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Binary Bell polynomials are applied to construct bilinear formalism, bilinear Bäcklund transformation, Lax pair, and infinite
conservation laws of the generalized variable-coefficient fifth-order Korteweg-de Vries equation. In the meantime, quasi-periodic
wave solutions for the equation are obtained by using the Riemann theta function.The asymptotic properties of one-periodic wave
solution and two-periodic wave solutions are also established, respectively.

1. Introduction

Nonlinear evolution equations (NLEEs) have attracted inten-
sive attention in the past few decades, since they occur in
a variety of physical applications. It is always important
to search for explicit and exact solutions. Various kinds of
exact solutions such as soliton, peakon, complexiton, rational,
periodic, and quasi-periodic solutions have been presented
for NLEEs. Successful methods include the inverse scattering
method [1], the Darboux transformation [2–4] and the
Bäcklund transformation [5, 6], theHirotamethod [7, 8], and
algebrogeometrical approach [9–11]. Among the abovemen-
tionedmethods, theHirotamethod is a powerful approach to
construct exact solution of nonlinear equations. By applying
the Hirota method, people obtained a series of multisoliton
solutions and rational solutions of many nonlinear equations
in a systematic way. Unfortunately, this method relies on
particular skills, appropriate exchange formulas, and complex
calculations. On the other hand, in recent years, Lambert,
Gilson et al. proposed an alternative procedure based on the
use of the Bell polynomials to obtain parameter families of
bilinear Bäcklund transformation and Lax pairs for soliton
equations in quick and short way [12–14]. Fan developed
this method to find infinite conservation laws of soliton
equations [15–17] and proposed the super Bell polynomials

[18, 19]. Ma systematically analyzed the connection between
Bell polynomials and new bilinear equations [20].

From bilinear forms, Nakamura proposed a convenient
way to construct a kind of quasi-periodic solutions of non-
linear equation in his two serial papers [21, 22], where the
quasi-periodic wave solutions of the KdV equation and the
Boussinesq equation were obtained by using the Riemann
theta function. Recently, Hon et al. have extended this
method to investigate the discrete Toda lattice [23], (2 + 1)-
dimensional Bogoyavlenskiis breaking soliton equation [24],
and the asymmetrical Nizhnik-Novikov-Veselov equation
[25]. Ma et al. constructed one-periodic and two-periodic
wave solutions to a class of (2 + 1)-dimensional Hirota
bilinear equations [26]. Zhang et al. applied this method to
get periodic wave solutions of the variable-coefficient mKdV
equation [27].

Due to the inhomogeneities of media and nonunifor-
mities of boundaries in various real physical situations,
the variable-coefficient NLEEs are considered to be more
realistic than constant-coefficient equations in describing a
large variety of real phenomena; for example, many phys-
ical and mechanical situations are governed by variable-
coefficient KdV equation, for example, the nonlinear excita-
tions of a Bose gas of impenetrable bosons with longitudinal
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confinement, the nonlinear waves in types of rods [28–
30]. Obviously, equations with variable-coefficient are much
more complicated than constant-coefficient forms, andmuch
attention has been paid to this subject [31–35]. In this paper,
wewill focus our study on the generalized variable-coefficient
fifth-order Korteweg-de Vries equation such as the one given
below:

𝑢t + 𝑎 (𝑡) 𝑢𝑢𝑥𝑥𝑥 + 𝑏 (𝑡) 𝑢𝑥𝑢𝑥𝑥 + 𝑐 (𝑡) 𝑢
2

𝑢
𝑥
+ 𝑑 (𝑡) 𝑢𝑢

𝑥

+ 𝑒 (𝑡) 𝑢
𝑥𝑥𝑥

+ 𝑙 (𝑡) 𝑢
𝑥𝑥𝑥𝑥𝑥

+ 𝑚 (𝑡) 𝑢 + 𝑛 (𝑡) 𝑢
𝑥
= 0,

(1)

where 𝑢 is a function of 𝑥 and 𝑡 and 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡), 𝑑(𝑡),
𝑒(𝑡), 𝑙(𝑡), 𝑚(𝑡), and 𝑛(𝑡) are analytic functions of 𝑡. Since
there are choices for the parameters, the variable-coefficient
NLEEs can be considered as generalizations of the constant
coefficient ones. Under certain constraint conditions, the
variable-coefficient models may be proved to be integrable
and given explicit analytic solutions [36]. The corresponding
constraint conditions on (1) in this paper, which are obtained
by the Painlev analysis [37] and conditions from the variable-
coefficient models mapped to the completely integrable
constant-coefficient counterparts [38], will be

𝑎 (𝑡) = 𝑏 (𝑡) =

15𝑙 (𝑡)

𝜌

𝑒
∫𝑚(𝑡)𝑑𝑡

, 𝑐 (𝑡) =

45𝑙 (𝑡)

𝜌
2

𝑒
∫ 2𝑚(𝑡)𝑑𝑡

,

𝑑 (𝑡) = 𝑒 (𝑡) = 0,

(2)

where 𝜌 ̸= 0 is an arbitrary constant. The main goal of this
paper is twofold. First, we apply the binary Bell polynomials
to construct bilinear formalism, bilinear Bäcklund transfor-
mation, Lax pairs, and infinite conservation laws of (1) under
condition (2). Second, we obtain the periodic wave solutions
of the equation by using the Riemann theta function and
discussing their asymptotic properties.

The organization of this paper is as follows. In Section 2,
we briefly present necessary notations on binary Bell poly-
nomial that will be used in this paper. In Section 3, we
get bilinear formalism, bilinear Bäcklund transformation,
Lax pairs, and infinite conservation laws of the generalized
variable-coefficient fifth-order Korteweg-de Vries equation
by utilizing the binary Bell polynomials. In Section 4, we
apply Hirota’s bilinear method to construct one- and two-
periodic wave solutions (1), respectively. Further we use a
limiting procedure to analyze asymptotic behavior of the
periodic wave solutions in detail. Finally, some conclusions
are given in Section 5.

2. Binary Bell Polynomials

To begin with, we will give some basic concepts and notations
about the Bell polynomials. For details, please refer to [11–13].

Let 𝑓 = 𝑓(𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑙
) be a 𝐶

∞ function with
multivariables; the following polynomials

𝑌
𝑛
1
𝑥
1
,...,𝑛
𝑙
𝑥
𝑙

(𝑓) = 𝑌
𝑛
1
,...,𝑛
𝑙

(𝑓
𝑟
1
𝑥
1
,...,𝑟
𝑙
𝑥
𝑙

)

= exp (−𝑓) 𝜕𝑛1
𝑥
1

⋅ ⋅ ⋅ 𝜕
𝑛
𝑙

𝑥
𝑙

exp (𝑓)
(3)

are called the multidimensional Bell polynomials, where

𝑓
𝑟
1
𝑥
1
,...,𝑟
𝑙
𝑥
𝑙

= 𝜕
𝑟
1

𝑥
1

⋅ ⋅ ⋅ 𝜕
𝑟
𝑙

𝑥
𝑙

𝑓, 𝑟
1
= 0, . . . , 𝑛

1
, 𝑟

𝑙
= 0, . . . , 𝑛

𝑙
.

(4)

For convenience, we denote the multidimensional Bell poly-
nomials by 𝑌-polynomials.

For example, for the simplest case 𝑓 = 𝑓(𝑥), the one-
dimensional Bell polynomials are

𝑌
1
= 𝑓

𝑥
, 𝑌

2
= 𝑓

2𝑥
+ 𝑓

2

𝑥
,

𝑌
3
= 𝑓

3𝑥
+ 3𝑓

𝑥
𝑓
3𝑥
+ 𝑓

3

𝑥
, . . . .

(5)

For 𝑓 = 𝑓(𝑥, 𝑡), the two-dimensional Bell polynomials are

𝑌
𝑥
(𝑓) = 𝑓 (𝑥) ,

𝑌
2𝑥
(𝑓) = 𝑓

2𝑥
+ 𝑓

2

𝑥
,

𝑌
2𝑥
(𝑓) = 𝑓

3𝑥
+ 3𝑓

𝑥
𝑓
2𝑥
+ 𝑓

3

𝑥
,

𝑌
𝑥,𝑡
(𝑓) = 𝑓

𝑥,𝑡
+ 𝑓

𝑥
𝑓
𝑡
,

𝑌
2𝑥,𝑡

(𝑓) = 𝑓
2𝑥,𝑡

+ 𝑓
2𝑥
𝑓
𝑡
+ 2𝑓

𝑥,𝑡
𝑓
𝑥
+ 𝑓

2

𝑥
𝑓
𝑡
, . . . .

