖=𝑟𝑗+1

𝑡
𝑗 (𝑖) 𝑒 (𝑖))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩ℓ𝑝(𝑢,V)

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑
𝑗=0

(

𝑟𝑗

∑
𝑖=𝑟𝑗−1+1

𝑡
𝑗
(𝑖) 𝑒 (𝑖))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩ℓ𝑝(𝑢,V)

+ 2

𝑛

∑
𝑗=0

𝜀
𝑗
.

(35)
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On the other hand, since ‖𝑥
𝑛
‖ = (∑

∞

𝑖=0
| ∑
𝑖

𝑘=0
𝑢
𝑖
V
𝑘
𝑥
𝑛𝑗
(𝑘)|
𝑝

)
1/𝑝

,
it can be easily seen that ‖𝑥

𝑛
‖ < 1. Therefore, ‖𝑥

𝑛
‖
𝑝

< 1 and

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑
𝑗=0

(

𝑟𝑗

∑
𝑖=𝑟𝑗−1+1

𝑡
𝑗
(𝑖) 𝑒 (𝑖))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

ℓ𝑝(𝑢,V)

=

𝑛

∑
𝑗=0

𝑟𝑗

∑
𝑖=𝑟𝑗−1+1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑖

∑
𝑘=0

𝑢
𝑖
V
𝑘
𝑡
𝑗
(𝑘)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

≤

𝑛

∑
𝑗=0

∞

∑
𝑖=0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑖

∑
𝑘=0

𝑢
𝑖
V
𝑘
𝑡
𝑗 (𝑘)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

≤ (𝑛 + 1) .

(36)

Hence we obtain
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑
𝑗=0

(

𝑟𝑗

∑
𝑖=𝑟𝑗−1+1

𝑡
𝑗 (𝑖) 𝑒 (𝑖))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ (

𝑛

∑
𝑗=0

1)

1/𝑝

= (𝑛 + 1)
1/𝑝

.

(37)

By using the inequality 1 ≤ (𝑛 + 1)
1/𝑝 for all 𝑛 ∈ N and 1 ≤

𝑝 < ∞, we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑
𝑗=0

𝑡
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑙𝑝(𝑢,V)

≤ (𝑛 + 1)
1/𝑝

+ 1 ≤ 2(𝑛 + 1)
1/𝑝

. (38)

Therefore, the space ℓ
𝑝
(𝑢, V) has the Banach-Saks type 𝑝,

which completes the proof of the theorem.

Let us define the matrix 𝐺 = 𝐺(𝑢, V) = {𝑔
𝑛𝑘

} by

𝑔
𝑛𝑘

= {
𝑢
𝑛
V
𝑘
; 0 ≤ 𝑘 ≤ 𝑛,

0; 𝑘 > 𝑛
(39)

for all 𝑘, 𝑛 ∈ N, where 𝑢
𝑛
depends only on 𝑛 and V

𝑘
depends

only on 𝑘. The matrix 𝐺 is called generalized weighted mean
or factorable matrix. By 𝐻 = 𝐻(V, 𝑢) = (ℎ

𝑛𝑘
), we denote the

inverse of the matrix 𝐺(𝑢, V) as follows:

ℎ
𝑛𝑘

=

{{

{{

{

(−1)
𝑛−𝑘

V
𝑛
𝑢
𝑘

; 𝑛 − 1 ≤ 𝑘 ≤ 𝑛,

0; 0 ≤ 𝑛 < 𝑘 or 𝑛 > 𝑘 + 1.

(40)

Theorem 7. For 𝑥 ∈ ℓ
𝑝
(𝑢, V), by (39), one has the fact that

the Gurarǐı modulus of convexity for the normed space ℓ
𝑝
(𝑢, V)

satisfies the inequality

𝛽
ℓ𝑝(𝑢,V) (𝜀) ≤ 1 − (1 − (

𝜀

2
)
𝑝

)

1/𝑝

(41)

for any 0 ≤ 𝜀 ≤ 2.

