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By using a generalized Riccati transformation technique and an inequality, we establish some oscillation theorems for the fractional
differential equation [a (t) (p (t) + q (t) (D%x) (t))"]" - b(t) f (Jtoo(s - t)_“x(s)ds) =0, fort > t, > 0, where D*x is the Liouville
right-sided fractional derivative of order « € (0, 1) of x and y is a quotient of odd positive integers. The results in this paper extend

and improve the results given in the literatures (Chen, 2012).

1. Introduction

Differential equations with fractional-order derivatives have
gained importance due to their various applications in
science and engineering such as rheology, dynamical pro-
cesses in self-similar and porous structures, heat conduction,
control theory, electroanalytical chemistry, chemical physics,
and economics; for example, see [1-7]. It is well recognized
that fractional calculus leads to better results than classical
calculus.

Many articles have investigated some aspects of differ-
ential equation with fractional-order derivatives, such as
the existence and uniqueness for p-type fractional neutral
differential equations, smoothness and stability of the solu-
tions, and the methods for explicit and numerical solu-
tions; for example, see [8-16]. However, to the best of
the author’s knowledge very little is known regarding the
oscillatory behavior of differential equation with fractional-
order derivatives up to now except for [17-27].

Grace initiated the study of oscillatory theory of FDE, and
he considered the equations of the form

Dix+ f,(tx) =v(t) + fo(t,x),  lim [\ (t) = b,
t—a’

@

where DY denotes the Riemann-Liouville differential opera-
tor of order g with 0 < g < 1. In fact, the IVP is equivalent to
the Volteria fractional integral equation:

-1

" rL J t (t =) [v(s) + i (s,%(s)) @

—f1 (s,x(s))] ds.
He made use of the conditions:

xf;(t,x)>0 (i=1,2), x#0, t >aq,

|f1 (&%) = py () |x|ﬁ, |f> (80| < py () x], ©)

x+0, t>a,

where p;, p, € C([a,00),R") and B,y > 0 are real numbers.
He talked over the four casesof f, = 0; 3 > landy = 1;
B=1landy < 1; 8> 1landy < 1. Besides that, he replaced
0 < g < 1lwithm -1 < g < m and got some results on the
same cases by using an inequality; refer to [17].


http://dx.doi.org/10.1155/2014/419597

Chen studied the oscillation of the differential equation
with fractional-order derivatives:

[r ) (D%)" 0] - q () f < [To-oyo dv> _o,

for t >0,
(4)

where D%y denotes the Liouville right-sided fractional
derivative of order « with the form

L 4 J; (v-8""y(v)dv

DI O =t ga

€)
for t € R, = (0,00),

and he obtained four main results under the condition of

J () dt = oo,
tU

- (6)
J @) dt < o
t

by using a generalized Riccati transformation technique and
an inequality; see [18].

Using the same method, in 2013, Chen [23] studied
oscillatory behavior of the fractional differential equation
with the form

(DX y) (1) = p (1) (D2y) (1)

o (7)
+q(t)f<L (v—t)_“y(v)dv>:o for t > 0,

where D%y is the Liouville right-sided fractional derivative of
order « € (0,1) of y.

Zheng [24] considered the oscillation of the nonlinear
fractional differential equation with damping term:

[a(®)(D*x(1)!] + p (t) (D x (t))"

() f (jm (- 0% (©) dE) 0, teltyo0),
®)

where D%x(t) denotes the Liouville right-sided fractional
derivative of order « of x. Using a generalized Riccati function
and inequality technique, he established some new oscillation
criteria.

Han et al. [19] considered the oscillation for a class of
fractional differential equation:

[r () g (DY) )] - p(0) (joo =5y () ds> _o,

for t > 0,
9)

where 0 < « < 1 is a real number and D%y is the Liou-
ville right-sided fractional derivative of order « of y.
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By generalized Riccati transformation technique, oscillation
criteria for the nonlinear fractional differential equation are
obtained.

Qi and Cheng [20] studied the oscillation behavior of the
equation with the form

(@@ [rOD%®]) +p @) [r () Dx (1)]
0 (10)
~a® [ €0 ®dE=0. tefioo),

where D% x(t) also denotes the Liouville right-sided fractional
derivative and some sufficient conditions for the oscillation of
the equation were given.