(6)

Based on the above Bell polynomials, the multidimen-
sional binary Bell polynomials (Y-polynomials) can be
defined as follows:

Y
𝑛
1
𝑥
1
,...,𝑛
𝑙
𝑥
𝑙
(V, 𝑤) = 𝑌

𝑛
1
𝑥
1
,...,𝑛
𝑙
𝑥
𝑙

(𝑓) |
𝑓
𝑟1𝑥1,...,𝑟𝑙

𝑥
𝑙

= {

V
𝑟
1
𝑥
1
,...,𝑟
𝑙
𝑥
𝑙

, 𝑟
1
+ ⋅ ⋅ ⋅ + 𝑟

𝑙
is odd,

𝑤
𝑟
1
𝑥
1
,...,𝑟
𝑙
𝑥
𝑙

, 𝑟
1
+ ⋅ ⋅ ⋅ + 𝑟

𝑙
is even.

(7)

The Y-polynomials inherit the easily recognizable partial
structure of the Bell polynomials. The first few lowest order
binary Bell polynomials are

𝑦
𝑥
(V) = V

𝑥
, 𝑦

2𝑥
(V, 𝑤) = 𝑤

2𝑥
+ V2

𝑥
,

𝑦
𝑥,𝑡
(V, 𝑤) = 𝑤

𝑥,𝑡
+ V

𝑥
V
𝑡
,

𝑦
3𝑥
(V, 𝑤) = V

3𝑥
+ 3V

𝑥
𝑤
2𝑥
+ V3

𝑥
,

𝑦
4𝑥
(V, 𝑤) = 𝑤

4𝑥
+ 3𝑤

2

2𝑥
+ 4V

𝑥
V
3𝑥
+ 6V2

𝑥
𝑤
2𝑥
+ V4

𝑥
,

𝑦
5𝑥
(V, 𝑤) = V

5𝑥
+ 5V

𝑥
𝑤
4𝑥
+ 10V

3𝑥
𝑤
2𝑥
+ 10V2

𝑥
V
3𝑥

+ 15V
𝑥
𝑤
2

2𝑥
+ 10V3

𝑥
𝑤
2𝑥
+ V5

𝑥
.

(8)

Theorem 1 (see [11]). The link between binary Bell polynomi-
alsY

𝑛
1
𝑥
1
,...,𝑛
𝑙
𝑥
𝑙

(V, 𝑤) and the standard Hirota bilinear equation
𝐷

𝑛
1

𝑥
1

⋅ ⋅ ⋅ 𝐷
𝑛
𝑙

𝑥
𝑙

𝐹 ⋅ 𝐺 can be given by an identity

Y
𝑛
1
𝑥
1
,...,𝑛
𝑙
𝑥
𝑙

(V = ln 𝐹

𝐺

, 𝑤 = ln𝐹𝐺)

= (𝐹𝐺)
−1

𝐷
𝑛
1

𝑥
1

⋅ ⋅ ⋅ 𝐷
𝑛
𝑙

𝑥
𝑙

𝐹 ⋅ 𝐺,

(9)
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in which 𝑛
1
+ 𝑛

2
+ ⋅ ⋅ ⋅ + 𝑛

𝑙
≥ 1 and operators 𝐷

𝑥
1

⋅ ⋅ ⋅ 𝐷
𝑥
𝑙

are
classical Hirotas bilinear operators defined by

𝐷
𝑛
1

𝑥
1

⋅ ⋅ ⋅ 𝐷
𝑛
𝑙

𝑥
𝑙

𝐹 ⋅ 𝐺

= (𝜕
𝑥
1

− 𝜕
𝑥
󸀠

1

)

𝑛
1

⋅ ⋅ ⋅ (𝜕
𝑥
𝑙

− 𝜕
𝑥
󸀠

𝑙

)

𝑛
𝑙

× 𝐹 (𝑥
1
, . . . , 𝑥

𝑙
) × 𝐺(𝑥

󸀠

1
, . . . , 𝑥

󸀠

𝑙
)

󵄨
󵄨
󵄨
󵄨
󵄨𝑥
󸀠

1
=𝑥
1
,...,𝑥
󸀠

𝑙
=𝑥
𝑙

.

(10)

In the particular case, when 𝐹 = 𝐺, formula (9) becomes

𝐺
−2

𝐷
𝑛
1

𝑥
1

⋅ ⋅ ⋅ 𝐷
𝑛
𝑙

𝑥
𝑙

𝐺 ⋅ 𝐺 = Y
𝑛
1
𝑥
1
,...,𝑛
𝑙
𝑥
𝑙

(0, 𝑞 = 2 ln𝐺)

={

0, 𝑛
1
+⋅ ⋅ ⋅+𝑛

𝑙
is odd ,

𝑃
𝑛
1
𝑥
1
,...,𝑛
𝑙
𝑥
𝑙

(𝑞) , 𝑛
1
+⋅ ⋅ ⋅+𝑛

𝑙
is even ,

(11)

in which the 𝑃-polynomials can be characterized by an
equally recognizable even part partitional structure

𝑃
2𝑥
(𝑞) = 𝑞

2𝑥
, 𝑃

𝑥,𝑡
(𝑞) = 𝑞

𝑥𝑡
,

𝑃
4𝑥
(𝑞) = 𝑞

4𝑥
+ 3𝑞

2

2𝑥
,

𝑃
6𝑥
(𝑞) = 𝑞

6𝑥
+ 15𝑞

2𝑥
𝑞
4𝑥
+ 15𝑞

3

2𝑥
, . . . .

(12)

This formulae will be used to obtain the bilinear Bäcklund
transformations of the NLEEs. It means that once an NLEE
is written in a combination form of theY-polynomials, then
it can be easily transformed into the corresponding bilinear
Bäcklund transformation form.

Theorem 2 (see [11]). The binary Bell polynomials
Y

𝑛
1
𝑥
1
,...,𝑛
𝑙
𝑥
𝑙

(V, 𝑤) can be separated into 𝑃-polynomials
and 𝑌-polynomials:

(𝐹𝐺)
−1

𝐷
𝑛
1

𝑥
1

⋅ ⋅ ⋅ 𝐷
𝑛
𝑙

𝑥
𝑙

𝐹 ⋅ 𝐺

= Y
𝑛
1
𝑥
1
,...,𝑛
𝑙
𝑥
𝑙

(V, 𝑤)|V=ln𝐹/𝐺,𝑤=ln𝐹𝐺

= Y
𝑛
1
𝑥
1
,...,𝑛
𝑙
𝑥
𝑙

(V, V + q)󵄨󵄨󵄨
󵄨V=ln𝐹/𝐺, 𝑞=2 ln𝐺

= ∑

𝑛
1
+⋅⋅⋅+𝑛

𝑙
= even

𝑛
1

∑

𝑟
1
=0

⋅ ⋅ ⋅

𝑛
𝑙

∑

𝑟
𝑙
=0

𝑙

∏

𝑖=1

(

𝑛
𝑖

𝑟
𝑖

)𝑃
𝑟
1
𝑥
1
,...,𝑟
𝑙
𝑥
𝑙

(𝑞)

× 𝑌
(𝑛
1
−𝑟
1
)𝑥
1
,...,(𝑛
𝑙
−𝑟
𝑙
)𝑥
𝑙
(V) .

(13)

Under the Hopf-Cole transformation V = ln𝜓, that is, 𝜓 =

𝐹/𝐺, multidimensional binary Bell polynomials 𝑌
𝑛
1
𝑥
1
,...,𝑛
𝑙
𝑥
𝑙

(V)
can be linearized into the following form:

𝑌
𝑛
1
𝑥
1
,...,𝑛
𝑙
𝑥
𝑙

󵄨
󵄨
󵄨
󵄨
󵄨V=ln𝜓 =

𝜓
𝑛
1
𝑥
1
,...,𝑛
𝑙
𝑥
𝑙

𝜓

. (14)

Formulae (13) and (14) provide the shortest way to the
associated Lax system of nonlinear equations.

3. Bilinear Representation,
Bäcklund Transformation, and
Conservation Laws of (1)

In this section, we will systematically investigate bilinear rep-
resentation, Bäcklund transformation, Lax pair, and infinite
conservation laws of (1) based on the Bell polynomials.

