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Integrable coupling system of a lattice soliton equation hierarchy is deduced. The Hamiltonian structure of the integrable coupling
is constructed by using the discrete quadratic-form identity. The Liouville integrability of the integrable coupling is demonstrated.
Finally, the discrete integrable coupling system with self-consistent sources is deduced.

1. Introduction

Many physical problemsmay bemodeled by soliton equation.
The Hamiltonian structures of many systems have been
obtained by the famous trace identity [1–6]. The study of
integrable couplings of integrable systems has become the
focus of common concern in recent years. It originates from
the investigations on the symmetry problems and associated
centerless Virasoro algebras [7]. Many integrable coupling
systems have been constructed by using the methods of
a direct method [8], perturbations [9], enlarging spectral
problems [10, 11], creating new loop algebras [12, 13], and
semidirect sums of Lie algebras [14, 15]. The Hamiltonian
structures of the integrable couplings of lattice equations
can be constructed by means of the discrete quadratic-form
identity [16, 17].

Since Mel’Nikov proposed a new kind of integrable
model whichwas called soliton equations with self-consistent
sources [18] in 1983, many soliton equations with self-
consistent sources [19–23] have been presented in recent
years. For applications, these kinds of systems are usually
used to describe interactions betweendifferent solitarywaves.
In this paper, we deduce a hierarchy of discrete integrable
coupling system with self-consistent sources which are few
compared with the continuous ones.

The paper will be organized as follows. We first get
a hierarchy of integrable lattice soliton equation with

self-consistent sources in Section 2. In Section 3, a hierarchy
of discrete integrable coupling system is derived by making
use of the discrete zero curvature representation. By means
of the discrete quadratic-form identity we establish the
Hamiltonian structures of the hierarchy. Further, the result-
ing Hamiltonian equations are all proved to be integrable
in Liouville sense. Finally, we give the integrable coupling
systems with self-consistent sources.

2. A Hierarchy of Integrable Lattice Soliton
Equations with Self-Consistent Sources

We first briefly describe our notations. Assume 𝑓
𝑛

= 𝑓(𝑛) is a
lattice function; the shift operator 𝐸 and the inverse of 𝐸 are
defined by

𝐸𝑓
𝑛

= 𝑓 (𝑛 + 1) , 𝐸−1𝑓
𝑛

= 𝑓 (𝑛 − 1) , 𝑛 ∈ 𝑍,

𝐸𝑘𝑓
𝑛

= 𝑓 (𝑛 + 𝑘) , 𝑛, 𝑘 ∈ 𝑍.
(1)

A system of discrete equations

𝜕
𝑡
𝑚

𝑢
𝑛

= 𝐾
𝑚

(𝑢
𝑛
) (2)
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is said to have a discrete Lax pair
𝐸𝜑
𝑛

= 𝑈
𝑛

(𝑢
𝑛
, 𝜆) 𝜑
𝑛
,

𝜕
𝑡
𝑚

𝜑
𝑛

= 𝑉[𝑚]
𝑛

(𝑢
𝑛
, 𝜆) 𝜑
𝑛
,

(3)

if it is equivalent to the compatibility condition

𝜕
𝑡
𝑚

𝑈
𝑛

(𝑢
𝑛
, 𝜆)

= (𝐸𝑉[𝑚]
𝑛

(𝑢
𝑛
, 𝜆)) 𝑈

𝑛
(𝑢
𝑛
, 𝜆) − 𝑈

𝑛
(𝑢
𝑛
, 𝜆) 𝑉[𝑚]
𝑛

(𝑢
𝑛
, 𝜆) .

(4)

In [16], a Lie algebra is presented as
𝐺 = span {𝜔

1
, 𝜔
2
, 𝜔
3
, 𝜔
4
, 𝜔
5
, 𝜔
6
, 𝜔
7
, 𝜔
8
} , (5)

where

𝜔
1

= (

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

) , 𝜔
2

= (

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

) ,

𝜔
3

= (

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

) , 𝜔
4

= (

0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

) ,

𝜔
5

= (

0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

) , 𝜔
6

= (

0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

) ,

𝜔
7

= (

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

) , 𝜔
8

= (

0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

) .

(6)

Set 𝐺
1

= span{𝜔
1
, 𝜔
2
, 𝜔
3
, 𝜔
4
} and 𝐺

2
= span{𝜔

5
, 𝜔
6
, 𝜔
7
, 𝜔
8
};

it is easy to see that 𝐺, 𝐺
1
, and 𝐺

2
construct three Lie algebra,

and
𝐺 = 𝐺

1
⊕ 𝐺
2
, [𝐺

1
, 𝐺
2
] ≡ 𝐺
1
𝐺
2

− 𝐺
2
𝐺
1

⊆ 𝐺
2
. (7)

So𝐺
2
is anAbelian ideal of the Lie algebra𝐺.The correspond-

ing loop algebra 𝐺 is defined by

𝐺 = span {𝜔
𝑖
(𝑚) , 𝑖 = 1, 2, . . . , 8} , 𝜔

𝑖
(𝑚) = 𝜔

𝑖
𝜆𝑚. (8)

In [15], a new discrete matrix spectral problem has been
proposed:

𝐸𝜙
𝑛

= 𝑈̃
𝑛

(𝑟
𝑛
, 𝜆) 𝜙
𝑛
, 𝑈̃
𝑛

(𝑟
𝑛
, 𝜆) = 𝑟

𝑛
𝜔
2

(1) + 𝜔
3

(0) , (9)
by solving the stationary discrete zero curvature equation

(𝐸Γ
𝑛
) 𝑈
𝑛

− 𝑈
𝑛
Γ
𝑛

= 0, (10)
where

Γ
𝑛

= 𝑎
𝑛
𝜔
1

(0) − 𝑎
𝑛
𝜔
2

(0) + 𝑏
𝑛
𝜔
3

(0) + 𝑐
𝑛
𝜔
4

(1) ,

𝑎
𝑛

=
∞

∑
𝑚=0

𝑎(𝑚)
𝑛

𝜆−𝑚, 𝑏
𝑛

=
∞

∑
𝑚=0

𝑏(𝑚)
𝑛

𝜆−𝑚,

𝑐
𝑛

=
∞

∑
𝑚=0

𝑐(𝑚)
𝑛

𝜆−𝑚,

(11)

and introducing the auxiliary spectral problems associated
with the spectral problem (9)

𝜕
𝑡
𝑚

𝜙
𝑛

= 𝑉̃[𝑚]
𝑛

𝜙
𝑛
, 𝑚 ≥ 0,

𝑉̃[𝑚]
𝑛

=
𝑚

∑
𝑖=0

[𝑎(𝑖)
𝑛

𝜔
1

(𝑚 − 𝑖) − 𝑎(𝑖)
𝑛

𝜔
2

(𝑚 − 𝑖)

+ 𝑏(𝑖)
𝑛

𝜔
3

(𝑚 − 𝑖) + 𝑐(𝑖)
𝑛

𝜔
4

(𝑚 − 𝑖 + 1)]

− 𝑎(𝑚)
𝑛

𝜔
1

(0) + 𝑎(𝑚)
𝑛

𝜔
2

(0) ,

(12)

a hierarchy of integrable lattice soliton equations with a
potential 𝑟

𝑛
has been presented:

𝜕
𝑡
𝑚

𝑟
𝑛

= 𝑟
𝑛

(𝑎(𝑚)
𝑛+1

− 𝑎(𝑚)
𝑛

) , 𝑚 ≥ 0, (13)

where

𝑎(0)
𝑛

= −
1

2
, 𝑎(1)

𝑛
=

1

𝑟
𝑛
𝑟
𝑛−1

,

𝑎(2)
𝑛

= −
1

𝑟
𝑛
𝑟
𝑛−1

(
1

𝑟
𝑛
𝑟
𝑛−1

+
1

𝑟
𝑛−2

𝑟
𝑛−1

+
1

𝑟
𝑛+1

𝑟
𝑛

) , . . . .

(14)

Equation (13) possesses the followingHamiltonian forms [15]:

𝜕
𝑡
𝑚

𝑟
𝑛

= 𝐽
𝛿𝐹(𝑚)
𝑛

𝛿𝑟
𝑛

= 𝑀̃
𝛿𝐹(𝑚−1)
𝑛

𝛿𝑟
𝑛

, 𝑚 ≥ 1, (15)

where

𝐽 = 𝑟
𝑛

(1 − 𝐸) (1 + 𝐸)
−1𝑟
𝑛
, 𝑀̃ = 𝐸 − 𝐸−1,

𝐹(𝑚)
𝑛

= ∑
𝑛∈𝑧

𝐹(𝑚)
𝑛

, 𝐹(𝑚)
𝑛

= −
𝑎(𝑚)
𝑛

𝑚
, 𝑚 ≥ 1.

(16)

Next, we will construct a hierarchy of integrable lattice
soliton equations (13) with self-consistent sources. For 𝑛
distinct real 𝜆

𝑗
, consider the auxiliary linear problem

𝐸 (

𝜙
1𝑗

𝜙
2𝑗

𝜙
3𝑗

𝜙
4𝑗

) = 𝑈̃
𝑛

(𝑟
𝑛
, 𝜆
𝑗
) (

𝜙
1𝑗

𝜙
2𝑗

𝜙
3𝑗

𝜙
4𝑗

) ,

(

𝜙
1𝑗

𝜙
2𝑗

𝜙
3𝑗

𝜙
4𝑗

)

𝑡
𝑚

= 𝑉̃
𝑛

(𝑟
𝑛
, 𝜆
𝑗
) (

𝜙
1𝑗

𝜙
2𝑗

𝜙
3𝑗

𝜙
4𝑗

) .

(17)

Based on the results in [24], we show the following equation:

𝛿𝐹(𝑚)
𝑛

𝛿𝑟
𝑛

+
𝑁

∑
𝑗=1

𝛿𝜆
𝑗

𝛿𝑟
𝑛

= 0, (18)
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where

𝛿𝜆
𝑗

𝛿𝑟
𝑛

=
1

2
Tr(𝜓

𝑗

𝜕𝑈̃ (𝑟
𝑛
, 𝜆
𝑗
)

𝜕𝑟
𝑛

) ,

𝜓
𝑗

=
(
(
(
(

(

𝜙
1𝑗

𝜙
2𝑗

−𝜙2
1𝑗

𝜙
3𝑗

𝜙
4𝑗

−𝜙2
3𝑗

𝜙2
2𝑗

−𝜙
1𝑗

𝜙
2𝑗

𝜙2
4𝑗

−𝜙
3𝑗

𝜙
4𝑗

0 0 𝜙
1𝑗

𝜙
2𝑗

−𝜙2
1𝑗

0 0 𝜙2
2𝑗

−𝜙
1𝑗

𝜙
2𝑗

)
)
)
)

)

,

𝑗 = 1, 2, . . . , 𝑁.