The above works on the oscillation are all on fractional
equations with Liouville right-sided fractional derivative by
Riccati transformation technique.

We notice that very little attention is paid to oscil-
lation of fractional differential equations with Riemann-
Liouville derivative. For the relative works of study for oscil-
latory behavior of fractional differential equations Riemann-
Liouville derivative we refer to [17, 21, 25, 26].

Marian et al. [25] presented the oscillatory behavior of
forced nonlinear fractional difference equation of the form

ANxt)+ fit,x(t+a)=v(E)+ f, & x(t+a)),
(11)

teN, O0<ac<l, A“_lx(t)|t=0 = Xy»

where A% is a Riemann-Liouville like discrete fractional
difference operator of order «, and some oscillation criteria
are established by the same method with [17].

In 2013, Chen et al. [21] improved and extended some
work in [17] by considering the forced oscillation of fractional
differential equation:

Dix+ fi (t,x) =v(t) + f, (t,x),

_ (12)
lim J)™9x (t) = by,
t—at
with the conditions
D7*x(a)=b, (k=1,2,...,m-1),
(13)

lim I x () = b,
t—a*

where D7 denotes the Riemann-Liouville or Caputo differ-
ential operator of order g withm —1 < g < m, m > 1, and
the operator I’" % is the Riemann-Liouville fractional integral
operator. The authors obtained some new oscillation criteria
by the same method with [17].

In 2014, Wang et al. [26] extended some oscillation results
from integer differential equation to the fractional differential
equation:

Dix(t)+q() f(x(t) =0, te€[a+00), a>0, (14)
where D7 denotes the standard Riemann-Liouville differen-
tial operator of order « with 0 < « < 1, g is a positive



Abstract and Applied Analysis

real-valued function, f is a continuous functional defined on
[0, +00) — [0, +00) satisfying that

{zf—:isz, 15)

and I denotes Riemann-Liouville integral operator. The
authors obtained some new oscillation criteria by the method
of Riccati transformation technique.

The main purpose of this paper is giving several oscilla-
tion theorems for the fractional differential equation:

[a®)(p (1) + 4 1) (D) ())"]

b f <fo (s—)%x(s) ds) —o,  (6)

for t = t, > 0,

where « € (0,1) is a constant, y > 0 is a quotient of
odd positive integers, and (D%x) is the Liouville right-sided
fractional derivative of order « of x defined by

C @) e AT
(D%x) (t) = N Jt (s—t)"x(s)ds (17)

fort € R, := (0, 00); hereI is the gamma function defined by
T(t) := J;O sledsfort € R +» and the following conditions
are assumed to hold.

(A) f : R — R is a continuous function such that
f()/n" = K for a certain constant K > 0 and for all 4 # 0.
a, b, and q are positive continuous functions on [f,, co) for a
certain f, > 0, and p is a nonnegative continuous function on
[to, 00) for a certain £, > 0. There exists M > 0, q(t) < M, for
t € [ty,00). And j:’( p(£)/q(t))dt < co.

(B) (p(t)/q(t))’ #0, for t € [ty, c0).

By a solution x of (16) we mean a nontrivial function
x € C(R,,R) such that [~ (s — ) *x(s)ds € C'(R,,R) and
a@®)(p(t) +q()(D*x)(t))" € C'(R,,R), satisfying (16) for t >
t, > 0. We consider only those solutions of (16) that satisfy
supf{|x(#)| : t > t,} > O for any £, > t,. A solution x of (16)
is said to be oscillatory if it is neither eventually positive nor
eventually negative; otherwise, it is nonoscillatory. Equation
(16) is said to be oscillatory if all its solutions are oscillatory.

Our results obtained here improve and extend the main
results of [18]. In [18], the author studied the oscillation of
(16), where p(t) = 0 and g(t) = 1. We are dealing with the
oscillation theorems for (16).

For the sake of convenience, we remember

z(t)=p)+q(t)(D%x)(1). (18)

2. Preliminaries and Lemmas

In this section, we present some useful preliminaries and
lemmas, which will be used in the proof of our main results.