3.1. Bilinear Representation. In order to detect the existence
of the bilinear representation, we introduce a potential field 𝑞
by setting

𝑢 = 𝑠𝑞
2𝑥
, (15)

with 𝑠 = 𝑠(𝑡) being a free function with respect to 𝑡, which
will be chosen appropriately so that (1) is related to the 𝑃-
polynomials. Then substituting (15) into (1) and integrating
with respect to 𝑥 and noting condition (2) yield

𝐸 (𝑞) = (

𝑠
󸀠

(𝑡)

𝑠 (𝑡)

+ 𝑚 (𝑡)) 𝑞
𝑥
+ 𝑞

𝑥𝑡
+ 𝑛 (𝑡) 𝑞

2𝑥

+ 𝑎 (𝑡) 𝑠 (𝑡) 𝑞
2𝑥
𝑞
4𝑥
+ 𝑐 (𝑡) 𝑠

2

(𝑡)

𝑞
3

2𝑥

3

+ 𝑙 (𝑡) 𝑞
6𝑥
= 0.

(16)

Comparing the fourth and the sixth terms of the above
equation with formula (12) implies that we should require
𝑠(𝑡) = 𝜌𝑒

−∫𝑚(𝑡)𝑑𝑡. The resulting equation is then cast into a
combination form of the 𝑃-polynomials:

𝐸 (𝑞) = 𝑞
𝑥𝑡
+ 𝑛 (𝑡) 𝑞

2𝑥
+ 𝑙 (𝑡) (𝑞

6𝑥
+ 15𝑞

2𝑥
𝑞
4𝑥
+ 15𝑞

3

2𝑥
)

= 𝑃
𝑥𝑡
(𝑞) + 𝑛 (𝑡) 𝑃

2𝑥
(𝑞) + 𝑙 (𝑡) 𝑃

6𝑥
(𝑞) = 0.

(17)

Making a change of the dependent variable

𝑞 = 2 ln𝐹 ⇐⇒ 𝑢 = 𝑠𝑞
2𝑥
= 2𝜌𝑒

−∫𝑚(𝑡)𝑑𝑡

(ln𝐹)
𝑥𝑥

(18)

and noting property (11), we can obtain the bilinear represen-
tation of (1) as

(𝐷
𝑥
𝐷

𝑡
+ 𝑙 (𝑡)𝐷

6

𝑥
+ 𝑛 (𝑡)𝐷

2

𝑥
) 𝐹 ⋅ 𝐹 = 0. (19)

Following theHirota bilinear theory, one-soliton solution
for (1) in explicit forms can be given as

𝑢
1
= 2𝜌𝑒

−∫𝑚(𝑡)𝑑𝑡
𝜕
2

𝜕𝑥
2
[log (1 + 𝑒𝜉1)] , (20)

and two-soliton solutions are denoted by

𝑢
2
= 2𝜌𝑒

−∫𝑚(𝑡)𝑑𝑡
𝜕
2

𝜕𝑥
2
[log (1 + 𝑒𝜉1 + 𝑒𝜉2 + 𝑒𝜉1+𝜉2+𝐴12)] , (21)

with

𝜉
𝑗
= 𝑘

𝑗
𝑥 − 𝑘

5

𝑗
∫ 𝑙 (𝑡) 𝑑𝑡 − 𝑘

𝑗
∫𝑛 (𝑡) 𝑑𝑡 + 𝜉

0

𝑗
, (22)

𝑒
𝐴
12
=

(𝑘
1
− 𝑘

2
)
2

(𝑘
2

1
− 𝑘

1
𝑘
2
+ 𝑘

2

2
)

(𝑘
1
+ 𝑘

2
)
2

(𝑘
2

1
+ 𝑘

1
𝑘
2
+ 𝑘

2

2
)

, (23)

where 𝑘
𝑗
and 𝜉0

𝑗
, 𝑗 = 1, 2, are arbitrary real constants.
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3.2. Bäcklund Transformation and Lax Pair. In the following,
we search for the bilinear Bäcklund transformation and the
Lax pair of (1). Let 𝑞󸀠 = 2 ln𝐹 and 𝑞 = 2 ln𝐺 be two different
solutions of (17), respectively; we have the two-field condition

𝐸 (𝑞
󸀠

) − 𝐸 (𝑞) = (𝑞
󸀠

− 𝑞)
𝑥𝑡

+ 𝑛 (𝑡) (𝑞
󸀠

− 𝑞)
2𝑥

+ 𝑙 (𝑡)

× [(𝑞
󸀠

− 𝑞)
6𝑥

+ 15 (𝑞
󸀠

2𝑥
𝑞
󸀠

4𝑥
− 𝑞

2𝑥
𝑞
4𝑥
)

+ 15 (𝑞
󸀠3

2𝑥
− 𝑞

3

2𝑥
)] = 0.

(24)

If set

V =
(𝑞

󸀠

− 𝑞)

2

= ln(𝐹
𝐺

) ,

𝑤 =

(𝑞
󸀠

+ 𝑞)

2

= ln (𝐹𝐺) ,

(25)

then (24) can be rewritten as

(𝐸 (𝑞
󸀠

) − 𝐸 (𝑞))

2

= V
𝑥𝑡
+ 𝑛 (𝑡) V

2𝑥
+ 𝑙 (𝑡) (V

6𝑥
+ 15𝑤

4𝑥
V
2𝑥
+ 15𝑤

2𝑥
V
4𝑥

+45V
2𝑥
𝑤
2

2𝑥
+ 15V3

2𝑥
)

= 𝜕
𝑥
[Y

𝑡
(V) + 𝑛 (𝑡)Y

𝑥
(V) + 𝑙 (𝑡)Y

5𝑥
(V, 𝑤)]

+ 𝑅 (V, 𝑤) = 0,

(26)

with

𝑅 (V, 𝑤) = 𝑙 (𝑡) (10V
2𝑥
𝑤
4𝑥
+ 5V

4𝑥
𝑤
2𝑥
+ 30V

2𝑥
𝑤
2

2𝑥

+ 15V3
2𝑥
− 5V

𝑥
𝑤
5𝑥
− 10V

3𝑥
𝑤
3𝑥
− 30V

𝑥
𝑤
2𝑥
𝑤
3𝑥

− 30V2
𝑥
V
𝑥𝑥
𝑤
2𝑥
− 10V3

𝑥
𝑤
3𝑥
− 5V4

𝑥
V
2𝑥
− 20V

𝑥
V
2𝑥
V
3𝑥

−10V2
𝑥
V
4𝑥
) .

(27)

Taking

Y
3𝑥
(V, 𝑤) = 𝜆, (28)

where 𝜆 is an arbitrary parameter. Then from (28), 𝑅(V, 𝑤)
can be rewritten in the form

𝑅 (V, 𝑤) = −

5

2

𝑙 (𝑡) 𝜕
𝑥
[Y

5𝑥
(V, 𝑤) + 3𝜆Y

3𝑥
(V, 𝑤)] . (29)

Then from (26)–(29), we deduce a coupled system of Y-
polynomials:

Y
3𝑥
(V, 𝑤) = 𝜆,

𝜕
𝑥
Y

𝑡
(V) + 𝜕

𝑥
[𝑛 (𝑡)Y

𝑥
(V) −

3

2

𝑙 (𝑡)Y
5𝑥
(V, 𝑤)

−

15

2

𝑙 (𝑡) 𝜆Y
2𝑥
(V, 𝑤)] = 0.

(30)

By application of the identity (13), the system (30) immedi-
ately leads to the following bilinear Bäcklund transformation:

(𝐷
3

𝑥
− 𝜆)𝐹 ⋅ 𝐺 = 0,

[𝐷
𝑡
+ 𝑛 (𝑡)𝐷

𝑥
−

3

2

𝑙 (𝑡)𝐷
5

𝑥
−

15

2

𝜆𝑙 (𝑡)𝐷
2

𝑥
+ 𝛽]

× 𝐹 ⋅ 𝐺 = 0,

(31)

where 𝛽 is an arbitrary parameter.
By using the Hopf-Cole transformation V = ln𝜓, it

follows from formulas (13) and (14) that

Y
𝑥
(V) =

𝜓
𝑥

𝜓

, Y
2𝑥
(V, 𝑤) = 𝑞

2𝑥
+

𝜓
2𝑥

𝜓

,

Y
𝑡
(V) =

𝜓
𝑡

𝜓

, Y
3𝑥
(V, 𝑤) =

3𝑞
2𝑥
𝜓
𝑥

𝜓

+

𝜓
3𝑥

𝜓

,

Y
5𝑥
(V, 𝑤) =

5𝑞
4𝑥
𝜓
𝑥

𝜓

+

15𝑞
2

2𝑥
𝜓
𝑥

𝜓

+

10𝑞
2𝑥
𝜓
3𝑥

𝜓

+

𝜓
5𝑥

𝜓

;

(32)

therefore, system (30) is linearized into the corresponding
Lax representation

𝐿
1
𝜓 ≡ (3𝑞

2𝑥
𝜕
𝑥
+ 𝜕

3

𝑥
) 𝜓 = 𝜆𝜓,

(𝜕
𝑡
+ 𝐿

2
) 𝜓 ≡ [𝜕

𝑡
+ (𝑛 (𝑡) −

15

2

𝑙 (𝑡) 𝑞
4𝑥
) 𝜕

𝑥

−

15

2

𝜆𝑙 (𝑡) 𝜕
2

𝑥
− 15𝑙 (𝑡) 𝑞

2𝑥
𝜕
3

𝑥
−

3

2

𝑙 (𝑡) 𝜕
5

𝑥

+(−

15

2

𝜆𝑙 (𝑡) 𝑞
2𝑥
+ 𝛽)]𝜓.

