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The aim of this paper is to introduce some new double difference sequence spaces with the help of the Musielak-Orlicz function
F = (Fj) and four-dimensional bounded-regular (shortly, RH-regular) matrices A = (a,,,;). We also make an effort to study
some topological properties and inclusion relations between these double difference sequence spaces.

1. Introduction, Notations, and Preliminaries

In [1], Hardy introduced the concept of regular convergence
for double sequences. Some important work on double
sequences is also found by Bromwich [2]. Later on, it
was studied by various authors, for example, Moricz [3],
Moricz and Rhoades [4], Basarir and Sonalcan [5], Mursaleen
and Mohiuddine [6-8], and many others. Mursaleen [9]
has defined and characterized the notion of almost strong
regularity of four-dimensional matrices and applied these
matrices to establish a core theorem (also see [10, 11]). Altay
and Bagar [12] have recently introduced the double sequence
spaces BS, BS(t), €S, €Sy €S, and BV consisting
of all double series whose sequence of partial sums are in
the spaces M, M (), €,, €y, €,, and Z,, respectively.
Basar and Sever [13] extended the well-known space €, from
single sequence to double sequences, denoted by &£, and
established its interesting properties. The authors of [14]
defined some convex and paranormed sequences spaces and
presented some interesting characterization. Most recently,
Mohiuddine and Alotaibi [15] introduced some new double
sequences spaces for o-convergence of double sequences and
invariant mean and also determined some inclusion results
for these spaces. For more details on these concepts, one can
be referred to [16-18].

The notion of difference sequence spaces was introduced
by Kizmaz [19], who studied the difference sequence spaces
I (A), c(A), and ¢y (A). The notion was further generalized by
Et and Colak [20] by introducing the spaces I ,(A"), c(A"),
and ¢,(A").

Let w be the space of all complex or real sequences x =
(x;) and let r and s be two nonnegative integers. Then for Z =
I ¢, ¢y» we have the following sequence spaces:

Z (&) ={x = (xp) ew: (Mxi) € Z}, o)

where A"x = (Ax;) = (AT % — A7 x,) and A% = x;
for all k € N, which is equivalent to the following binomial
representation:

A’;xk = Z(_l)v (z) Xletsve (2)
v=0

We remark that for s = 1 and r = s = 1, we obtain the
sequence spaces which were introduced and studied by Et
and Colak [20] and Kizmaz [19], respectively. For more details
about sequence spaces see [21-27] and references therein.
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An Orlicz function F : [0,00) — [0, 00) is continuous,
nondecreasing, and convex such that F(0) = 0, F(x) > 0
for x > 0 and F(x) — ooasx — oo.If convexity of
Orlicz function is replaced by F(x + y) < F(x) + F(y), then
this function is called modulus function. Lindenstrauss and
Tzafriri [28] used the idea of Orlicz function to define the
following sequence space:

€F:{x:(xk)ew:§F(|%|)<oo,p>0}, (3)

k=1

which is known as an Orlicz sequence space. The space £, is
a Banach space with the norm

||x||=inf{p>0:§F<%)sl}. (4)

k=1

Also it was shown in [28] that every Orlicz sequence space
¢ contains a subspace isomorphic to £, (p > 1). An Orlicz
function F can always be represented in the following integral
form:

X

F = [ na, 5)

0

where 7 is known as the kernel of F, is a right differentiable for
t >0, n(0) =0, n(t) > 0, ynis nondecreasing, and #(t) —
coast — 00.

A sequence # = (F,) of Orlicz functions is said to be a
Musielak-Orlicz function (see [29, 30]). A sequence /" = (N,)
is defined by

N.(v)=sup{lvlu-F,w):u=0}, k=12,..., (6)
which is called the complementary function of a Musielak-
Orlicz function &. For a given Musielak-Orlicz function &%,
the Musielak-Orlicz sequence space tg and its subspace hg
are defined as follows:

te ={x € w: I (cx) < co for some ¢ > 0},

(7)
hg ={x € w: Iz (cx) < oo Vc > 0},
where I is a convex modular defined by
[ee]
Ig (x) = ZFk (), x=(x) €tz (8)
k=1
We consider tg equipped with the Luxemburg norm
||x||:inf{k>0zlg<£>gl} (9)

or equipped with the Orlicz norm

Ix]° = inf {% (141, (k) : k > o}. (10)
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A Musielak-Orlicz function & = (F,) is said to satisfy
A ,-condition if there exist constants a, K > 0 and a sequence
c = (G, € I\ (the positive cone of I') such that the
inequality

F, (2u) < KF, (u) + ¢ 11)

holds for all k € N and u € R", whenever F(u) < a.