Definition 1 (see [28]). The Liouville right-sided fractional
integral of order 0 > 0 of a function y : R, — R on the
half-axis R, is given by

o -
(IZy) () = o) J

t

(o0

(s=1t)" "y (s)ds (19)

for t > 0, provided that the right-hand side is pointwise
defined on R,, where I' is the gamma function.

Definition 2 (see [28]). The Liouville right-sided fractional
derivative of order 0 > 0 of a function y : R, — R on
the half-axis R, is given by

(o o dra] o|—-0
(D7y) () = (-1 ]W (I[ ] J’) (t)

(_l)ftﬂ dftﬂ

= ” _ p\lol-o-1
~ T([o] —o)dtl] L (s—1) y(s)ds,

fort >0,
(20)

provided that the right-hand side is pointwise defined on R,
where [0] := min{z € Z : z > o} is the ceiling function.

Lemma 3 (see [29]). If A and B are nonnegative constants,
then

AP (B-1)BP—BABF 20, B>1, (1)
where the equality holds if and only if A = B.

Lemma 4 (see [18]). Let x be a solution of (16) and

(9]

G(t) = J (s—t)%x(s)ds,

t

for a € (0,1), t>0. (22)

Then

G (t)=-T(1-a)(D*x)(t), forac(0,1), t>0.

(23)

The proof of Lemma 4 is the same as the proof of
Lemma 2.1in [18].

3. Main Results

In this section, we establish some new oscillation criteria for
(16).

Theorem 5. Assume that (A) holds, and
J a7 () dt = oo. (24)
ty

Furthermore, assume that there exists a positive function r €

C'[t,, 00) such that

. t

lim sup J Kr ()b (s)
to

t— 00

_< L )V* M'r(s)a(s)
r) ) p+1)"rr -«

ds = 00,

(25)



where ri(s) := max{r'(s),0}. Then every solution of (16) is
oscillatory.

Proof. Suppose that x(t) is a nonoscillatory solution of (16).
Without loss of generality, we may assume that x(f) is an
eventually positive solution of (16). Then there exists t; €
[to, 00) such that

x(t)>0, G(t)>0, forte[t;,00), (26)

where G(t) is defined as in (22). Therefore, it follows from (16)
that

[a®)2" ()] =b@®) f(G®) >0, fortet,o0).
(27)

Thus, a(t)z”(t) is strictly increasing on [t;,00) and is
eventually of one sign. Since a(t) > 0 for t € [ty, 00) and
y > 01is a quotient of odd positive integers, we see that z(¢) is

eventually of one sign. We first show
z(t) <0, fort € [t;,00). (28)

Otherwise, there exists t, > t; such that z(¢,) > 0, and
since a(t)z" (t) is strictly increasing on [t,, 00), it is clear that
a(t)z"(t) = a(t,)z"(t,) == ¢, > 0 fort € [t,,00). Therefore,
we have

z(t) = ¢Ma (1), (29)
Due to g(t) > 0, from (18), we get

gy t) - clllya_l/” t)

p (t) o 1
—Z +(D%) (t) = R i

q(t)

Integrating both sides of last inequality from ¢, to £, from (23),
we obtain

({535
n\q(s) T(l-a
So, we get

G <G(t)+T(1-a)

(30)

¢ Ay _-1fy
)dszj a7 @y
¢ M

2

t 1y .t
X J &ds—cl—J a " (s)ds | — —o0,
t, q(S) M ),
as t — 00,
(32)

and this contradicts (26). Hence, we have that (28) holds.
From (A), (18), and (23), we have

z(t)=p(1)+q®) (D x) () = p(O) +q(t) <_ri ftlc) ) .