(33)

It is easy to check that the integrability condition

[𝐿
1
− 𝜆, 𝜕

𝑡
+ 𝐿

2
] 𝜓 = 0 (34)

is satisfied if 𝑞
2𝑥

= (𝑒
∫𝑚(𝑡)𝑑𝑡

/𝜌)𝑢 and 𝑢 is a solution of
the generalized variable-coefficient fifth-order Korteweg-de
Vries (1).

3.3. Infinite Conservation Laws. Next, through the Bell-
polynomial-type Bäcklund transformation, we will perform
the procedure of deriving the infinite sequence of conserva-
tion laws of (1) in the following form:

𝐼
𝑛,𝑡
+ 𝐹

𝑛,𝑥
= 0, 𝑛 = 1, 2, . . . . (35)

Let

𝜂 =

𝑞
󸀠

𝑥
− 𝑞

𝑥

2

; (36)

it follows from relation (25) that

V
𝑥
= 𝜂, 𝑤

𝑥
= 𝑞

𝑥
+ 𝜂. (37)
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Rewrite (30) in the conserved form

Y
3𝑥
(V, 𝑤) = 𝜆,

𝜕
𝑡
Y

𝑥
(V) + 𝜕

𝑥
[𝑛 (𝑡)Y

𝑥
(V) −

3

2

𝑙 (𝑡)Y
5𝑥
(V, 𝑤)

−

15

2

𝜆𝑙 (𝑡)Y
2𝑥
(V, 𝑤)] = 0.

(38)

Substituting (37) into (38), we can obtain

𝜂
2𝑥
+ 3𝜂𝜂

𝑥
+ 3𝑞

2𝑥
𝜂 + 𝜂

3

= 𝜆 = 𝜀
3

, (39)

𝜂
𝑡
+ 𝜕

𝑥
[𝑛 (𝑡) 𝜂 −

3

2

𝑙 (𝑡)

(15𝜆𝑞
2𝑥
+ 15𝜆𝜂

𝑥
+ 𝜂

4𝑥
+ 5𝑞

4𝑥
𝜂

− 15𝑞
2

2𝑥
𝜂 + 5𝜂𝜂

3𝑥
+ 5𝜆𝜂

2

− 30𝑞
2

2𝑥
𝜂𝜂

𝑥

+10𝜂
2

𝜂
2𝑥
− 15𝜂𝜂

2

𝑥
+ 𝜂

5

) ] = 0,

(40)

where we have used (39) to get (40).
To proceed, inserting the expansion

𝜂 = 𝜀 +

∞

∑

𝑛=1

𝐼
𝑛
(𝑞, 𝑞

𝑥
, . . .) 𝜀

−𝑛 (41)

into (39) and equating the coefficients for power of 𝜀, we then
obtain the recursion relations for the conserved densities 𝐼

𝑛
:

𝐼
1
= −𝑞

2𝑥
= −

𝑒
∫𝑚(𝑡)𝑑𝑡

𝜌

𝑢,

𝐼
2
= 𝑞

3𝑥
=

𝑒
∫𝑚(𝑡)𝑑𝑡

𝜌

𝑢
𝑥
,

𝐼
3
= −

2

3

𝑞
4𝑥
= −

2

3

𝑒
∫𝑚(𝑡)𝑑𝑡

𝜌

𝑢
2𝑥
,

𝐼
4
=

1

3

𝑞
5𝑥
=

1

3

𝑒
∫𝑚(𝑡)𝑑𝑡

𝜌

𝑢
3𝑥
,

(42)

and the recursion relation is given as

𝐼
𝑛
= −

1

3

𝐼
𝑛−2,𝑥𝑥

− 𝐼
𝑛−1,𝑥

− 𝑢𝐼
𝑛−2

−

𝑛−3

∑

𝑖=1

(𝐼
𝑖
𝐼
𝑛−2−𝑖,𝑥

)

−

𝑛−2

∑

𝑖=1

(𝐼
𝑖
𝐼
𝑛−1−𝑖

) −

1

3

∑

𝑖+𝑗+𝑘=𝑛−2

(𝐼
𝑖
𝐼
𝑗
𝐼
𝑘
) ,

𝑛 = 5, 6, 7, . . . .

(43)

In addition, substituting (41) into (40) yields

𝐹
1
= 𝑛 (𝑡) 𝐼

1
−

3

2

𝑙 (𝑡)

× [15𝐼
4,𝑥

+ 𝐼
1,4𝑥

+ 5

𝑒
∫𝑚(𝑡)𝑑𝑡

𝜌

𝑢
2𝑥
𝐼
1

− 15

𝑒
2 ∫𝑚(𝑡)𝑑𝑡

𝜌
2

𝑢
2

𝐼
1
+ 5𝐼

2,3𝑥

+ 5 (2𝐼
1
𝐼
3
+ 𝐼

2

2
+ 2𝐼

5
)

− 30

𝑒
2 ∫𝑚(𝑡)𝑑𝑡

𝜌
2

𝑢
2

𝐼
2,𝑥

+ 10 (2𝐼
1
𝐼
1,2𝑥

+ 𝐼
3,2𝑥

)

−15𝐼
2

1,𝑥
+ 10𝐼

3

1
+ 15𝐼

2

2
+ 5𝐼

5
] ,

𝐹
2
= 𝑛 (𝑡) 𝐼

2
−

3

2

𝑙 (𝑡)

× [15𝐼
5,𝑥

+ 𝐼
2,4𝑥

+ 5

𝑒
∫𝑚(𝑡)𝑑𝑡

𝜌

𝑢
2𝑥
𝐼
2

− 15

𝑒
2 ∫𝑚(𝑡)𝑑𝑡

𝜌
2

𝑢
2

𝐼
2
+ 5 (𝐼

1
𝐼
1,3𝑥

+ 𝐼
3,3𝑥

)

+ 10 (𝐼
1
𝐼
4
+ 𝐼

2
𝐼
3
+ 𝐼

6
) − 30

𝑒
2 ∫𝑚(𝑡)𝑑𝑡

𝜌
2

× 𝑢
2

(𝐼
3,𝑥

+ 𝐼
1
𝐼
1,𝑥
) + 10 (2𝐼

1
𝐼
2,2𝑥

+ 𝐼
4,2𝑥

)

− 30𝐼
1,𝑥
𝐼
2,𝑥

+ 30𝐼
2

1
𝐼
2
+ 20𝐼

2
𝐼
3

+20𝐼
1
𝐼
4
+ 5𝐼

6
] ,

𝐹
3
= 𝑛 (𝑡) 𝐼

3
−

3

2

𝑙 (𝑡)

× [15𝐼
6,𝑥

+ 𝐼
3,4𝑥

+ 5

𝑒
∫𝑚(𝑡)𝑑𝑡

𝜌

𝑢
2𝑥
𝐼
3

− 15

𝑒
2 ∫𝑚(𝑡)𝑑𝑡

𝜌
2

𝑢
2

𝐼
3

+ 5 (𝐼
1
𝐼
2,3𝑥

+ 𝐼
2
𝐼
1,3𝑥

+ 𝐼
4,3𝑥

)

+ 5 (2𝐼
1
𝐼
5
+ 2𝐼

2
𝐼
4
+ 𝐼

2

3
+ 2𝐼

7
)