A double sequence x = (xj) is said to be bounded if
xll(c02) = Stu,k|Xjk| < 00. We denote by 1(2)0 the space of
all bounded double sequences.

By the convergence of double sequence x = (xj) we
mean the convergence in the Pringsheim sense; that is, a
double sequence x = (x ;) is said to converge to the limit
L in Pringsheim sense (denoted by, P-limx = L) provided
that given € > 0 there exists n € N such that |x; — L| < €
whenever j,k > n (see [31]). We will write more briefly as
P-convergent. If, in addition, x € I, then x is said to be
boundedly P-convergent to L. We will denote the space of
all bounded convergent double sequences (or boundedly P-
convergent) by ¢ .

Let S € NxNand lete > 0 be given. By xg(,,), we denote
the characteristic function of the set S(x; €) = {(j, k) € NxN:
| el = €}.

Let A = (ay,,x) be a four-dimensional infinite matrix of
scalers. For all m,n € N, where N := N U {0}, the sum

00,00

Yom = Z anmjkxjk (12)
,k=0,0

is called the A-means of the double sequence (x ;). A double
sequence (x;;) is said to be A-summable to the limit L if
the A-means exist for all m,n in the sense of Pringsheim’s
convergence:

P4
P_P lelgnoo Z anmjkxjk = Yom> P_n,rlliyooy”m =L (13)
jk=0,0

A four-dimensional matrix A is said to be bounded-
regular (or RH-regular) if every bounded P-convergent
sequence is A-summable to the same limit and the A-means
are also bounded.

The following is a four-dimensional analogue of the well-
known Silverman-Toeplitz theorem [32].

Theorem 1 (Robison [33] and Hamilton [34]). The four-
dimensional matrix A is RH-regular if and only if

(RH,) P-lim,,,a,,, = 0 for each j and k,
(RHZ) P_limn,m Z?,Okfg,o |anmjk| =1,

(RH;) P-limy, ,, Y52 |@jil = 0 for each k,

mjkl

(RH,) P-lim,,,, Y72 1@, | = O for each j,

(RH;s) Zﬁ’:&o |@,mjk| < 00 for all n,m € N,
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2. The Double Difference Sequence Spaces

In this section, we define some new paranormed double
difference sequence spaces with the help of Musielak-Orlicz
functions and four-dimensional bounded-regular matrices.
Before proceeding further, first we recall the notion of
paranormed space as follows.

A linear topological space X over the real field R (the
set of real numbers) is said to be a paranormed space if
there is a subadditive function g : X — R such that
g@) = 0, g(x) = g(-x), and scalar multiplication is
continuous; that is, |&, — «| — 0 and g(x, - x) —
0 imply g(er,x, — x| — 0 for all «’s in R and all
x’s in X, where 6 is the zero vector in the linear space
X.

The linear spaces I, (p), c(p), and ¢,(p) were defined by
Maddox [35] (also, see Simons [36]).

Let # = (ij) be a Musielak-Orlicz function; that is,
F is a sequence of Orlicz functions and let A = (a,,,;x)
be a nonnegative four-dimensional bounded-regular matrix.
Then, we define the following:

W, (A, F,u,A", p)

ot

00,00
P—lr}’l'rrnl Z anmjk [ij(ujk
jk=0,0

Arsxjk')pjk] = 0} s

W (A, F,u,A", p)
(14)

et

P—limofoa ; [F (u- |Arx~ —L')pjk]
n,mj’k=0)0 nmjk | © jk\"jk | = s jk

:OforsomeLeC},

where p = (pj) is a double sequence of real numbers such
that pj > 0 for j,k, sup;,py = H < 0o, and u = (uy) isa
double sequence of strictly positive real numbers.

