## Research Article

# The Solutions to Matrix Equation $A X=B$ with Some Constraints 

Chang-Zhou Dong and Yu-Ping Zhang<br>School of Mathematics and Science, Shijiazhuang University of Economics, Shijiazhuang 050031, China<br>Correspondence should be addressed to Yu-Ping Zhang; yuping.zh@163.com

Received 14 November 2013; Accepted 15 March 2014; Published 7 April 2014
Academic Editor: Morteza Rafei
Copyright © 2014 C.-Z. Dong and Y.-P. Zhang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let $P$ be a given Hermitian matrix satisfying $P^{2}=I$. Using the eigenvalue decomposition of $P$, we consider the least squares solutions to the matrix equation $A X=B$ with the constraints $P X=X P$ and $X^{*}=X$. A similar problem of this matrix equation with generalized constrained is also discussed.

## 1. Introduction

Throughout we denote the complex $m \times n$ matrix space by $\mathbb{C}^{m \times n}$. The symbols $I, A^{*}, A^{-1}$, and $\|A\|$ stand for the identity matrix with the appropriate size, the conjugate transpose, the inverse, and the Frobenius norm of $A \in \mathbb{C}^{m \times n}$, respectively.

It is a very active research topic to study solutions to various matrix equations [1-4]. There are many authors who have investigated the classical matrix equation

$$
\begin{equation*}
A X=B \tag{1}
\end{equation*}
$$

with different constraints such as symmetric, reflexive, Hermitian-generalized Hamiltonian, and repositive definite [5-9]. By special matrix decompositions such as singular value decompositions (SVDs) and CS decompositions [1012], Hu and his collaborators [13-15], Dai [16], and Don [17] have presented the existence conditions and detailed representations of constrained solutions for (1) with corresponding constraints, respectively. For instance, Peng and Hu [18] presented the eigenvectors-involved solutions to (1) with reflexive and antireflexive constraints; Wang and Yu [19] derived the bi(skew-)symmetric solutions and the bi(skew-)symmetric least squares solutions with the minimum norm to this matrix equation; Qiu and Wang [20] proposed an eigenvectors-free method to (1) with $P X=X P$ and $X^{*}=s X$ constraints, where $P$ is a Hermitian involutory matrix and $s= \pm 1$.

Inspired by the work mentioned above, we focus on the matrix equation (1) with $P X=X P$ and $X^{*}=X$ constraints, which can be described as follows: find $X$ such that

$$
\begin{equation*}
\left\{\|A X-B\|^{2}=\min , P X=X P, X^{*}=X\right\} \tag{2}
\end{equation*}
$$

Moreover, we also discuss the least squares solutions of (1) with $P X=X G P G^{*}$ and $X^{*}=X$ constraints, where $G$ is a given unitary matrix of order $n$.

In Section 2, we present the least squares solutions to the matrix equation (1) with the constraints $P X=X P$ and $X^{*}=$ $X$. In Section 3, we derive the least squares solutions to the matrix equation (1) with the constraints $P X=X G P G^{*}$ and $X^{*}=X$. In Section 4, we give an algorithm and a numerical example to illustrate our results.

## 2. Least Squares Solutions to the Matrix Equation (1) with the Constraints $P X=X P$ and $X^{*}=X$

It is required to transform the constrained problem to unconstrained one. To this end, let

$$
\begin{equation*}
P=U \operatorname{diag}\left(I_{k},-I_{n-k}\right) U^{*} \tag{3}
\end{equation*}
$$

be the eigenvalue decomposition of the Hermitian matrix $P$ with unitary matrix $U$. Obviously, $P X=X P$ holds if and only if

$$
\begin{equation*}
\operatorname{diag}\left(I_{k},-I_{n-k}\right) \bar{X}=\bar{X} \operatorname{diag}\left(I_{k},-I_{n-k}\right) \tag{4}
\end{equation*}
$$

where $\bar{X}=U^{*} X U$. Partitioning

$$
\bar{X}=\left(\begin{array}{ll}
X_{11} & X_{12}  \tag{5}\\
X_{21} & X_{22}
\end{array}\right), \quad X_{11} \in \mathbb{C}^{k \times k}, \quad X_{22} \in \mathbb{C}^{(n-k) \times(n-k)}
$$

(4) is equivalent to

$$
\begin{equation*}
X_{12}=-X_{12}, \quad X_{21}=-X_{21} \tag{6}
\end{equation*}
$$

Therefore,

$$
\begin{array}{r}
X=U \operatorname{diag}\left(X_{11}, X_{22}\right) U^{*}, \quad X_{11} \in \mathbb{C}^{k \times k} \\
X_{22} \in \mathbb{C}^{(n-k) \times(n-k)} \tag{7}
\end{array}
$$

The constraint $X^{*}=X$ is equivalent to

$$
\begin{equation*}
X=U \operatorname{diag}\left(X_{1}, X_{2}\right) U^{*}, \quad X_{i}^{*}=X_{i}, i=1,2 \tag{8}
\end{equation*}
$$

with $X_{1} \in \mathbb{C}^{k \times k}, X_{2} \in \mathbb{C}^{(n-k) \times(n-k)}$.