(19)

According to the approach proposed in [24–26], through
a direct computation, we obtain the discrete integrable
hierarchy with self-consistent sources as follows:

𝜕
𝑡
𝑚

𝑟
𝑛

= 𝐽 (
𝛿𝐹(𝑚)
𝑛

𝛿𝑟
𝑛

+
𝑁

∑
𝑗=1

𝛿𝜆
𝑗

𝛿𝑟
𝑛

)

= 𝐽 (
𝛿𝐹(𝑚)
𝑛

𝛿𝑟
𝑛

−
𝑁

∑
𝑗=1

𝜆
𝑗
𝜙
1𝑗

𝜙
2𝑗

) , 𝑚 ≥ 1.

(20)

Taking 𝑚 = 1 in the above system, under 𝑡
1

→ 𝑡, we can
obtain the following equation with self-consistent sources:

𝜕
𝑡
𝑟
𝑛

=
1

𝑟
𝑛+1

−
1

𝑟
𝑛−1

− 𝑟
𝑛

(1 − 𝐸) (1 + 𝐸)
−1𝑟
𝑛

𝑁

∑
𝑗=1

𝜆
𝑗
𝜙
1𝑗

𝜙
2𝑗

.

(21)

3. A Hierarchy of Discrete Integrable Coupling
System with Self-Consistent Sources

First, wewill give out the integrable couplings of the hierarchy
(13). Consider the discrete isospectral problem

𝐸𝜙
𝑛

= 𝑈
𝑛

(𝑢
𝑛
, 𝜆) 𝜙
𝑛
,

𝑈
𝑛

(𝑢
𝑛
, 𝜆) = 𝑟

𝑛
𝜔
2

(1) + 𝜔
3

(0) + 𝜔
4

(1) + 𝑠
𝑛
𝜔
6

(1) ,
(22)

in which 𝑢
𝑛

= (𝑟
𝑛
, 𝑠
𝑛
)𝑇 is the potential, 𝑟

𝑛
= 𝑟 (𝑛, 𝑡) and 𝑠

𝑛
=

𝑠 (𝑛, 𝑡) are real functions defined over 𝑍 × 𝑅, 𝜆 is a spectral
parameter, 𝜆

𝑡
= 0, and 𝜙

𝑛
= (𝜙
1
(𝑛), 𝜙
2
(𝑛), 𝜙
3
(𝑛), 𝜙
4
(𝑛))𝑇 is

the eigenfunction vector.
We solve the stationary discrete zero curvature equation

(𝐸Γ
𝑛
) 𝑈
𝑛

− 𝑈
𝑛
Γ
𝑛

= 0, (23)

where

Γ
𝑛

= 𝑎
𝑛
𝜔
1

(0) − 𝑎
𝑛
𝜔
2

(0) + 𝑏
𝑛
𝜔
3

(0) + 𝑐
𝑛
𝜔
4

(1)

+ 𝑒
𝑛
𝜔
5

(0) − 𝑒
𝑛
𝜔
6

(0) + 𝑔
𝑛
𝜔
7

(1) + 𝑓
𝑛
𝜔
8

(0) .
(24)

Equation (23) gives

𝑏
𝑛+1

= 𝑐
𝑛
,

𝑎
𝑛

+ 𝜆𝑟
𝑛
𝑏
𝑛+1

+ 𝑎
𝑛+1

= 0,

𝑎
𝑛

+ 𝜆𝑟
𝑛
𝑐
𝑛

+ 𝑎
𝑛+1

= 0,

𝑐
𝑛+1

− 𝑏
𝑛

+ 𝑟
𝑛

(𝑎
𝑛

− 𝑎
𝑛+1

) = 0,

𝑓
𝑛+1

= 𝑔
𝑛
,

𝑒
𝑛+1

+ 𝑒
𝑛

+ 𝜆𝑟
𝑛
𝑓
𝑛+1

+ 𝜆𝑠
𝑛
𝑏
𝑛+1

= 0,

𝑒
𝑛+1

+ 𝑒
𝑛

+ 𝜆𝑟
𝑛
𝑔
𝑛

+ 𝜆𝑠
𝑛
𝑐
𝑛

= 0,

−𝑓
𝑛

+ 𝑔
𝑛+1

+ 𝑟
𝑛

(𝑒
𝑛

− 𝑒
𝑛+1

) + 𝑠
𝑛

(𝑎
𝑛

− 𝑎
𝑛+1

) = 0.

(25)

Substituting the expansions

𝑎
𝑛

=
∞

∑
𝑚=0

𝑎(𝑚)
𝑛

𝜆−𝑚, 𝑏
𝑛

=
∞

∑
𝑚=0

𝑏(𝑚)
𝑛

𝜆−𝑚,

𝑐
𝑛

=
∞

∑
𝑚=0

𝑐(𝑚)
𝑛

𝜆−𝑚, 𝑒
𝑛

=
∞

∑
𝑚=0

𝑒(𝑚)
𝑛

𝜆−𝑚,

𝑓
𝑛

=
∞

∑
𝑚=0

𝑓(𝑚)
𝑛

𝜆−𝑚, 𝑔
𝑛

=
∞

∑
𝑚=0

𝑔(𝑚)
𝑛

𝜆−𝑚

(26)