Remark 2. If we take F(x) = x in WOZ(A, F,u, A, p) and
W2(A, F,u, A", p), then we have the following spaces:

Wy (A, AT, p)

090,00

P-lim Z Dk [(”jk

j,k=0,0

Ay - L) f"]

:OforsomeLeC}.
(15)

Remark 3. Let p = (pj) = 1forall j,k. Then WA, F,u,
A, p) and W2 (A, F,u, A’, p) are reduced to

Wy (A, F,u,A%)

et

00,00

P-lim Y e [Fye (5[50 )] = 0]’ ’

J»k=0,0

(16)

=0forsomeL€C},

respectively.



Remark 4. Let u = (uy) = 1 for all j, k. Then, the spaces
W02 (A, F,u, A", p) and WA, F,u, A", p) are reduced to

WE (4, 7,47, p)

00,00

PAmM Yy [
k=00

NXj = L')pjk]

=OforsomeLeC},

(17)
respectively.
Remark 5. If we take A = (C,1,1) in WOZ(A, F,u, A, p) and
WA, F,u, A", p), then we have the following spaces:
W, (F,u, A7, p)
e
m—1,n—1 p
. r ik
P-lim [Fuge [ ) | = 0
7k=0,0
2 r
W (g’ M’As’ p) (18)

:OforsomeLeC}.
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Remark 6. If we take A = (C,1,1) and F(x) = x in
Wo2 (A, F,u, A", p) and WA, F,u, A", p), then we have the
following spaces:

Wy (1, A7, p)

:OforsomeLGC}.
(19)
Remark7. Let pj = uj = 1forall j,k.If, inaddition, #(x) =
F(x) and r = 0, then the spaces WOZ(A, F,u, A, p) and
WA, F,u, A, p) are reduced to WOZ(A, F) and W3(A, F)

which were introduced and studied by Yurdakadim and Tas
[37] as below:

D - e (50): ATt s -0}
jk
W2 (A,F) = {x = (%)  Plimy @i F (|0~ L))
jok

:OforsomeLEC}.

(20)

Throughout the paper, we will use the following inequal-
ity: let (a;;) and (bj;.) be two double sequences. Then

|aje + by < K (|ajk|f’fk + o), (1)

where K = max(1,2%) and sup; Py = H (see [15]). We
will also assume throughout this paper that the symbol F will
denote the sublinear Musielak-Orlicz function.
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3. Main Results

Theorem 8. Let F = (ij) be a sublinear Musielak-Orlicz
function, A = (ay,;) a nonnegative four-dimensional RH-
regular matrix, p = (p;) a bounded sequence of positive real
numbers, and u = (uj.) a sequence of strictly positive real
numbers. Then W (A, F,u, A", p) and W*(A, F,u, A, p) are
linear spaces over the complex field C.

Proof. Let x = (xy),y = (yj) € WOZ(A,P/7 u, A", p) and
a, B € C. Then there exist integers M, and Ny such that || <
M, and |B| < N.

Since & = (Fj;) is a nondecreasing function, so by
inequality (21), we have

B r Pijk
Y. G [F (1 [ (e + Byie)|) ]
j,k=0,0
00,00 ij
< Z anm]k [ ]k( ]k |aAsx]k + ﬁAsy]k' ]
J»k=0,0
B r Pjk
<K Z ik [ JkM ( AsxjkD ]
J,k=0,0 (22)
B r Pik
FK Y e [ijNﬁ(”J‘k A% y]) ]
j,k=0,0
H B r Pik
SKM' Y e [ij(”jk Nen) ]
3,k=0,0

H B r Pik
+KNg Y i [ka(”jk A% vi])
7,k=0,0

] —o

Thus ax + By € WA F,u, A", p). This proves that
WO2 (A, F,u, Ars, p) is a linear space. Similarly we can prove

that W2(A, &, u, A", p) is also a linear space. O

Theorem 9. Let F = (ij) be a sublinear Musielak-Orlicz
function, A = (ay,;) a nonnegative four-dimensional RH-
regular matrix, p = (pj) a bounded sequence of positive real
numbers, and u = (uy.) a sequence of strictly positive real

numbers. Then WOZ(A, F,u, N, p) and W2(A, F,u, A", p) are
paranormed spaces with the paranorm

g (x) = sup Z { nm]k[ ]k( ]k|Asx]k|)ij]}l/M’ (23)

I S §=0,0

where 0 < p; <sup pj = H < 0o and M = max(1, H).