− 30

𝑒
2 ∫𝑚(𝑡)𝑑𝑡

𝜌
2

𝑢
2

(𝐼
4,𝑥

+ 𝐼
1
𝐼
2,𝑥

+ 𝐼
2
𝐼
1,𝑥
)

+ 10 (2𝐼
1
𝐼
3,2𝑥

+ 2𝐼
3
𝐼
1,2𝑥

+ 𝐼
2

1
𝐼
1,2𝑥

+ 𝐼
5,2𝑥

)

− 15 (𝐼
2

2,𝑥
+ 𝐼

1
𝐼
2

2,𝑥
) + 5𝐼

4

1
+ 30𝐼

2

1
𝐼
3
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+30𝐼
1
𝐼
2

2
+ 10𝐼

2

3
+ 20𝐼

2
𝐼
4
+ 20𝐼

1
𝐼
5
+ 5𝐼

7
] ,

𝐹
4
= 𝑛 (𝑡) 𝐼

4
−

3

2

𝑙 (𝑡)

× [15𝐼
7,𝑥

+ 𝐼
4,4𝑥

+ 5

𝑒
∫𝑚(𝑡)𝑑𝑡

𝜌

𝑢
2𝑥
𝐼
4

− 15

𝑒
2 ∫𝑚(𝑡)𝑑𝑡

𝜌
2

𝑢
2

𝐼
4

+ 5 (𝐼
1
𝐼
3,3𝑥

+ 𝐼
2
𝐼
2,3𝑥

+ 𝐼
3
𝐼
1,3𝑥

+ 𝐼
5,3𝑥

)

+ 10 (2𝐼
1
𝐼
6
+ 𝐼

2
𝐼
5
+ 𝐼

3
𝐼
4
+ 𝐼

8
)

− 30

𝑒
2 ∫𝑚(𝑡)𝑑𝑡

𝜌
2

𝑢
2

× (𝐼
5,𝑥

+ 𝐼
1
𝐼
3,𝑥

+ 𝐼
3
𝐼
1,𝑥

+ 𝐼
2
𝐼
2,𝑥
)

+ 10 (2𝐼
1
𝐼
4,2𝑥

+ 2𝐼
1,2𝑥

(𝐼
1
𝐼
2
+ 𝐼

4
)

+ 𝐼
2,2𝑥

(𝐼
2

1
+ 2𝐼

3
) + 𝐼

6,2𝑥
)

− 15 (2𝐼
2,𝑥
𝐼
3,𝑥

+ 2𝐼
1,𝑥
𝐼
2

4,𝑥
+ 2𝐼

1
𝐼
1,𝑥
𝐼
2,𝑥

+𝐼
2
𝐼
2

1,𝑥
) + 20𝐼

3

1
𝐼
2
+ 60𝐼

1
𝐼
2
𝐼
3

+ 10𝐼
3

2
+ 30𝐼

2

1
𝐼
4
+ 20𝐼

2
𝐼
5
+ 20𝐼

1
𝐼
6

+20𝐼
3
𝐼
4
+ 5𝐼

8
] ,

𝐹
𝑛
= 𝑛 (𝑡) 𝐼

𝑛
−

3

2

𝑙 (𝑡)

× [15𝐼
𝑛+3,𝑥

+ 𝐼
𝑛,4𝑥

+ 5

𝑒
∫𝑚(𝑡)𝑑𝑡

𝜌

𝑢
2𝑥
𝐼
𝑛

− 15

𝑒
2 ∫𝑚(𝑡)𝑑𝑡

𝜌
2

𝑢
2

𝐼
𝑛
+ 5(

𝑛−1

∑

𝑘=1

𝐼
𝑘
𝐼
𝑛−𝑘,3𝑥

+ 𝐼
𝑛+1,3𝑥

)

+ 5(

𝑛+2

∑

𝑘=1

𝐼
𝑘
𝐼
𝑛+3−𝑘

+ 2𝐼
𝑛+4

) − 30

𝑒
2 ∫𝑚(𝑡)𝑑𝑡

𝜌
2

𝑢
2

× (

𝑛−1

∑

𝑘=1

𝐼
𝑘
𝐼
𝑛−𝑘,𝑥

+ 𝐼
𝑛+1,𝑥

)

+ 10 × ( ∑

𝑖+𝑗+𝑘=𝑛

𝐼
𝑖
𝐼
𝑗
𝐼
𝑘,𝑥

+ 2

𝑛

∑

𝑘=1

𝐼
𝑘
𝐼
𝑛+1−𝑘,𝑥

+ 𝐼
𝑛+2,𝑥

)

− 15( ∑

𝑖+𝑗+𝑘=𝑛

𝐼
𝑖
𝐼
𝑗,𝑥
𝐼
𝑘,𝑥

+

𝑛

∑

𝑘=1

𝐼
𝑘,𝑥
𝐼
𝑛+1−𝑘,𝑥

)

+ ∑

𝑖+𝑗+𝑘+𝑙+𝑚=𝑛

𝐼
𝑖
𝐼
𝑗
𝐼
𝑘
𝐼
𝑙
𝐼
𝑚
+ ∑

𝑖+𝑗+𝑘+𝑙=𝑛+1

𝐼
𝑖
𝐼
𝑗
𝐼
𝑘
𝐼
𝑙

+ ∑

𝑖+𝑗+𝑘=𝑛+2

𝐼
𝑖
𝐼
𝑗
𝐼
𝑘
+ ∑

𝑖+𝑗=𝑛+3

𝐼
𝑖
𝐼
𝑗
+ 𝐼

𝑛+4

]

]

,

𝑛 = 4, 5, 6, . . . .

(44)

With the recursion formulae of 𝐼
𝑛
and 𝐹

𝑛
presented pre-

viously, the infinite conservation laws for (1) can be con-
structed.

4. Quasi-Periodic Wave Solutions and
Asymptotic Properties

The quasi-periodic wave solutions of (1) are based on the
followingmultidimensional Riemann theta function of genus
𝑁:

𝜗 (𝜉) = 𝜗 (𝜉, 𝜏) = ∑

𝑛∈𝑍
𝑁

𝑒
−𝜋⟨𝜏𝑛,𝑛⟩+2𝜋𝑖⟨𝜉,𝑛⟩

. (45)

Here the integer value vector 𝑛 = (𝑛
1
, . . . , 𝑛

𝑁
)
𝑇

∈ 𝑍
𝑁, and

complex phase variables 𝜉 = (𝜉
1
, . . . , 𝜉

𝑁
)
𝑇

∈ 𝐶
𝑁. Moreover,

for two vectors𝑓 = (𝑓
1
, . . . , 𝑓

𝑁
)
𝑇 and𝑔 = (𝑔

1
, . . . , 𝑔

𝑁
)
𝑇, their

inner product is defined by

⟨𝑓, 𝑔⟩ = 𝑓
1
𝑔
1
+ 𝑓

2
𝑔
2
+ ⋅ ⋅ ⋅ + 𝑓

𝑁
𝑔
𝑁
. (46)

The 𝜏 = (𝜏
𝑖𝑗
) is a positive definite and real-valued symmetric

𝑁 × 𝑁 matrix, which we call the period matrix of the
theta function. The entries 𝜏

𝑖𝑗
of the period matrix 𝜏 can be

considered as free parameters of the theta function (45).
Now, we consider the solution for (1) in the following

bilinear form:

𝐺 (𝐷
𝑥
, 𝐷

𝑡
) = (𝐷

𝑥
𝐷

𝑡
+ 𝑙 (𝑡)𝐷

6

𝑥
+ 𝑛 (𝑡)𝐷

2

𝑥
+ 𝑐) 𝑓 ⋅ 𝑓 = 0,

(47)

where 𝑐 is the constant of integration.

4.1. Construction of One-Periodic Waves. In this section, we
consider the one-periodic wave solutions for (1). When𝑁 =

1, the theta function reduces the following Fourier series in
𝑛:

𝜗 (𝜉, 𝜏) =

∞

∑

𝑛=−∞

𝑒
2𝜋𝑖𝑛𝜉−𝜋𝑛

2
𝜏

, (48)

where the phase variable 𝜉 = 𝑘𝑥 + ∫𝜔𝑑𝑡 + 𝜉
(0) and the

parameter 𝜏 > 0.