into (25), we can get the recursion relation

𝑎(𝑚)
𝑛+1

+ 𝑎(𝑚)
𝑛

= −𝑟
𝑛
𝑏(𝑚+1)
𝑛+1

,

𝑎(𝑚)
𝑛+1

+ 𝑎(𝑚)
𝑛

= −𝑟
𝑛
𝑐(𝑚+1)
𝑛

,

𝑟
𝑛

(𝑎𝑚
𝑛

− 𝑎(𝑚)
𝑛+1

) + 𝑐(𝑚)
𝑛+1

− 𝑏𝑚
𝑛

= 0,

𝑒(𝑚)
𝑛+1

+ 𝑒(𝑚)
𝑛

= −𝑠
𝑛
𝑏(𝑚+1)
𝑛+1

− 𝑟
𝑛
𝑓(𝑚+1)
𝑛+1

,

𝑒(𝑚)
𝑛+1

+ 𝑒(𝑚)
𝑛

= −𝑠
𝑛
𝑐(𝑚+1)
𝑛

− 𝑟
𝑛
𝑔(𝑚+1)
𝑛

,

𝑠
𝑛

(𝑎(𝑚)
𝑛

− 𝑎(𝑚)
𝑛+1

) + 𝑟
𝑛

(𝑒(𝑚)
𝑛

− 𝑒(𝑚)
𝑛+1

) − 𝑓(𝑚)
𝑛

+ 𝑔(𝑚)
𝑛+1

= 0.

(27)

The initial values are taken as

𝑎(0)
𝑛

= −
1

2
, 𝑏(0)

𝑛
= 0, 𝑐(0)

𝑛
= 0,

𝑒(0)
𝑛

= −
1

2
, 𝑓(0)

𝑛
= 0, 𝑔(0)

𝑛
= 0.

(28)

Note that the definition of the inverse operator of 𝐷 = (𝐸 −

1) does not yield any arbitrary constant in computing 𝑎(𝑚)
𝑛

and 𝑒(𝑚)
𝑛

, 𝑚 ≥ 1. Thus, the recursion relation (27) uniquely
determines

𝑎(𝑚)
𝑛

, 𝑏(𝑚)
𝑛

, 𝑐(𝑚)
𝑛

, 𝑒(𝑚)
𝑛

, 𝑓(𝑚)
𝑛

, 𝑔(𝑚)
𝑛

, 𝑚 ≥ 1, (29)
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and the first few quantities are given by

𝑎(1)
𝑛

=
1

𝑟
𝑛
𝑟
𝑛−1

, 𝑏(1)
𝑛

=
1

𝑟
𝑛−1

, 𝑐(1)
𝑛

=
1

𝑟
𝑛

,

𝑒(1)
𝑛

=
1

𝑟
𝑛−1

𝑟
𝑛

−
𝑠
𝑛−1

𝑟2
𝑛−1

𝑟
𝑛

−
𝑠
𝑛

𝑟2
𝑛
𝑟
𝑛−1

, 𝑓(1)
𝑛

=
1

𝑟
𝑛−1

−
𝑠
𝑛−1

𝑟2
𝑛−1

,

𝑔(1)
𝑛

=
1

𝑟
𝑛

−
𝑠
𝑛

𝑟2
𝑛

,

𝑎(2)
𝑛

= −
1

𝑟
𝑛
𝑟
𝑛−1

(
1

𝑟
𝑛
𝑟
𝑛−1

+
1

𝑟
𝑛−2

𝑟
𝑛−1

+
1

𝑟
𝑛+1

𝑟
𝑛

) ,

𝑏(2)
𝑛

= −
1

𝑟2
𝑛−1

(
1

𝑟
𝑛−2

+
1

𝑟
𝑛

) , 𝑐(2)
𝑛

= −
1

𝑟2
𝑛

(
1

𝑟
𝑛−1

+
1

𝑟
𝑛+1

) ,

𝑒(2)
𝑛

= −
1

𝑟
𝑛
𝑟
𝑛−1

(
1

𝑟
𝑛
𝑟
𝑛−1

+
1

𝑟
𝑛
𝑟
𝑛+1

+
1

𝑟
𝑛−2

𝑟
𝑛−1

)

+
2𝑠
𝑛

𝑟
𝑛−1

𝑟3
𝑛

(
1

𝑟
𝑛+1

+
1

𝑟
𝑛−1

) +
2𝑠
𝑛−1

𝑟
𝑛
𝑟3
𝑛−1

(
1

𝑟
𝑛−2

+
1

𝑟
𝑛

)

+
1

𝑟2
𝑛
𝑟2
𝑛+1

(
𝑠
𝑛−1

𝑟
𝑛+2

+
𝑠
𝑛+1

𝑟
𝑛−1

) +
1

𝑟2
𝑛−1

𝑟
𝑛
𝑟
𝑛−2

(
𝑠
𝑛−2

𝑟
𝑛−2

+
𝑠
𝑛

𝑟
𝑛

) ,

𝑓(2)
𝑛

=
2𝑠
𝑛−1

𝑟2
𝑛−1

(
1

𝑟
𝑛

+
1

𝑟
𝑛−2

) +
1

𝑟2
𝑛−1

𝑟
𝑛−2

(
𝑠
𝑛−2

𝑟
𝑛−2

− 1)

+
1

𝑟2
𝑛−1

𝑟
𝑛

(
𝑠
𝑛

𝑟
𝑛

− 1) ,

𝑔(2)
𝑛

=
2𝑠
𝑛

𝑟2
𝑛

(
1

𝑟
𝑛+1

+
1

𝑟
𝑛−1

) +
1

𝑟2
𝑛
𝑟
𝑛−1

(
𝑠
𝑛−1

𝑟
𝑛−1

− 1)

+
1

𝑟2
𝑛
𝑟
𝑛+1

(
𝑠
𝑛+1

𝑟
𝑛+1

− 1) .