Proof. We will prove the result for Wy (A, &,u, A", p). Let
x = (xp) € WOZ(A, F,u, A", p). Then for each x = (xj) €
WOZ(A, F,u, A, p), g(x) exists. Also it is clear that g(0) =
0, g(—x) = g(x), and g(x + y) < g(x) + g(»).

We now show that the scalar multiplication is continuous.
First observe the following:

g (Ax) —sup Z nm]k[ e\ jk |’\Asx1k' p]k]
o (24)

<@+ g (),

where [|A|] denotes the integer part of |A|. It is also clear that
ifx — 0and A — 0 implies g(Ax) — 0. For fixed A, if
x — 0, then g(Ax) — 0. We need to show that for fixed
x,A — 0implies g(Ax) — 0.Let x € W*(A, F,u, A, p).
Thus

00,00
. r
P-lim Z Amik [ij(ujk |Asxjk

k=00

Pjk
—L|) J ] =0.  (25)
Then, for € > 0 there exists N € N such that

o)) <

(26)

»-lklm

00,00
r
Z anmjk [ij(ujk 'Asx
7,k=0,0

for m,n > N. Also, for each m,n with 1 < m,n < N, since

00,00

Z Tmji [ij(“jk

jk=0,0

- L) <00 @)

there exists an integer M,, ,, such that

€

Z Dy [ij(ujk 'Arsxjk - L|)ij] <7 (@28)

Jok>My,

Let M = max;_,, »<ni1M,,,.}. We have for each m, nwith 1 <
m,n< N

m

Z Apmijk [ij(ujk |A2x L| ij] Z (29)

Jik>M

Also from (26), for m,n > N, we have

m

z Apmijk [ij(ujk |Aix L| PJk:I Z (30)

Jik>M

Thus M is an integer independent of m1, n such that

Z Bmik [ij(”jk |Arsxjk - L|)pjk] < Z (31)

Jik>M



Since |A|P#* < max(1, |A|F), therefore

kz anmfk[ K\ jk |’\A xfk')pjk]
2

00,00
= Y g [ (1 A8 = AL + A1)
k=00
00,00 p
< Byumik [ij(”jk |/\Arsx]-k - }\LD ’k]
k=00
00,00 P
+ Z anmjk [ij(ujk |/\L|) jk:l
7k=0,0
Z Dy [ij(ujk ’AArsxjk - AL|)‘Djk] (32)
jk>M
+ Z Dy [ij(u]-k 'AArsxjk - /\L|)ij]
k<M
Y G | Fye(1 |A87 x50 = AL|) ]
j=M,k<M

+ Z Dy [ij(ujk |AAr5xjk - /\L')ij]

j<M,k=M
00,00 »
jk
+ Z anmjk[ jk( ]k|/\L|) ]
j,k=0,0

For each m,n and by the continuity of F as A — 0, we have
the following:

r
. G [F (1 A
JiksM

00,00 P
+ Z anmjk [ij(ujk |A,L|) ] — 0
7,k=0,0

- AL|)™]

(33)

in Pringsheim’s sense. Now choose § < 1 such that [A| < &
implies

-,Z’Manmjk [ij(ujk |/\Arsx]-k - ALDpjk]
jok<
- CY
" i [Fi(ate AL | < 5.
k=0,
In the same manner, we have
j>Mz;‘<Ma”’"fk [Pl e AL ] < S (o)
Z anmjk [ij(ujk |AArs.x AL| P]k:I Z (36)

j<Mk=M

It follows from (31), (34), (35), and (36) that

Z anm]k[ (v Jk'AASxJk| P]k] <e VYm,n. (37)
j,k=0,0
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Thus g(Ax) — 0as A — 0. Therefore WOZ(A, F,u, N, p)
is a paranormed space. Similarly, we can prove that
WA, F,u, A", p) is a paranormed space. This completes the
proof. O

Theorem 10. Let F = (ij) be a sublinear Musielak-Orlicz
function, A = (ay,,;) a nonnegative four-dimensional RH-
regular matrix, p = (pj) a bounded sequence of positive real
numbers, and u = (uy) a sequence of strictly positive real
numbers. Then WOZ(A, F,u, A, p) and W2(A,
complete topological linear spaces.