Abstract and Applied Analysis 7

Substituting (48) into (47), we obtain

𝐺 (𝐷
𝑥
, 𝐷

𝑡
) 𝜗 (𝜉, 𝜏) ⋅ 𝜗 (𝜉, 𝜏)

=

∞

∑

𝑛=−∞

∞

∑

𝑚=−∞

𝐺 (𝐷
𝑥
, 𝐷

𝑡
) 𝑒

2𝜋𝑖𝑛𝜉−𝜋𝑛
2
𝜏

𝑒
2𝜋𝑖𝑚𝜉−𝜋𝑚

2
𝜏

=

∞

∑

𝑛=−∞

∞

∑

𝑚=−∞

𝐺 [2𝜋𝑖 (𝑛 − 𝑚) 𝑘, 2𝜋𝑖 (𝑛 − 𝑚)𝜔]

× 𝑒
2𝜋(𝑛+𝑚)𝜉−𝜋(𝑛

2
+𝑚
2
)𝜏

𝑚=𝑚
󸀠
−𝑛

=

∞

∑

𝑚
󸀠
=−∞

{

∞

∑

𝑛=−∞

𝐺 [2𝜋𝑖 (2𝑛 − 𝑚
󸀠

) 𝑘,

2𝜋𝑖 (2𝑛 − 𝑚
󸀠

) 𝜔]

× 𝑒
−𝜋[𝑛
2
+(𝑛−𝑚

󸀠
)

2

]𝜏

} 𝑒
2𝜋𝑖𝑚
󸀠
𝜉

=

∞

∑

𝑚
󸀠
=−∞

𝐺(𝑚
󸀠

) 𝑒
2𝜋𝑖𝑚
󸀠
𝜉

,

(49)

where

𝐺(𝑚
󸀠

) =

∞

∑

𝑛=−∞

𝐺 [2𝜋𝑖 (2𝑛 − 𝑚
󸀠

) 𝑘, 2𝜋𝑖 (2𝑛 − 𝑚
󸀠

) 𝜔]

× 𝑒
−𝜋[𝑛
2
+(𝑛−𝑚

󸀠
)

2

]𝜏

.

(50)

By shifting sum index as 𝑛 = 𝑛
󸀠

+ 1, we conclude that

𝐺(𝑚
󸀠

) = (

∞

∑

𝑛
󸀠
=−∞

𝐺{2𝜋𝑖 [2𝑛
󸀠

− (𝑚
󸀠

− 2)] 𝑘,

2𝜋𝑖 [2𝑛
󸀠

− (𝑚
󸀠

− 2)] 𝜔}

×𝑒
−𝜋{𝑛
󸀠2
+[𝑛
󸀠
−(𝑚
󸀠
−2)]

2

}𝜏

)𝑒
[−2𝜋(𝑚

󸀠
−1)𝜏]

= 𝐺 (𝑚
󸀠

− 2) 𝑒
−2𝜋(𝑚

󸀠
−1)𝜏

= ⋅ ⋅ ⋅

= {

𝐺 (0) 𝑒
−𝜋𝑚
󸀠2
(𝜏/2)

, 𝑚
󸀠 is even,

𝐺 (1) 𝑒
−𝜋(𝑚

󸀠2
−1)(𝜏/2)

, 𝑚
󸀠 is odd,

(51)

which imply that if 𝐺(0) = 𝐺(1) = 0, then it follows that

𝐺(𝑚
󸀠

) = 0, 𝑚
󸀠

∈ 𝑍, (52)

and thus the theta function (48) is the exact solution of (47).
In this way, we may let

𝐺 (0) =

∞

∑

𝑛=−∞

[−16𝜋
2

𝑛
2

𝑘𝜔 − 4096𝜋
6

𝑛
6

𝑘
6

𝑙 (𝑡)

− 16𝜋
2

𝑛
2

𝑘
2

𝑛 (𝑡) + 𝑐] 𝑒
−2𝜋𝑛
2
𝜏

= 0,

𝐺 (1) =

∞

∑

𝑛=−∞

[−4𝜋
2

(2𝑛 − 1)
2

𝑘𝜔 − 64𝜋
6

(2𝑛 − 1)
6

𝑘
6

𝑙 (𝑡)

−4𝜋
2

(2𝑛 − 1)
2

𝑘
2

𝑛 (𝑡) + 𝑐] 𝑒
−𝜋(2𝑛

2
−2𝑛+1)𝜏

= 0.

(53)

Denote

𝜆 = 𝑒
−𝜋𝜏

, 𝑎
11
= −

∞

∑

𝑛=−∞

16𝜋
2

𝑛
2

𝑘𝜆
2𝑛
2

,

𝑎
12
=

∞

∑

𝑛=−∞

𝜆
2𝑛
2

, 𝑎
22
=

∞

∑

𝑛=−∞

𝜆
2𝑛
2
−2𝑛+1

,

𝑎
21
= −

∞

∑

𝑛=−∞

4𝜋
2

(2𝑛 − 1)
2

𝑘𝜆
2𝑛
2
−2𝑛+1

,

𝑏
1
=

∞

∑

𝑛=−∞

(4096𝜋
6

𝑛
6

𝑘
6

𝑙 (𝑡) + 16𝜋
2

𝑛
2

𝑘
2

𝑛 (𝑡)) 𝜆
2𝑛
2

,

𝑏
2
=

∞

∑

𝑛=−∞

(64𝜋
6

(2𝑛 − 1)
6

𝑘
6

𝑙 (𝑡) + 4𝜋
2

(2𝑛 − 1)
2

× 𝑘
2

𝑛 (𝑡)) 𝜆
2𝑛
2
−2𝑛+1

.

(54)

Then (53) can be written as

(

𝑎
11

𝑎
12

𝑎
21

𝑎
22

)(

𝜔

𝑐
) = (

𝑏
1

𝑏
2

) . (55)

Notice that there are a lot of choices for the angular wave
number 𝑘. The determinant of the coefficient matrix 𝐴(𝑘) =
(𝑎

𝑖𝑗
(𝑘))

2×2
is a polynomial in 𝑘; if det(𝐴(𝑘)) ̸≡ 0, then

𝐴
0
:= {𝑘 ∈ 𝑅 | det (𝐴 (𝑘)) = 0} (56)

is either an empty set or a finite set, and so, there are real
solutions (𝜔, 𝑐) to the system (55) for 𝑘 ∉ 𝐴

0
. Solving this

system, we have

𝜔 =

𝑏
1
𝑎
22
− 𝑏

2
𝑎
12

𝑎
11
𝑎
22
− 𝑎

12
𝑎
21

. (57)

Therefore we get a one-periodic wave solution of (1):

𝑢 = 2𝜌𝑒
−∫𝑚(𝑡)𝑑𝑡

(log 𝜗 (𝜉, 𝜏))
𝑥𝑥
, (58)

where the parameter 𝜔 is given by (57).
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4.2. Asymptotic Property of One-Periodic Waves. In the fol-
lowing, we further consider asymptotic properties of the one-
periodic wave solution. It is shown that the soliton solution
of (1) can be obtained as a limit of the one-periodic wave
solution. The relation between these two solutions can be
established as Theorem 3.

Theorem 3. Suppose that the vector (𝜔, 𝑐)𝑇 is a solution of the
system (55), and for the quasi-periodic wave solution (58), we
let

𝜉 =

𝜉
󸀠

2𝜋𝑖

+

𝜏

2𝑖

, 𝜉
󸀠

= 𝑘
󸀠

𝑥 + ∫𝜔
󸀠

𝑑𝑡 + 𝜉
(0)
󸀠

, (59)

where 𝑘󸀠 = 2𝜋𝑖𝑘, 𝜔
󸀠

= 2𝜋𝑖𝜔, 𝜉
(0)
󸀠

and = 2𝜋𝑖𝜉
(0)

− 𝜋𝜏. Then
the one-periodic solution (58) tends to the one-soliton solution
(20) under a small amplitude limit; that is,

𝑢 󳨀→ 𝑢
1
, 𝑎𝑠 𝜆 󳨀→ 0. (60)

Proof. By using (54), we write functions 𝑎
𝑖𝑗
, 𝑏

𝑗
, 𝑖, 𝑗 = 1, 2, as

the series about 𝜆:

𝑎
11
= − 32𝜋

2

𝑘 (𝜆
2

+ 4𝜆
8

+ 9𝜆
18

+ ⋅ ⋅ ⋅ ) ,

𝑎
12
= 1 + 2𝜆

2

+ 2𝜆
8

+ 2𝜆
18

+ 2𝜆
32

+ ⋅ ⋅ ⋅ ,

𝑎
21
= − 8𝜋

2

𝑘 (𝜆 + 9𝜆
5

+ 25𝜆
13

+ ⋅ ⋅ ⋅ ) ,

𝑎
22
= 2𝜆 + 2𝜆

5

+ 2𝜆
13

+ 2𝜆
25

+ ⋅ ⋅ ⋅ ,

𝑏
1
= (8192𝜋

6

𝑘
6

𝑙 (𝑡) + 32𝜋
2

𝑘
2

𝑛 (𝑡)) 𝜆
2

+ ⋅ ⋅ ⋅ ,

𝑏
2
= (128𝜋

6

𝑘
6

𝑙 (𝑡) + 8𝜋
2

𝑘
2

𝑛 (𝑡)) 𝜆 + ⋅ ⋅ ⋅ .