(30)

Set

𝑉(𝑚)
𝑛

=
𝑚

∑
𝑖=0

[𝑎(𝑖)
𝑛

𝜔
1

(𝑚 − 𝑖) − 𝑎(𝑖)
𝑛

𝜔
2

(𝑚 − 𝑖) + 𝑏(𝑖)
𝑛

𝜔
3

(𝑚 − 𝑖)

+ 𝑐(𝑖)
𝑛

𝜔
4

(𝑚 − 𝑖 + 1) + 𝑒(𝑖)
𝑛

𝜔
5

(𝑚 − 𝑖) − 𝑒(𝑖)
𝑛

𝜔
6

× (𝑚 − 𝑖) + 𝑔(𝑖)
𝑛

𝜔
7

(𝑚 − 𝑖 + 1) + 𝑓(𝑖)
𝑛

𝜔
8

(𝑚 − 𝑖)] ,

(31)

so

𝐸 (𝑉(𝑚)
𝑛

) 𝑈
𝑛

− 𝑈
𝑛
𝑉(𝑚)
𝑛

= −𝑟
𝑛
𝑐(𝑚+1)
𝑛

𝜔
3

(0) + 𝑟
𝑛
𝑐(𝑚+1)
𝑛

𝜔
4

(1) − (𝑒(𝑚)
𝑛

+ 𝑒(𝑚)
𝑛+1

) 𝜔
7

(1)

+ (𝑒(𝑚)
𝑛

+ 𝑒(𝑚)
𝑛+1

) 𝜔
8

(0) .

(32)

Take 𝜂(𝑚)
𝑛

= −𝑎(𝑚)
𝑛

𝜔
1
(0) + 𝑎(𝑚)

𝑛
𝜔
2
(0) − 𝑒(𝑚)

𝑛
𝜔
5
(0) + 𝑒(𝑚)

𝑛
𝜔
6
(0),

𝑚 ≥ 0, and let

𝑉[𝑚]
𝑛

= 𝑉(𝑚)
𝑛

+ 𝜂(𝑚)
𝑛

. (33)

We introduce the auxiliary spectral problems associated with
the spectral problem (22):

𝜕
𝑡
𝑚

𝜙
𝑛

= 𝑉[𝑚]
𝑛

𝜙
𝑛
, 𝑚 ≥ 0. (34)

The compatibility conditions of (22) and (34) are

𝜕
𝑡
𝑚

𝑈
𝑛

= (𝐸𝑉[𝑚]
𝑛

) 𝑈
𝑛

− 𝑈
𝑛
𝑉[𝑚]
𝑛

, 𝑚 ≥ 0, (35)

which give rise to the following hierarchy of integrable lattice
equations:

𝜕
𝑡
𝑚

𝑟
𝑛

= 𝑟
𝑛

(𝑎(𝑚)
𝑛+1

− 𝑎(𝑚)
𝑛

) , 𝑚 ≥ 0,

𝜕
𝑡
𝑚

𝑠
𝑛

= 𝑠
𝑛

(𝑎(𝑚)
𝑛+1

− 𝑎(𝑚)
𝑛

) − 𝑟
𝑛

(𝑒(𝑚)
𝑛

− 𝑒(𝑚)
𝑛+1

) , 𝑚 ≥ 0.
(36)

So (35) is the discrete zero curvature representation of
(36); the discrete spectral problems (22) and (34) constitute
the Lax pairs of (36), and (36) are a hierarchy of Lax integrable
nonlinear lattice equations. It is easy to verify that the first
nonlinear lattice equation in (36), when𝑚 = 1, under 𝑡

1
→ 𝑡,

is

𝜕
𝑡
𝑟
𝑛

= (𝐸 − 𝐸−1)
1

𝑟
𝑛

,

𝜕
𝑡
𝑠
𝑛

= (𝐸−1 − 𝐸)
𝑠
𝑛

𝑟2
𝑛

+ (𝐸 − 𝐸−1)
1

𝑟
𝑛

.

(37)

In (36) the first lattice equations

𝜕
𝑡
𝑚

𝑟
𝑛

= 𝑟
𝑛

(𝑎(𝑚)
𝑛+1

− 𝑎(𝑚)
𝑛

) , 𝑚 ≥ 0, (38)

constitute a hierarchy of integrable lattice soliton equations
with a potential 𝑟

𝑛
; in the view of integrable coupling theory

[7, 13, 17], (36) are integrable coupling systems of (13) or (15).
In what follows, we would like to establish the Hamilto-

nian structures for the integrable coupling systems (36).
Set 𝑎 = ∑

8

𝑖=1
𝑎
𝑖
𝜔
𝑖
, 𝑏 = ∑

8

𝑖=1
𝑏
𝑖
𝜔
𝑖
, and 𝑐 = ∑

8

𝑖=1
𝑐
𝑖
𝜔
𝑖
∈ 𝐺. We

define a map

𝜎 : 𝐺 󳨀→ 𝑅8, 𝑎 󳨃󳨀→ (𝑎
1
, 𝑎
2
, . . . , 𝑎

8
)
𝑇

, 𝑎 ∈ 𝐺. (39)

Following [16], we introduce the matrix

𝐹 =
(
(
(
(

(

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

)
)
)
)

)

. (40)

It is easy to verify that 𝐹 meets 𝐹𝑇 = 𝐹. Under the
definition of the quadratic-form function

{𝑎, 𝑏} = 𝑎𝑇𝐹𝑏, (41)
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we have {𝑎𝑏, 𝑐} = {𝑎, 𝑏𝑐} and 𝑎, 𝑏, 𝑐 ∈ 𝐺. Set 𝑅
𝑛

= Γ
𝑛
𝑈−1
𝑛
;

through a direct calculation, we get

{𝑅
𝑛
,
𝜕𝑈
𝑛

𝜕𝜆
} =

𝑒
𝑛

+ 𝑎
𝑛

𝜆
+ 𝑟
𝑛

(𝑐
𝑛

+ 𝑔
𝑛
) + 𝑠
𝑛
𝑐
𝑛
,

{𝑅
𝑛
,
𝜕𝑈
𝑛

𝜕𝑟
𝑛

} = 𝜆 (𝑐
𝑛

+ 𝑔
𝑛
) , {𝑅

𝑛
,
𝜕𝑈
𝑛

𝜕𝑠
𝑛

} = 𝜆𝑐
𝑛
.