F,u, A, p) are

Proof. Let (x?k) be a Cauchy sequence in WO2 (A, F,u, A, p);

that is, g(x? — x') — 0asg,t — co. Then, we have

KN r r ot [\Pi
Z anmjk [ij<ujk Asx?k - Asxjk|) ] — 0. (38)
7k=0,0
Thus for each fixed jand kas q,t — 00, since A = (i) is
nonnegative, we are granted that
Fy (g [ - a7 ) — o, (39)
and by continuity of F = (Fj), (x?k) is a Cauchy sequence in
C for each fixed j and k.

Since C is complete ast — 00, we have x?k — xj for

each (j, k). Now from (36), we have that, for € > 0, there exists
a natural number N such that

00,00

+ |\Pik
Z Bk [ij<ujk‘Arsx Arsx]k’) ] <e VYm,n
jk=0,0gt>N
(40)

Since for any fixed natural number M, from (38) we have

00,00

p4
Z Do [ij<”jk |Arsx Arsx?kD Jk] <e VYm,n
Jk<M g,t>N
(41)

By lettingt — oo in the above expression we obtain

00,00

Z Apmijk [ij (ujk

jksMg>N

Pjk
N — Ay ) ] <e (42

Since M is arbitrary, by letting M — oo we obtain

00,00

Pik
Z Do [ij(ujk |Arsx?k - Arsxjk|> ] <e Vm,n. (43)
jk=0,0

Thus g(x? — x) — 0asq — oo. This proves that
Wo2 (A, F,u, A\, p) is a complete topological linear space.
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Now we will show that W*(A, F,u, A", p) is a complete
topological linear space. For this, since (x7) is also a sequence
inW2(A, %, u, A", p) by definition of W2(A, F,u A, p), for
each g, there exists L? with

2 ”’”f"[ e Jk|A X~ A Lqujk] - (44)

as m,n — 09

whence from the fact that sup,,, Y7950 @y < ©0 and
from the definition of Musielak-Orlicz function, we have

ijlArqu - ALl - 0asgq — oo andso L? converges to
L. Thus
R L Pik 0
Dmjk [ ( sXjk ~ ') ] -
j,k=0,0 (45)

as m,n — OQ.

Hence x € W*(A, %, u, A", p) and this completes the proof.

O

Theorem 11. Let & = (ij) be a sublinear Musielak-

Orlicz function which satisfies the A,-condition. Then
W2(A,u, A7, p) € WA, F,u, A, p).
Proof. Let x = (x;) € W*(A,u, A, p); that is,
. r Pjk
lﬁ?nlzk“nmfk [ (i L) ] = 0. (46)
I

Let € > 0 and choose § with 0 < § < 1 such that F; () <e for
0 <t <d. Write Vik = (ujkIAijk —L]) and cons1der

Zkanmjk [ij(yjk)pjk] = Z Lamik [ij(yjk)pjk]
i

jok:ly <6
Pjk
+ Y i [Fp()™ ]
j,k:|yjk|>6
=€ z anmjk
j,k:|yjk|§6
Pjk
Y Gk [ka(yjk) ]
j,k:|yjk|>6

(47)

For y;, > &, we use the fact that y; < y;/6 < 1+ y;/0.
Hence

yie\ Fe(2) 1 Yik

Since & satisfies the A ,-condition, we have

y]

y.
5P @) =KLF, @),

(49)

(y]k) < K 6 ]k(z)

7
and hence
P,
Y @ [Fira)” ]
j,k:|yjk|>8
F (50)
ik r P
< K% (2) Zanmjk [(ujk |Asx L' ’k]
ik
Since A is RH-regular and x € W?(A,u, A", p), we get x €
WA, F,u, A", p). O