(61)

Suppose that the solution of system (55) has the following
form:

𝜔 = 𝜔
0
+ 𝜔

1
𝜆
1

+ 𝜔
2
𝜆
2

+ ⋅ ⋅ ⋅ = 𝜔
0
+ 𝑜 (𝜆) , (62)

substituting expansions (61) and (62) into system (55), and let
𝜆 → 0; we can obtain the following relation immediately:

𝜔
0
= −16𝜋

4

𝑘
5

𝑙 (𝑡) − 𝑘𝑛 (𝑡) ; (63)

combining (59) and (63), we then obtain

𝜔
󸀠

= 2𝜋𝑖𝜔 󳨀→ −32𝜋
5

𝑙 (𝑡) 𝑖𝑘
5

− 2𝜋𝑛 (𝑡) 𝑖𝑘,

= − 𝑙 (𝑡) 𝑘
󸀠5

− 𝑛 (𝑡) 𝑘
󸀠

.

(64)

It remains to show that the one-periodic wave (58) degen-
erates to the one-soliton solution (20) under the limit 𝜆 → 0.

We first expand the periodic function 𝜗(𝜉) in the form

𝜗 (𝜉, 𝜏) = 1 + 𝜆 (𝑒
2𝜋𝑖𝜉

+ 𝑒
−2𝜋𝑖𝜉

) + 𝜆
4

(𝑒
4𝜋𝑖𝜉

+ 𝑒
−4𝜋𝑖𝜉

) + ⋅ ⋅ ⋅ .

(65)

By using transformation (59), it follows that

𝜗 (𝜉, 𝜏) = 1 + 𝑒
𝜉
󸀠

+ 𝜆
2

(𝑒
−𝜉
󸀠

+ 𝑒
2𝜉
󸀠

) + 𝜆
6

(𝑒
−2𝜉
󸀠

+ 𝑒
3𝜉
󸀠

) + ⋅ ⋅ ⋅ ,

󳨀→ 1 + 𝑒
𝜉
󸀠

, as 𝜆 󳨀→ 0.

(66)

Thus, we conclude that the one-periodic solution (58) may go
to one-soliton solution (20) as the amplitude 𝜆 → 0.

4.3. Construction of Two-Periodic Waves. In the case when
𝑁 = 2, the Riemann theta function (45) takes the form

𝜗 (𝜉, 𝜏) = 𝜗 (𝜉
1
, 𝜉

2
, 𝜏) = ∑

𝑛∈𝑍
2

𝑒
−𝜋⟨𝜏𝑛,𝑛⟩+2𝜋𝑖⟨𝜉,𝑛⟩

, (67)

where 𝑛 = (𝑛
1
, 𝑛

2
)
𝑇

∈ 𝑍
2, 𝜉 = (𝜉

1
, 𝜉

2
)
𝑇

∈ 𝐶
2, and 𝜉

𝑗
= 𝑘

𝑗
𝑥 +

∫𝜔
𝑗
𝑑𝑡 + 𝜉

(0)

𝑗
, 𝑗 = 1, 2. 𝜏 is a positive definite and real-valued

symmetric 2 × 2matrix which can take the form

𝜏 = (

𝜏
11

𝜏
12

𝜏
21

𝜏
22

) , 𝜏
11
> 0, 𝜏

22
> 0, 𝜏

11
𝜏
22
− 𝜏

2

12
> 0. (68)

Substituting (67) into (47), we have

𝐺 (𝐷
𝑥
, 𝐷

𝑡
) 𝜗 (𝜉

1
, 𝜉

2
, 𝜏) ⋅ 𝜗 (𝜉

1
, 𝜉

2
, 𝜏)

= ∑

𝑚,𝑛∈𝑍
2

𝐺 (2𝜋𝑖⟨𝑛 − 𝑚, 𝑘⟩, 2𝜋𝑖⟨𝑛 − 𝑚, 𝜔⟩)

× 𝑒
2𝜋𝑖⟨𝜉,𝑛+𝑚⟩−𝜋(⟨𝜏𝑚,𝑚⟩+⟨𝜏𝑛,𝑛⟩)

𝑚=𝑚
󸀠
−𝑛

= ∑

𝑚
󸀠
∈𝑍
2

∑

𝑛∈𝑍
2

𝐺(2𝜋𝑖 ⟨2𝑛 − 𝑚
󸀠

, 𝑘⟩ , 2𝜋𝑖 ⟨2𝑛 − 𝑚
󸀠

, 𝜔⟩)

× 𝑒
−𝜋[⟨𝜏(𝑛−𝑚

󸀠
,𝑛−𝑚
󸀠
⟩]+⟨𝜏𝑛,𝑛⟩]

⋅ 𝑒
2𝜋𝑖⟨𝜉,𝑚

󸀠
⟩

= ∑

𝑚
󸀠
∈𝑍
2

𝐺(𝑚
󸀠

1
, 𝑚

󸀠

2
) 𝑒

2𝜋𝑖⟨𝑚
󸀠
,𝜉⟩

,

(69)
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where 𝐺(𝑚󸀠

1
, 𝑚

󸀠

2
) is the coefficient of 𝑒2𝜋𝑖⟨𝑚

󸀠
,𝜉⟩. For each fixed

𝑙 = 1, 2, by shifting 𝑗th summation index as 𝑛
𝑗
= 𝑛

󸀠

𝑗
+𝛿

𝑗,𝑙
with

𝛿
𝑗,𝑙
representing Kronecker’s delta we obtain that

𝐺(𝑚
󸀠

1
, 𝑚

󸀠

2
)

= ∑

𝑛∈𝑍
2

𝐺(2𝜋𝑖 ⟨2𝑛 − 𝑚
󸀠

, 𝑘⟩ , 2𝜋𝑖 ⟨2𝑛 − 𝑚
󸀠

, 𝜔⟩)

× 𝑒
−𝜋[⟨𝜏(𝑛−𝑚

󸀠
,𝑛−𝑚
󸀠
⟩]+⟨𝜏𝑛,𝑛⟩]

= ∑

𝑛
󸀠
∈𝑍
2

𝐺(2𝜋𝑖

2

∑

𝑗=1

[2𝑛
󸀠

𝑗
− (𝑚

󸀠

𝑗
− 2𝛿

𝑗𝑙
)] 𝑘

𝑗
,

2𝜋𝑖

2

∑

𝑗=1

[2𝑛
󸀠

𝑗
− (𝑚

󸀠

𝑗
− 2𝛿

𝑖𝑗
)] 𝜔

𝑗
)

× exp
{

{

{

−𝜋

2

∑

𝑗,ℎ=1

(𝑛
󸀠

𝑗
+ 𝛿

𝑗𝑙
) 𝜏

𝑗ℎ
(𝑛

󸀠

ℎ
+ 𝛿

ℎ𝑙
)

− 𝜋

2

∑

𝑗,ℎ=1

[(𝑚
󸀠

𝑗
+ 2𝛿

𝑗𝑙
− 𝑛

󸀠

𝑗
) + 𝛿

𝑗𝑙
]

×𝜏
𝑗ℎ
[(𝑚

󸀠

ℎ
− 2𝛿

ℎ𝑙
− 𝑛

󸀠

ℎ
) + 𝛿

ℎ𝑙
]