(33)
Therefore,
pt)-z(t)
q(t)

& >-T(l-«) &
q(t) M

G@{)=T(1-0
(34)
>-T'(l-«)
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Define the function w(t) by a generalized Riccati trans-
formation

—a(t)z" (t)

w®)=r ) s

, forte[t,c0). (35

Then, we have w(t) > 0 for t € [t,, 00), and from (16), (34),
(35), and (A), it follows that

—a(t)zV (t)

- Y !
W' 0= )5 =00

G (1)
r' (1)

) bW GW)
BT A eTT

+r(t)[

G' (0
Gy+1 (t)

+yr(t)a(t)z’ (t)
_yra®T(1-a) 2" @) (36)

r' (1)
" w(t) G0

r(t) M
-Kr(t)b(t)

IN

' (t)
o

B pI'(1-«a)
Mlr (t)a ()]

-Kr(0)b(1),

w1+1/y (t)

for t € [t,,00),
where ri(t) is defined as in Theorem 5. Let

1 Y- ) )“’3
=1+-, A=(1""7 ,
=ty <M(r waay)

Bz(dw>ﬁﬂwvwaawm
0 ) prhyra-o)”’

(37)

From (21) and (36), we derive

M'r(t)a ()
(+ )" rra-a)

i y+1
W (£) < —Kr (£) b (¢) + (:*((:)) )

for t € [t;,00).

(38)
Integrating both sides of (38) from ¢, to t, we have
¢ i y+1 y
J Kr ()b (s) - ( e ) N (rff)) AL A
f r(s) (y+1)"7Tr (1 -a)
Sw(t)-wt)<w(ty), fortelt,00).
(39)
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Lettingt — o0, we get

Kr (s) b (s)

t
lim sup J
ty

t— 00

_( 7l (s) )YJrl MVr(s)a(s) ] ds
r) ) (p+1)"rra -«

<w(t) < oo,
(40)

which contradicts (25). The proof is complete. O

Theorem 6. Suppose that (A) and (24) hold. Furthermore,
suppose that there exists a positive functionr € C'[ty, c0), and
a function H € C(I,R), where | := {(s,t) : s > t > t,}, such
that

H(t,t) =0, fort=>t,,
(41)

H(s,t) >0, for (s,t) €l

where Iy = {(s,t) : s > t > ty}, and H has a nonpositive
continuous partial derivate Ht'(s, t) = 0H(s,t)/ot on |, with
respect to the second variable, and satisfies

lim supm
s— 00 > Lo

s—1
XL Kr ()b (t) H (s,t) (42)

Mr(t)a ()W (s,1)

- dt = co,
G+ ) TA-0HEO ]

where h,(s,t) = max{0, Ht'(s, t) + (ri(t)/r(t))H(s, )} for
(s,t) € ly; here ri(t) is defined as in Theorem 5. Then all
solutions of (16) are oscillatory.

Proof. Suppose that x(t) is a nonoscillatory solution of (16).
Without loss of generality, we may assume that x(¢) is an
eventually positive solution of (16). We proceed as in proof of
Theorem 5 to get that (36) holds. Multiplying (36) by H(s, t)
and integrating from ¢, to s — 1, for s € [t; + 1, 00), we derive

r_l Kr ()b (£) H (s, £) dt

t

<- JH H(s,t)w' (t)dt+ Jﬂ L (t)H (s,t)w(t)dt

t, r(t)

s— _ 1+1/
_J lH(s,t) L (1 —a)w 7 (¢)
4 Mlr (t)a ()]

for s € [t; +1,00).
(43)

From
s—1
- I H(s,t)w' (t)dt

t

= [-H(shw @5 + L 1 H (s,t)w () dt

s

<SH(st)w(t) + J h H (s,t) w(t) dt,

t
for s € [t; + 1,00),

we have

JH Kr ()b (t) H (s, £) dt

ty

<H(s,t)w(t)

s—1 , :_t
+ L {[Ht (s,) + rr ((t))H(s, t):| w(t)

_yl"(l —«)H (s, t)

+1/
thamwyﬁlym}m

<H (s, t)w(t)
N r_l [h+ )

_Yr (l — 06) H (j’ t) w(“‘}’)/)’ (t):| dt,
MIr (t)a )]
for s € [t; +1,00),
where h, (t) is defined as in Theorem 6. Let
/B
Ir1-a)H(st)]"
a7,

1
petry A‘[ M[r(Ha(t)]"?

Y

Bz[munrManmaww
B 1 pra-aHE"*
From (21) and (45), we get

JH Kr ()b (£) H (s, £) dt

<H (s t)w(ty)

Js—l M'rt)a®) R (s,1)
to(y+ l)y+1[l“ (1-a)H (s, 0)]"

From H/(s,t) < 0, for s>t > t,, we have
0<H(s,t;) <H(sty), fors>t >ty
and 0 < H(s,t) < H(s, ty), for s>t >ty then

H (s, t) <

0< <1,
H (s, 1)

for s>t >t,.