Theorem 12. Let F = (Fi) be a sublinear Musielak-
Orlicz function and let A = (a,,;) be a nonnegative
four-dimensional RH-regular matrix. Suppose that [ =
lim, _, o (Fj(£)/t) < 0o. Then
W (A,u, A, p) = W (A, F,u, A, p). (51)
Proof. In order to prove that w? (A, u, Ars, p) = WZ(A, F,u,
A, p), it is sufficient to show that WA, F,u AN,p) c
W?(A,u, A7, p). Now, let 8 > 0. By definition of /3, we have
Fi(t) > Bt forallt > 0. Since B > 0, we have t < (1/f)F;(t)

forallt > 0. Let x = = (xj) € WA, F A, p). Thus, we
have
Z [ — [(“]’k 'Arsxjk - L|)ij]
jk=0,0
(52)

00,00

Z nka[ Jk( Jk|A X jk

-1,

which implies that x = (x]-k) € W2(A,u, A", p). This com-
pletes the proof. O

Theorem 13. (i) Let 0 < inf p; < p; < 1. Then

W (A, F,u, A, p) W (A, F,u,A). (53)

(ii) Let 1 < pj < sup pj < 00. Then

W (A, F,u,A) W (A, F,u, A, p). (54)
Proof. (i) Let x = (xjk) e WA, F,u, A", p). Then since 0 <

inf pjx < pjx < 1, we obtain the following:

00,00
_ ;;) Dok [F (e [~ 1)
J” (55)

00,00

Z ”m]k[Jk Jk|Ax

-1))™].

Thus x = (xjk) e WX A, F,u, AY).

(ii) Let pj > 1 for each jand k and sup p;; < co. Let
X = (xjk) e WA, F,u, A"). Then for each 0 < € < 1 there
exists a positive integer N such that

00,00

Z Dimjk [ij (Mjk 'Arsxjk - L|)] <e<l Vm,nx=N.
j,k=0,0
] (56)



8
This implies that
00,00 P]k
Grmik Jk Uik 'A Xjk ~ L|
j,k=0,0

(57)

00,00

Z nka[ Jk Uik |A Xk L')]

Therefore x = (xj) € W2(A, F,u, A", p). This completes the
proof. 0

Lemma 14. Let F = (Fy) be a sublinear Musielak-Orlicz
Junction which satisfies the A ,-condition and let A = (a,,, )
be a nonnegative four-dimensional RH-regular matrix. Then
WA, F,u, A, p) N I2, is an ideal in I,

Proof. Let x € Wi(A, F,u, A", p) N2, and y € I>.. We need
to show that xy € Wy (A, F,u, A", p) N I2.. Since y € I2,
there exists T} > 1 such that || y|| < T. In this case |x . y ;| <
Ty|x | for all j, k. Since & is nondecreasing and satisfies A ,-
condltlon we have

[F (11 |2 (xjky,-k)|)ij] < [F (1T |Arsxjk|)ij]

<T(T,) [ij(uj ) pfk]
(58)

for all j,k and T > 0. Therefore lim,,,, 3" ;i Gppjc[Fjx
(| A (x .y ) DP*] = 0. Thus xy € Wi (A, F,u, A7, p) NI,
This completes the proof. O

Lemma 15. Let G be an ideal in >, and let x = (xji) € 2.
Then x is in the closure of G in 2. if and only if xg(xe) € G for

alle > 0.

Proof. Let x be in the closure of G and let € > 0 be given.
Suppose that z = (zj) € G such that |x - z| < €/2 and
observe that S(xx; €) € S(z;€/2). Define a double sequence y =

(yji) € 2, by

1 . €
;> if |ij' 2 z,
yir=1 " (59)
0, otherwise.

Clearly yz = Xg(2) € G- Since S(x;€) < S(z;€/2) and
Xstuse) € Loor NENCE X(e) Xs(zer2) = Xsie) € G-

Conversely, if x € I2) then [lx — xxgoll < €. It follows
that xg(,,c) € G for all € > 0; then x is in the closure of G.  [J

Lemma 16. If A is a nonnegative four-dimensional RH-
regular matrix, then Wy (A,u, A7, p) N I, is a closed ideal in
L.
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Proof. We have W (A, F,u, A"
clear that WOZ(A, Fou, A
A, p) N1,

p) N < I and it is

2 2
PN, #0.Forx, y € Wy (A, F,u,
, we get |xjk + yjkl < |xjk| + ijkl. Now, we have

[F (o [ (e + 7))
s [ Jk'Astk| + |Asy1k|>ij]
< % [F ( ]k| ij] n % [ij(u.