(42)

By the discrete quadratic-form identity [16]

𝛿

𝛿𝑟
𝑛

∑
𝑛∈𝑍

{𝑅
𝑛
,
𝜕𝑈
𝑛

𝜕𝜆
} = (𝜆−𝛾 (

𝜕

𝜕𝜆
) 𝜆𝛾) {𝑅

𝑛
,
𝜕𝑈
𝑛

𝜕𝑟
𝑛

} ,

𝛿

𝛿𝑠
𝑛

∑
𝑛∈𝑍

{𝑅
𝑛
,
𝜕𝑈
𝑛

𝜕𝜆
} = (𝜆−𝛾 (

𝜕

𝜕𝜆
) 𝜆𝛾) {𝑅

𝑛
,
𝜕𝑈
𝑛

𝜕𝑠
𝑛

} ,

(43)

with 𝛾 being a constant to be determined, we have

𝛿

𝛿𝑟
𝑛

∑
𝑛∈𝑍

[
𝑒
𝑛

+ 𝑎
𝑛

𝜆
+ 𝑟
𝑛

(𝑐
𝑛

+ 𝑔
𝑛
) + 𝑠
𝑛
𝑐
𝑛
]

= 𝜆−𝜆 (
𝜕

𝜕𝜆
) 𝜆𝛾 [𝜆 (𝑐

𝑛
+ 𝑔
𝑛
)] ,

𝛿

𝛿𝑠
𝑛

∑
𝑛∈𝑍

[
𝑒
𝑛

+ 𝑎
𝑛

𝜆
+ 𝑟
𝑛

(𝑐
𝑛

+ 𝑔
𝑛
) + 𝑠
𝑛
𝑐
𝑛
]

= 𝜆−𝜆 (
𝜕

𝜕𝜆
) 𝜆𝛾 (𝜆𝑐

𝑛
) .

(44)

By the substitution of

𝑎
𝑛

=
∞

∑
𝑚=0

𝑎(𝑚)
𝑛

𝜆−𝑚, 𝑏
𝑛

=
∞

∑
𝑚=0

𝑏(𝑚)
𝑛

𝜆−𝑚,

𝑐
𝑛

=
∞

∑
𝑚=0

𝑐(𝑚)
𝑛

𝜆−𝑚, 𝑒
𝑛

=
∞

∑
𝑚=0

𝑒(𝑚)
𝑛

𝜆−𝑚,

𝑓
𝑛

=
∞

∑
𝑚=0

𝑓(𝑚)
𝑛

𝜆−𝑚, 𝑔
𝑛

=
∞

∑
𝑚=0

𝑔(𝑚)
𝑛

𝜆−𝑚

(45)

into (44) and comparing the coefficients of 𝜆−𝑚−1 in (44), we
get

(

𝛿

𝛿𝑟
𝑛

𝛿

𝛿𝑠
𝑛

) ∑
𝑛∈𝑍

[𝑒(𝑚)
𝑛

+ 𝑎(𝑚)
𝑛

+ 𝑟
𝑛

(𝑐(𝑚+1)
𝑛

+ 𝑔(𝑚+1)
𝑛

) + 𝑠
𝑛
𝑐(𝑚+1)
𝑛

]

= (−𝑚 + 𝛾) (
𝑐(𝑚+1)
𝑛

+ 𝑔(𝑚+1)
𝑛

𝑐(𝑚+1)
𝑛

) .

(46)

When 𝑚 = 0 in (46), a direct calculation shows that 𝛾 = 0. So
we have

(

𝛿

𝛿𝑟
𝑛

𝛿

𝛿𝑠
𝑛

)

× ∑
𝑛∈𝑍

([𝑒(𝑚)
𝑛

+ 𝑎(𝑚)
𝑛

+ 𝑟
𝑛

(𝑐(𝑚+1)
𝑛

+ 𝑔(𝑚+1)
𝑛

)

+ 𝑠
𝑛
𝑐(𝑚+1)
𝑛

] (−𝑚)
−1)

= (
𝑐(𝑚+1)
𝑛

+ 𝑔(𝑚+1)
𝑛

𝑐(𝑚+1)
𝑛

) .

(47)

Set

𝐻̃(𝑚)
𝑛

= ∑
𝑛∈𝑍

[−𝑒(𝑚)
𝑛

− 𝑎(𝑚)
𝑛

− 𝑟
𝑛

(𝑐(𝑚+1)
𝑛

+ 𝑔(𝑚+1)
𝑛

) − 𝑠
𝑛
𝑐(𝑚+1)
𝑛

]

𝑚
,

𝑚 ≥ 1.

