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We obtain some new generating functions for g-Hahn polynomials and give their proofs based on the homogeneous g-difference

operator.

1. Introduction

Throughout this paper we suppose that g € C, |q| < 1, and
the g-shifted factorials are defined by

n-1
@), =1 (wq),=[](1-aq"),
k=
. ' 0
(a:9), = H (1 - aqk), n>1.
k=0
Clearly,
(asq), = A= Des @
(aq™9),

We also adopt the following compact notation for the multi-
ple g-shifted factorials:

(al’ az’ ceed m;q)n = (al;q)n(az;q)n T (am’ q)n’
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The basic hypergeometric series or g-series ¢, are defined

by
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Euler identity is as follows:
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The g-binomial theorem is as follows:
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The usual g-differential operator or g-derivative operator D,
is defined by (see [1, Page 177, (2.1)])

D, f @) = L1, o

D) {f @} =D, (D) {f @}}.

In [1], Chen and Liu introduced the g-exponential T(qu)
operator as follows (see [1, Page 17, (2.5)]):
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and they get the g-operator identity of T(bD,) (see [1, Page
178, Theorems 2.2 and 2.3]) as follows:

T (bD,) {(at;lq)w} " (at, bi; Deo

T(bD ) 1 _ (abSt;q)oo
| (as,at; q), (as,at,bs,bt;q)

|bt| < 1,

|bt| < 1.
)

Recently Chen et al. [2] introduced the following homoge-
neous g-difference D,,,,

ny {f (x, )’)} = ! (x’ qx):)q_lj;(qX) y) (10)

and the homogeneous g-difference operator E(D,,):
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They obtained some properties of D,,,,
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The classical Rogers-Szegd polynomial is defined by means of
the generating function:

as follows:
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obviously, we have

T(D,) (") =y (e 1) = Y [Z] X, (14)

k=0
The homogeneous Rogers-Szeg6 polynomial is defined by

n

h(xylq) =) [Z] P (%), (15)

k=0

where P,(x,y) = (x — y)(x — ygq)---(x — yq""). Clearly,
h,(x,y | q = (Dily %)(x) are the Cauchy polynomials with
the following generating function:
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From the above properties, we have
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Lemma 1 (see [3, Lemma 2.3]). For |t|, |xt| < 1,
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g-Hahn polynomial is defined by [4]

& t" (axt; q)
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Clearly, ®9(x) = h,(x | q).

Recently, Chen et al. [3] gave some new proofs of the
following results based on the method of homogeneous g-

difference operator E (ny).

Theorem 2. Consider the following:
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Theorem 3. Consider the following:
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For more references on the g-difference operators, see [1,
5-16].

In the present paper, we obtain some new generating
functions for g-Hahn polynomials and give their proofs based
on the homogeneous g-difference operator.

2. Some New Generating Functions for g-Hahn
Polynomial

In the present section we obtain the following new generating
functions of g-Hahn polynomial.
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Theorem 4. For|z| < 1,
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Proof. Let x — yand a — b in (21), we have
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By the g-binomial theorem (6) and noting that (b;9),,,, =
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Comparing the coefficients of y*/(g;q), on both sides of
(27), we obtain the formula (24) immediately. This proof is
complete. O

Theorem 5. For |t| < 1,
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Setting y/x = a, v/u = b, u = y in the last sum, we obtain the
formula (28) of Theorem 5. This proof is complete. O

Theorem 6. For|l| < 1, |s| < 1, |t| < 1,
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Proof. By (17) and (19), we have
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Setting y/x = a, v/u = b,u = y in the last sum, we obtain the
formula (30) of Theorem 6. This proof is complete. O

Theorem 7. For |t| < 1,
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Proof. Applying (2) and the Euler identity (5) and noting (21),
then the right-hand side is equal to (30) as follows:
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By (30) and (33), we have
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Comparing the coefficients of I"s"/(g;9),,(q:q),, on both
sides of (34), we obtain the formula (32) immediately. O
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Proof. Set n = 0 and then let k — # in (32) and note that
d)(()b)(x) = 1; by (21) and (22), we obtain
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This proof is complete. O
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