< lK1 [ij(ujk |Arsxjk')ij] + 2K [

ArsyjkDpjk]

Uik 'Asylk' pjk]

2
(60)
by the A ,-condition and the convexity of F. Since
2 e | i1 A7 (e + v3) )™
ik
1 )
< K j’zk“nmjk [Eyelge [Axse] )] (61)
+ Kzanm]k [ Jjk ]k |Asy]k| P]k]
where K = max{K,,K,},sox+y,x—y € WOZ(A, F,u, A, p)n

L2,
[ee]

Let x € W (A, F,u, A, p) NI, and y € I2,. Thus, there
exists a positive integer K, so that, for every j, k, we have
Ixjkyjkl < lejkl. Therefore

[F5e (e |87, G )l)™] = [Fpeoged | ) ™
(62)
<T|F [ i\ jk |Asx1k' ]
and so
Zk“nmjk [Fye (e % (i) )]
g (63)
ST Qi [ij(uj ) ij]
T
Hence xy € WOZ(A, F,u, A7, p)n lio- So WOZ(A> F,u, Ars’ pn

1(2)0 is an ideal in 1(2)0 for a Musielak-Orlicz function which
satisfies the A ,-condition.

Now, we have to show that WOZ(A,P/7 u
closed. Let x € WOZ(A, F,u, A, p)N lgo; there exists x°¢ =
x;z € WOZ(A, F,u, N, p) N lio such that x*

A, p)n I s

—>xelf,o.



Abstract and Applied Analysis

For every € > 0 there exists N;(e) € N such that, for all
¢,d > Ni(e), IArstd - A"x| < e. Now, for € > 0, we have

D Goumji [ij(”jk 'Ars"jkDpjk]
j,k

)"
)"

r r cd r cd
= Zanmjk [ij(ujk 'Asxjk — A+ Ay
ik

r . cd
As'xjk

)]

+

r r _cd
< Zanmjk [ij(”jk 'Asxjk = Axy
ik

< %Zkanmjk [F]k(ujk2 |A’;x1k - AZ,X;Z
iz
)ij}

: %Kka (€) D At + %Kzanmjk s
ik ok

N

r . cd
A Xk

+ %Zanmjk [F]k(quZ
Jik

Arsx;i )pjk] .
(64)

Since x? ¢ WO2 (A, &,
get

u, A, p) N2 and A is RH-regular, we

lr%,rrﬁlzkza"mfk [ij(ujk |Nsxjk’)ij] o .
e

sox € WOZ(A, F,u, A, p) ﬂlio. This completes the proof. [

Theorem 17. Let x = (xjk) be a bounded sequence, ¥ = (ij)
a sublinear Musielak-Orlicz function which satisfies the A ,-
condition, and A a nonnegative four-dimensional RH-regular
matrix. Then W(A, F, u, A, p)n lio = W2(A,u, A, p)n 1(2)0.

Proof. Without loss of generality we may take L = 0 and
establish

Wi (A F,u, N, p) N =W (Au, A, p)nlZ. (66)
Since WOZ(A, u, A7, p) € WOZ(A, F,u, A, p), therefore WOZ(A,
u, A, p)n lgo c WOZ(A, F,u, A, p) N lio. We need to show

that W (A, F,u, A", p) N 12 € WZ(A,u, A, p) N I2,. Notice
that if S ¢ N x N, then

Zanmjk [Fi(xs (G- k)] = Fy (1) Zanmjk(XS (s k)P,
jik ok

(67)

for all n,m. Observe that xs(j,k) € W7 (A,u, A, p) n L,

whenever x € Wi (A, %,u, A", p) N I2, by Lemmas 14 and
15, so

Wi (A, F,u, A, p)n P c Wi (Au A, p)n,.  (68)

The proof is complete. O
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