(48)

Now we can rewrite those lattice equations in (36) as

(
𝑟
𝑛

𝑠
𝑛

)
𝑡
𝑚

= 𝐽 (

𝛿𝐻̃(𝑚)
𝑛

𝛿𝑟
𝑛

𝛿𝐻̃(𝑚)
𝑛

𝛿𝑠
𝑛

) , (49)

where 𝐽 is a local difference operator defined by

𝐽 = (
𝐽
11

𝐽
12

𝐽
21

𝐽
22

) , (50)

where

𝐽
11

= 0,

𝐽
12

= 𝐽
21

= 𝑟
𝑛
(1 + 𝐸)

−1

(1 − 𝐸) 𝑟
𝑛
,

𝐽
22

= 𝑠
𝑛
(1 + 𝐸)

−1

(1 − 𝐸) 𝑟
𝑛

+ 𝑟
𝑛
(1 + 𝐸)

−1

(1 − 𝐸) 𝑠
𝑛

+ 𝑟
𝑛
(1 + 𝐸)

−1

(𝐸 − 1) 𝑟
𝑛
.

(51)

Obviously, the operator 𝐽 is a skew-symmetric operator; that
is, 𝐽∗ = −𝐽. Moreover, we can prove that the operator 𝐽
satisfies the Jacobi identity

⟨𝐽󸀠 (𝑢
𝑛
) [𝐽𝑓
𝑛
] 𝑔
𝑛
, ℎ
𝑛
⟩ + Cycle (𝑓

𝑛
, 𝑔
𝑛

, ℎ
𝑛
) = 0. (52)

So we have the following facts.
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Proposition 1. 𝐽 is a discrete Hamiltonian operator.

Set

𝛿𝐻̃(𝑚)
𝑛

𝛿𝑢
𝑛

= 𝜁
𝑛

𝛿𝐻̃(𝑚−1)
𝑛

𝛿𝑢
𝑛

. (53)

From the recursion relation (27) we can get the recursion
operator 𝜁

𝑛
in (53).

Therefore, we have

(
𝑟
𝑛

𝑠
𝑛

)
𝑡
𝑚

= 𝐽
𝛿𝐻̃(𝑚)
𝑛

𝛿𝑢
𝑛

= 𝐽𝜁
𝑛

𝛿𝐻̃(𝑚−1)
𝑛

𝛿𝑢
𝑛

= 𝐽𝜁𝑚
𝑛

𝛿𝐻̃(0)
𝑛

𝛿𝑢
𝑛

, 𝑚 ≥ 0.

(54)

So (49) are a family of Hamiltonian systems.The hierarchy of
lattice equations (36) possesses Hamiltonian structures (54).
Furthermore, a direct calculation shows that

𝑀 = 𝐽𝜁
𝑛

= (
0 𝐸 − 𝐸−1

𝐸 − 𝐸−1 𝐸−1 − 𝐸
) . (55)

It is easy to verify that the operator 𝑀 is a skew-symmetric
operator; that is, 𝑀∗ = −𝑀. So we have the following.

Proposition 2. {𝐻̃(𝑚)
𝑛

}
𝑚≥1

defined by (48) forms an infinite set
of conserved functionals of the hierarchy (36), and 𝐻̃(𝑚)

𝑛
,𝑚 ≥ 1,

are involution in pairs with respect to the Poisson bracket.

Proof. We can find that 𝑀∗ = −𝑀. Namely, (𝐽𝜁
𝑛
)∗ = −𝐽𝜁

𝑛
,

and then 𝜁∗
𝑛
𝐽 = 𝐽𝜁

𝑛
. Hence

{𝐻̃(𝑚)
𝑛

, 𝐻̃(𝑙)
𝑛

}
𝐽

= ⟨
𝛿𝐻̃(𝑚)
𝑛

𝛿𝑢
𝑛

, 𝐽
𝛿𝐻̃(𝑙)
𝑛

𝛿𝑢
𝑛

⟩

= ⟨𝜁𝑚−1
𝑛

𝛿𝐻̃(1)
𝑛

𝛿𝑢
𝑛

, 𝐽𝜁𝑙−1
𝑛

𝛿𝐻̃(1)
𝑛

𝛿𝑢
𝑛

⟩

= ⟨𝜁𝑚−1
𝑛

𝛿𝐻̃(1)
𝑛

𝛿𝑢
𝑛

, 𝜁∗
𝑛
𝐽𝜁𝑙−2
𝑛

𝛿𝐻̃(1)
𝑛

𝛿𝑢
𝑛

⟩

= ⟨𝜁𝑚
𝑛

𝛿𝐻̃(1)
𝑛

𝛿𝑢
𝑛

, 𝐽𝜁𝑙−2
𝑛

𝛿𝐻̃(1)
𝑛

𝛿𝑢
𝑛

⟩

= {𝐻̃(𝑚+1)
𝑛

, 𝐻̃(𝑙−1)
𝑛

}
𝐽

= ⋅ ⋅ ⋅ = {𝐻̃(𝑚+𝑙−1)
𝑛

, 𝐻̃(1)
𝑛

}
𝐽

.

(56)

Similarly, we get

{𝐻̃(𝑙)
𝑛

, 𝐻̃(𝑚)
𝑛

}
𝐽

= {𝐻̃(𝑚+𝑙−1)
𝑛

, 𝐻̃(1)
𝑛

}
𝐽

. (57)

This implies that

{𝐻̃(𝑙)
𝑛

, 𝐻̃(𝑚)
𝑛

}
𝐽

= −{𝐻̃(𝑚)
𝑛

, 𝐻̃(𝑙)
𝑛

}
𝐽

. (58)

Thus

{𝐻̃(𝑚)
𝑛

, 𝐻̃(𝑙)
𝑛

}
𝐽

= 0, 𝑚, 𝑙 ≥ 1,

(𝐻̃(𝑚)
𝑛

)
𝑡
𝑙

= ⟨
𝛿𝐻̃(𝑚)
𝑛

𝛿𝑢
𝑛

, 𝑢
𝑛𝑡
𝑙

⟩ = ⟨
𝛿𝐻̃(𝑚)
𝑛

𝛿𝑢
𝑛

, 𝐽
𝛿𝐻̃(𝑙)
𝑛

𝛿𝑢
𝑛

⟩

= {𝐻̃(𝑚)
𝑛

, 𝐻̃(𝑙)
𝑛

}
𝐽

= 0, 𝑚, 𝑙 ≥ 1.