(44)

(45)

(46)

(47)

(48)

(49)



Therefore, we get

Kr (£) b (t) H (s, 1)

1 s—1
H (s, ty) J-to

_ M'r@®a@®hl (s ] P
(y+ )T -a)H(s,)]

Kr(t)b (t) H (s, 1)

1 Jfl
- H(S’tO) to

 M'r@®a@®hl (s 1) ] P
(y+ )T A -a)H(s,0)]

Kr (£) b (t) H (s, 1)

1 s—1
+
H (S’ tO) J-tl

 M'r@®a@®hl (s ] u
(y+ )T -a)H(s,)]

t
< H(sty) J;O Kr(t)b(t)H (s, t) dt

+ H(S, tO)H(S’ tl)w(tl)

b
SJ Kr()b(t)dt +w(t,), forse[t;+1,00).
to

(50)
Letting s — c©o, we get
i s (s.00)
s—1
X J Kr(t)b(t) H (s, 1)
ty
_ M'ra() W (s,1) i
(y+ 1) T A -wH(s ]
tl
< J Kr(t)b(t)dt + w(t;) < oo,
to
(51)

which is a contradiction to (42). The proof is complete. ~ [J

Next, we consider the condition of
o0
J a " (t)dt < oo, (52)
t[]

which yields that (24) does not hold. Under this condition,
we have the following results.
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Theorem 7. Suppose that (A), (B), and (52) hold, and there
exists a positive function r € C'[ty,c0) such that (25) holds.
Furthermore, assume that, for every constant T > t,

ro [i Jt b(s)ds] = oo (53)

T La(t) Jr

Then every solution x of (16) is oscillatory or satisfies
lim, , G'(t) = 0 orlim, _, ., G(t) = 0, where G(t) is defined
as Lemma 4.

Proof. Assume that x(t) is a nonoscillatory solution of (16).
Without loss of generality, assume that x(t) is an eventually
positive solution of (16). Proceeding as in the proof of
Theorem 5, we get that (26) and (27) hold. Then there are two
cases for the sign of z(¢).

When z(t) is eventually negative, from the proof of
Theorem 5, we get that every solution x(t) of (16) is oscilla-
tory.

Next, assume that z(t) is eventually positive; then there
exists t,; > t,, such that z(t) > 0, for t > t,,. From (18) and
(23), we get

z(t)=p(t)+q(t)(D*x)(t) = p(t)

, (54)
+q(t) (—F?l (_tzx)) > 0.
Therefore,
) p(t)
G ri-o)—-.
() <I'(1-a) 10 (55)

Since (B) holds and Loo(p(t)/q(t))dt < 00, then we get

. p@®)
lim ——= = 0. 56
t—ocog (t) ( )
Lettingt — co in (55), we have
. !
tlirréoG (t) <0. (57)

If lim, , ,G'(t) < 0, then there exists t,, > t, such that
G'(t) < 0,fort > t,,. We set t, := max{t,,,t,,}. Thus, we
getlim, , G(t) =C,and G(t) 2 C, t > t,.

We now prove C = 0. If not, that is, C > 0, then from (27),
we derive

[a) 2" )] =b(t) £ (G () = Kb(H) G () > KC'b (1),

for t € [t,,00).
(58)

Integrating both sides of (58) from ¢, to t, we have

a(t)z' (t) = a(t,)z" (t,) + KC" Jt b(s)ds
3

, (59)
> KCVJ b(s)ds, fort e [t,,00).