}

}

}

= {

𝐺(𝑚
󸀠

1
− 2,𝑚

󸀠

2
) 𝑒

−2𝜋(𝜏
11
𝑚
󸀠

1
+𝜏
12
𝑚
󸀠

2
)+2𝜋𝜏

11
, 𝑙 = 1,

𝐺 (𝑚
󸀠

1
, 𝑚

󸀠

2
− 2) 𝑒

−2𝜋(𝜏
12
𝑚
󸀠

1
+𝜏
22
𝑚
󸀠

2
)+2𝜋𝜏

22
, 𝑙 = 2,

(70)

which implies that if the following equations are satisfied

𝐺 (0, 0) = 𝐺 (0, 1) = 𝐺 (1, 0) = 𝐺 (1, 1) = 0 (71)

then we have 𝐺(𝑚󸀠

1
, 𝑚

󸀠

2
) = 0, for all𝑚󸀠

1
, 𝑚

󸀠

2
∈ 𝑍, and thus the

function (67) is an exact solution of (47). By introducing the
notations as

𝐴 = (𝑎
𝑗𝑙
)
4×3

, 𝑏 = (𝑏
1
, 𝑏

2
, 𝑏

3
, 𝑏

4
)
𝑇

,

𝑎
𝑗1
= − 4𝜋

2

∑

𝑛
1
,𝑛
2
∈𝑍
2

⟨2𝑛 − 𝑠
𝑗

, 𝑘⟩ (2𝑛
1
− 𝑠

𝑗

1
) 𝜀

𝑗
(𝑛) ,

𝑎
𝑗2
= − 4𝜋

2

∑

𝑛
1
,𝑛
2
∈𝑍
2

⟨2𝑛 − 𝑠
𝑗

, 𝑘⟩ (2𝑛
2
− 𝑠

𝑗

2
) 𝜀

𝑗
(𝑛) ,

𝑎
𝑗3
= ∑

𝑛
1
,𝑛
2
∈𝑍
2

𝜀
𝑗
(𝑛) ,

𝑏
𝑗
= − 𝑙 (𝑡) (2𝜋𝑖)

6

⟨2𝑛 − 𝑠
𝑗

, 𝑘⟩

6

− 𝑛 (𝑡) (2𝜋𝑖)
2

× ⟨2𝑛 − 𝑠
𝑗

, 𝑘⟩

2

,

𝜀
𝑗
(𝑛) = 𝜆

𝑛
2

1
+(𝑛
1
−𝑠
𝑗

1
)

2

1
𝜆
𝑛
2

2
+(𝑛
2
−𝑠
𝑗

2
)

2

2
𝜆
𝑛
1
𝑛
2
+(𝑛
1
−𝑠
𝑗

1
)(𝑛
2
−𝑠
𝑗

2
)

1
,

𝜆
1
= 𝑒

−𝜋𝜏
11
, 𝜆

2
= 𝑒

−𝜋𝜏
22
, 𝜆

3
= 𝑒

−2𝜋𝜏
12
,

𝑠
𝑗

= (𝑠
𝑗

1
, 𝑠

𝑗

2
) , 𝑗 = 1, 2, 3, 4,

𝑠
1

= (0, 0) , 𝑠
2

= (1, 0) ,

𝑠
3

= (0, 1) , 𝑠
4

= (1, 1) ,

(72)

(71) can be written as a linear system:

𝐴(𝜔
1
, 𝜔

2
, 𝑐)

𝑇

= 𝑏. (73)

Notice that both𝐴 and 𝑏 depend on 𝑘, so the solution of (73)
also depends on 𝑘. And if

rank (𝐴 (𝑘)) = rank (𝐴 (𝑘) , 𝑏 (𝑘)) = 3, (74)

then there is a unique nonzero solution of (𝜔
1
, 𝜔

2
, 𝑐) to the

system (73). Solving this system, we can get a two-periodic
wave solution of (1):

𝑢 = 2𝜌𝑒
−∫𝑚(𝑡)𝑑𝑡

(log 𝜗 (𝜉
1
, 𝜉

2
, 𝜏))

𝑥𝑥
, (75)

with 𝜗(𝜉
1
, 𝜉

2
) and𝜔

1
, 𝜔

2
, 𝑐 given by (67) and (73), respectively,

while 𝑘 = (𝑘
1
, 𝑘

2
) is determined by (74).

4.4. Asymptotic Property of Two-Periodic Waves. In this
subsection, we consider the asymptotic properties of the two-
periodic solution (75). In a similar way toTheorem 3, we can
establish the relation between the two-periodic solution (75)
and the two-soliton solution (21) as follows.

Theorem4. Suppose that the vector (𝜔
1
, 𝜔

2
, 𝑐)

𝑇 is a solution of
the system (73), and for the quasi-periodic wave solution (75),
one lets

𝜉
𝑗
=

𝜉
󸀠

𝑗

2𝜋𝑖

+

𝜏
𝑗𝑗

2𝑖

, 𝜉
󸀠

𝑗
= 𝑘

󸀠

𝑗
𝑥 + ∫𝜔

󸀠

𝑗
𝑑𝑡 + 𝜉

(0)
󸀠

𝑗
,

(76)

where 𝑘󸀠
𝑗
= 2𝜋𝑖𝑘

𝑗
, 𝜔󸀠

𝑗
= 2𝜋𝑖𝜔

𝑗
, 𝜉(0)

󸀠

𝑗
= 2𝜋𝑖𝜉

(0)

𝑗
− 𝜋𝜏

𝑗𝑗
,

and 𝜏
12

= 𝐴
12
/2𝜋, 𝑗 = 1, 2, and 𝐴

12
is given in (21). Then

the two-periodic solution (75) tends to the two-soliton solution
(21) under a small amplitude limit; that is,

𝑢 󳨀→ 𝑢
2
, 𝑎𝑠 𝜆

1
, 𝜆

2
󳨀→ 0. (77)

Proof. According to formula (67), we expand the function
𝜗(𝜉

1
, 𝜉

2
) in the following form:

𝜗 (𝜉
1
, 𝜉

2
, 𝜏) = 1 + (𝑒

2𝜋𝑖𝜉
1
+ 𝑒

−2𝜋𝑖𝜉
1
) 𝑒

−𝜋𝜏
11

+ (𝑒
2𝜋𝑖𝜉
2
+ 𝑒

−2𝜋𝑖𝜉
2
) 𝑒

−𝜋𝜏
22
,

+ (𝑒
2𝜋𝑖(𝜉
1
+𝜉
2
)

+ 𝑒
−2𝜋𝑖(𝜉

1
+𝜉
2
)

)

× 𝑒
−𝜋(𝜏
11
+2𝜏
12
+𝜏
22
)

+ ⋅ ⋅ ⋅ .

(78)
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By using (76), we get

𝜗 (𝜉
1
, 𝜉

2
, 𝜏) = 1 + 𝑒

𝜉
󸀠

1
+ 𝑒

𝜉
󸀠

2
+ 𝑒

𝜉
󸀠

1
+𝜉
󸀠

2
−2𝜋𝜏
12

+ 𝜆
2

1
𝑒
−𝜉
󸀠

1
+ 𝜆

2

2
𝑒
−𝜉
󸀠

2
,

+ 𝜆
2

1
𝜆
2

2
𝑒
−𝜉
󸀠

1
−𝜉
󸀠

2
−2𝜋𝜏
12
+ ⋅ ⋅ ⋅

󳨀→ 1 + 𝑒
𝜉
󸀠

1
+ 𝑒

𝜉
󸀠

2
+ 𝑒

𝜉
󸀠

1
+𝜉
󸀠

2
+𝐴
12
,

as 𝜆
1
, 𝜆

2
󳨀→ 0,

(79)

where 𝜉󸀠
𝑗
= 𝑘

󸀠

𝑗
𝑥+∫𝜔

󸀠

𝑗
𝑑𝑡+𝜉

(0)
󸀠

𝑗
, 𝑗 = 1, 2.Thus the two-periodic

wave solutions can be reduced to two-soliton solutions (21)
under the limit 𝜆

1
, 𝜆

2
→ 0; we only need to prove that

𝜔
󸀠

𝑗
󳨀→ −𝑙 (𝑡) 𝑘

󸀠5

𝑗
− 𝑛 (𝑡) 𝑘

󸀠

𝑗
, 𝑗 = 1, 2. (80)

And the proof of (80) is similar to the proof of formula (64).

5. Conclusions

In this paper, the generalized variable-coefficient fifth-order
Korteweg-de Vries equation is investigated. By virtue of
the Bell-polynomial approach, bilinear form of (1) has
been derived under condition (2) and bilinear Bäcklund
transformation, Lax pairs, and infinite conservation laws of
the equation are constructed. Furthermore, the Riemann
theta functions have been used to generate one-periodic
and two-periodic wave solutions of the equation, and the
relations between the periodic wave solutions and soliton
solutions are also established. The quasi-periodic solutions
play an important role in understanding the diversity and
integrability of nonlinear differential equations.We think that
there are still many deep relations between the quasi-periodic
solutions and other kinds of solutionswhich still remain open
and worth studying.
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