Proof. Let 𝑥 ∈ ℓ
𝑝
(𝑢, V). By using (39), we have

‖𝑥‖ℓ𝑝(𝑢,V) = ‖𝐺 (𝑢, V) 𝑥‖ℓ𝑝

= (∑
𝑛

󵄨󵄨󵄨󵄨(𝐺 (𝑢, V) 𝑥)
𝑛

󵄨󵄨󵄨󵄨
𝑝
)

1/𝑝

.

(42)

Let 0 ≤ 𝜀 ≤ 2. Then using (40), let us consider the following
sequences:

𝑥 = (𝑥
𝑛
) = (𝐻((1 − (

𝜀

2
)
𝑝

)

1/𝑝

) ,𝐻(
𝜀

2
) , 0, 0, . . .) ,

𝑡 = (𝑡
𝑛
) = (𝐻((1 − (

𝜀

2
)
𝑝

)

1/𝑝

) ,𝐻(−
𝜀

2
) , 0, 0, . . .) .

(43)

Since 𝑦
𝑛

= (𝐺𝑥)
𝑛
and 𝑧
𝑛

= (𝐺𝑡)
𝑛
, we have

𝑦 = (𝑦
𝑛
) = ((1 − (

𝜀

2
)
𝑝

)

1/𝑝

, (
𝜀

2
) , 0, 0, . . .) ,

𝑧 = (𝑧
𝑛
) = ((1 − (

𝜀

2
)
𝑝

)

1/𝑝

, (−
𝜀

2
) , 0, 0, . . .) .

(44)

By using the sequences given above, we obtain the following
equalities:

‖𝑥‖
𝑝

ℓ𝑝(𝑢,V)
= ‖𝐺 (𝑢, V) 𝑥‖

𝑝

ℓ𝑝

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(1 − (
𝜀

2
)
𝑝

)

1/𝑝󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜀

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

= 1 − (
𝜀

2
)
𝑝

+ (
𝜀

2
)
𝑝

= 1;

‖𝑡‖
𝑝

ℓ𝑝(𝑢,V)
= ‖𝐺 (𝑢, V) 𝑡‖

𝑝

ℓ𝑝

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(1 − (
𝜀

2
)
𝑝

)

1/𝑝󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−

𝜀

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

= 1 − (
𝜀

2
)
𝑝

+ (
𝜀

2
)
𝑝

= 1;

‖𝑥 − 𝑡‖ℓ𝑝(𝑢,V) = ‖𝐺 (𝑢, V) 𝑥 − 𝐺 (𝑢, V) 𝑡‖ℓ𝑝

= (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(1 − (
𝜀

2
)
𝑝

)

1/𝑝

− (1 − (
𝜀

2
)
𝑝

)

1/𝑝󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜀

2
− (−

𝜀

2
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

)

1/𝑝

= 𝜀.

(45)
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To complete the upper estimate of the Gurarǐı modu-
lus of convexity, it remains to calculate the infimum of
‖𝛼𝑥 + (1 − 𝛼)𝑡‖

ℓ𝑝(𝑢,V) for 0 ≤ 𝛼 ≤ 1. We have

inf
0≤𝛼≤1

‖𝛼𝑥 + (1 − 𝛼) 𝑡‖ℓ𝑝(𝑢,V)

= inf
0≤𝛼≤1

‖𝛼𝐺 (𝑢, V) 𝑥 + (1 − 𝛼)𝐺 (𝑢, V) 𝑡‖ℓ𝑝

= inf
0≤𝛼≤1

[
[

[

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼(1 − (
𝜀

2
)
𝑝

)

1/𝑝

+ (1 − 𝛼) (1 − (
𝜀

2
)
𝑝

)

1/𝑝󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝛼 (

𝜀

2
) + (1 − 𝛼) (−

𝜀

2
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
]
]

]

1/𝑝

= inf
0≤𝛼≤1

[1 − (
𝜀

2
)
𝑝

+ |2𝛼 − 1|
𝑝
(

𝜀

2
)
𝑝

]

1/𝑝

= (1 − (
𝜀

2
)
𝑝

)

1/𝑝

.

(46)

Consequently, we get for 𝑝 ≥ 1 the inequality

𝛽
𝑙𝑝(𝑢,V) (𝜀) ≤ 1 − (1 − (

𝜀

2
)
𝑝

)

1/𝑝

, (47)

which is the desired result.
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