123
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Therefore,

1/y 1 ! l/y 60
2(t) > CK [@Lb(s)ds] . (60)

Hence, from (18), (A), and (23), we get

p@) G@® ck"[ 1 ty
- — | bs)d
a0 TU-a) q@ [a(n J ) S]

cK''r 1 r
][]

(61)

Integrating both sides of (61) from ¢, to ¢, we have

G -G(h)
I'l-a«)

J-: p(s) ds

, q(s)
(62)

1y (ot v 1y
> cK J [LJ b(s) ds] dv.
M t, a(v) t,

Then, we obtain

tp(s), CKY
G(t) < {LZ %ds - M

X J: [L jv b(s) ds]l/ydv} IFr(1-a)+G(ty)

a() ki,
— —00, ast — 00.
(63)
This contradicts (26). Therefore, we have C = 0; that is,
Mim G (£) = 0. (64)
The proof is complete. O

Theorem 8. Suppose that (A), (B), and (52) hold. Let r(t) and
H(s, t) be defined as in Theorem 6 such that (42) holds. Fur-
thermore, assume that, for every T > t,, (53) holds. Then every
solution x of (16) is oscillatory or satisfies lim, _, . .G'(t) = 0 or
lim, , G(t) = 0, where G(t) is defined as in Lemma 4.

Proof. Assume that x is a nonoscillatory solution of (16).
Without loss of generality, assume that x is an eventually
positive solution of (16). Proceeding as in the proof of
Theorem 5, we get that (26) and (27) hold. Then there are two
cases for the sign of z(¢).

When z(t) is eventually negative, the proof is similar to
that of Theorem 6. When z(t) is eventually positive, the proof
is similar to that of Theorem 7. Here we omitted it. O

Remark 9. From Theorems 5-8, we can get many different
sufficient conditions for the oscillation of (16) with different
choices of the functions r and H.

4. Examples

Example 10. Consider the differential equation with fraction-
al-order derivatives:

[rv—2<e-f + % (D%x) (t))y]

!

(65)
_ %(J'too (s=1)"%x(s) ds>y =0, t>1,

where « € (0,1), and y > 0 is a quotient of odd positive
integers.

Here, a(t) = tV72,b(t) = 1/, p(t) = ¢, and q(t) = 1/t.
Taket, =1,K = 1,and M = 1. From

® iy *_1
J; a (t) dt = J; tl—(—l/)/)dt = 00,
0 0

©p@®
Lo q(t) dt

we see that (A) and (24) hold. Letting r(s) = s, we get

(66)

o0 e—t 00
- j ~dt = j te”'dt < oo,
t, 1/t to

0

Kr(s)b(s)

t
lim sup I
)

t — 0o

_(ri «) )V“ M'r(9)a(s) ] e
r©) ) (y+1)"rra-a)

t 1 1 y+1 S.SY—Z
=limsupj s-—2—<—> = ds
t—oo Jtg s s (y+1)""' v (1 —a)

—limsupjt 1 ! L ds =00
t—oo Jig [ S (pr1)'IVA-0a) & ’
(67)

which satisfies condition (25). Therefore, by Theorem 5, every
solution of (65) is oscillatory.

Example 11. Consider the differential equation with fraction-
al-order derivatives:

[W(t% + % (D%x) (t))y]

et (z . (fo (s— 1) x (5 ds)z) (68)

X (LOO (s—1t)""x(s) ds>y =0,

!

t>2,

where & € (0,1), and y > 0 is a quotient of odd positive
integers.



Here, a(t) = t*™, b(t) = 6t, p(t) = 1/, q(t) = 1/t, and
ft) = @+t Take K =2, M = land t, = 2, f(u) = u.
From

(o) 1/ (o) 1
-1y _
J; a "M@)dt = L T dt < oo,
0 0

@)’_ yeY 2

(q(t) _(w) --2 40, (69)
“p® (1

LO : (t)dt—Lo Sdt < oo,

we find that (A), (B), and (52) hold.
Take r(s) = 1, we have

t
lim sup J Kr (s) b (s)
t— 00 ty
_(ri<s>)’“ Mrsa(s) ],
r(s) (y+1)"rr (1 -a)
t
=lim supJ 12sds = oo,
t— 00 ty
(70)

which satisfies condition (25). For every constant T' > ¢, t €
[2T, 00), we obtain

[} s o] o

(o9 1 t 1/}’
= J [ J 6s ds] dt
v Lot )r

00 [ 242 _ 22 1Y
:J [3t 3T] it

(71)

T t2+y

which implies that (53) holds. Therefore, by Theorem 7, every
solution x of (68) is oscillatory or satisfies lim, _, 0OG'(l‘) =0
or lim, _, . G(t) = 0.
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