(59)

In summary, we obtain the following theorem.

Theorem3. The lattice equations in (36) or the discreteHamil-
tonian equations in (49) are all discrete Liouville integrable
Hamiltonian systems.

Now we search for the integrable coupling systems with
self-consistent sources. For 𝑛 distinct real 𝜆

𝑗
, consider the

auxiliary linear problem

𝐸 (

𝜙
1𝑗

𝜙
2𝑗

𝜙
3𝑗

𝜙
4𝑗

) = 𝑈
𝑛

(𝑢
𝑛
, 𝜆
𝑗
) (

𝜙
1𝑗

𝜙
2𝑗

𝜙
3𝑗

𝜙
4𝑗

) ,

(

𝜙
1𝑗

𝜙
2𝑗

𝜙
3𝑗

𝜙
4𝑗

)

𝑡
𝑚

= 𝑉[𝑚]
𝑛

(𝑢
𝑛
, 𝜆
𝑗
) (

𝜙
1𝑗

𝜙
2𝑗

𝜙
3𝑗

𝜙
4𝑗

) .

(60)

Based on the results in [24], we show the following equation:

𝛿𝐻(𝑚)
𝑛

𝛿𝑢
𝑛

+
𝑁

∑
𝑗=1

𝛿𝜆
𝑗

𝛿𝑢
𝑛

= 0, (61)

where

𝛿𝜆
𝑗

𝛿𝑢
𝑛

=
1

2
Tr(𝜓

𝑗

𝜕𝑈 (𝑢
𝑛
, 𝜆
𝑗
)

𝜕𝑢
𝑛

) ,

𝜓
𝑗

=
(
(
(

(

𝜙
1𝑗

𝜙
2𝑗

−𝜙2
1𝑗

𝜙
3𝑗

𝜙
4𝑗

−𝜙2
3𝑗

𝜙2
2𝑗

−𝜙
1𝑗

𝜙
2𝑗

𝜙2
4𝑗

−𝜙
3𝑗

𝜙
4𝑗

0 0 𝜙
1𝑗

𝜙
2𝑗

−𝜙2
1𝑗

0 0 𝜙2
2𝑗

−𝜙
1𝑗

𝜙
2𝑗

)
)
)

)

,

𝑗 = 1, 2, . . . , 𝑁.

(62)

According to the approach proposed in [24–26], through a
direct computation, we get the discrete integrable hierarchy
with self-consistent sources as follows:
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(
𝑟
𝑛

𝑠
𝑛

)
𝑡
𝑚

= 𝐽 (

𝛿𝐻̃(𝑚)
𝑛

𝛿𝑟
𝑛

+
𝑁

∑
𝑗=1

𝛿𝜆
𝑗

𝛿𝑟
𝑛

𝛿𝐻̃(𝑚)
𝑛

𝛿𝑠
𝑛

+
𝑁

∑
𝑗=1

𝛿𝜆
𝑗

𝛿𝑠
𝑛

)

= 𝐽 (

𝛿𝐻̃(𝑚)
𝑛

𝛿𝑟
𝑛

−
𝑁

∑
𝑗=1

𝜆
𝑗
𝜙
1𝑗

𝜙
2𝑗

𝛿𝐻̃(𝑚)
𝑛

𝛿𝑠
𝑛

−
𝑁

∑
𝑗=1

𝜆
𝑗
𝜙
3𝑗

𝜙
4𝑗

) , 𝑚 ≥ 0.

(63)

When 𝑚 = 1 in the above system, under 𝑡
1

→ 𝑡, we can
obtain the following coupling equations with self-consistent
sources:

𝜕
𝑡
𝑟
𝑛

= (𝐸 − 𝐸−1)
1

𝑟
𝑛

− 𝑟
𝑛

(1 − 𝐸) (1 + 𝐸)
−1𝑟
𝑛

𝑁

∑
𝑗=1

𝜆
𝑗
𝜙
1𝑗

𝜙
2𝑗

,

𝜕
𝑡
𝑠
𝑛

= (𝐸−1 − 𝐸)
𝑠
𝑛

𝑟2
𝑛

+ (𝐸 − 𝐸−1)
1

𝑟
𝑛

− 𝑟
𝑛

(1 − 𝐸)

× (1 + 𝐸)
−1𝑟
𝑛

(
𝑁

∑
𝑗=1

𝜆
𝑗
𝜙
1𝑗

𝜙
2𝑗

+
𝑁

∑
𝑗=1

𝜆
𝑗
𝜙
3𝑗

𝜙
4𝑗

)

− [𝑠
𝑛
(1 + 𝐸)

−1

(1 − 𝐸) 𝑟
𝑛

+ 𝑟
𝑛
(1 + 𝐸)

−1

(1 − 𝐸) 𝑠
𝑛
]

×
𝑁

∑
𝑗=1

𝜆
𝑗
𝜙
3𝑗

𝜙
4𝑗

.

(64)
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