$$
X=U \operatorname{diag}\left(\begin{array}{cc}
N_{1}\left(\begin{array}{cc}
\frac{\Sigma_{1}^{-1} B_{11}+B_{11}^{*} \Sigma_{1}^{-1}}{2} & \Sigma_{1}^{-1} B_{12} \\
B_{12}^{*} \Sigma_{1}^{-1} & X_{14}
\end{array}\right) N_{1}^{*} & 0  \tag{11}\\
0 & \\
& N_{2}\left(\begin{array}{cc}
\frac{\Sigma_{2}^{-1} B_{21}+B_{21}^{*} \Sigma_{2}^{-1}}{2} & \Sigma_{2}^{-1} B_{22} \\
B_{22}^{*} \Sigma_{2}^{-1} & X_{24}
\end{array}\right) N_{2}^{*}
\end{array}\right) U^{*}
$$

where $X_{14}=X_{14}^{*}$ and $X_{24}=X_{24}^{*}$ are arbitrary matrix.
Proof. According to (8) and the unitary invariance of Frobenius norm

$$
\begin{align*}
\|A X-B\| & =\left\|A U \operatorname{diag}\left(X_{1}, X_{2}\right) U^{*}-B\right\| \\
& =\left\|A U \operatorname{diag}\left(X_{1}, X_{2}\right)-B U\right\| \tag{12}
\end{align*}
$$

By (9), the least squares problem is equivalent to

$$
\begin{equation*}
\|A X-B\|=\left\|\left(A_{1} X_{1}-B_{1}, A_{2} X_{2}-B_{2}\right)\right\| \tag{13}
\end{equation*}
$$

We get

$$
\begin{equation*}
\|A X-B\|^{2}=\left\|A_{1} X_{1}-B_{1}\right\|^{2}+\left\|A_{2} X_{2}-B_{2}\right\|^{2} \tag{14}
\end{equation*}
$$

According to (10), the least squares problem is equivalent to

$$
\begin{align*}
\|A X-B\|^{2}= & \left\|M_{1}\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & 0
\end{array}\right] N_{1}^{*} X_{1}-B_{1}\right\|^{2} \\
& +\left\|M_{2}\left[\begin{array}{cc}
\Sigma_{2} & 0 \\
0 & 0
\end{array}\right] N_{2}^{*} X_{2}-B_{2}\right\|^{2}  \tag{15}\\
= & \left\|\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & 0
\end{array}\right] N_{1}^{*} X_{1} N_{1}-M_{1}^{*} B_{1} N_{1}\right\|^{2} \\
& +\left\|\left[\begin{array}{cc}
\Sigma_{2} & 0 \\
0 & 0
\end{array}\right] N_{2}^{*} X_{2} N_{2}-M_{2}^{*} B_{2} N_{2}\right\|^{2} . \tag{17}
\end{align*}
$$

$$
\begin{aligned}
\|A X-B\|^{2}= & \left\|\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
X_{11} & X_{12} \\
X_{13} & X_{14}
\end{array}\right]-\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{13} & B_{14}
\end{array}\right]\right\|^{2} \\
& +\left\|\left[\begin{array}{cc}
\Sigma_{2} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
X_{21} & X_{22} \\
X_{23} & X_{24}
\end{array}\right]-\left[\begin{array}{ll}
B_{21} & B_{22} \\
B_{23} & B_{24}
\end{array}\right]\right\|^{2} \\
= & \left\|\Sigma_{1} X_{11}-B_{11}\right\|^{2}+\left\|\Sigma_{2} X_{21}-B_{21}\right\|^{2} \\
& +\left\|\Sigma_{1} X_{12}-B_{12}\right\|^{2}+\left\|\Sigma_{2} X_{22}-B_{22}\right\|^{2} \\
& +\left\|B_{13}\right\|^{2}+\left\|B_{14}\right\|^{2}+\left\|B_{23}\right\|^{2}+\left\|B_{24}\right\|^{2}
\end{aligned}
$$

Hence

$$
\begin{equation*}
\|A X-B\|^{2}=\min \tag{18}
\end{equation*}
$$

is solvable if and only if there exist $X_{11}, X_{12}, X_{21}, X_{22}$ such that

$$
\begin{array}{ll}
\left\|\Sigma_{1} X_{11}-B_{11}\right\|^{2}=\min , & \left\|\Sigma_{1} X_{12}-B_{12}\right\|^{2}=\min \\
\left\|\Sigma_{2} X_{21}-B_{21}\right\|^{2}=\min , & \left\|\Sigma_{2} X_{22}-B_{22}\right\|^{2}=\min \tag{19}
\end{array}
$$

It follows from (19) that

$$
\begin{array}{ll}
X_{11}=\frac{\Sigma_{1}^{-1} B_{11}+B_{11}^{*} \Sigma_{1}^{-1}}{2}, & X_{12}=\Sigma_{1}^{-1} B_{12}  \tag{20}\\
X_{21}=\frac{\Sigma_{2}^{-1} B_{21}+B_{21}^{*} \Sigma_{2}^{-1}}{2}, & X_{22}=\Sigma_{2}^{-1} B_{22}
\end{array}
$$

Substituting (20) into (16) and then into (8), we can get that the form of $X$ is (11).

$$
X=U \operatorname{diag}\left(\begin{array}{cc}
N_{1}\left(\begin{array}{cc}
\frac{\Sigma_{1}^{-1} C_{11}+C_{11}^{*} \Sigma_{1}^{-1}}{2} & \Sigma_{1}^{-1} C_{12} \\
C_{12}^{*} \Sigma_{1}^{-1} & Y_{14}
\end{array}\right) N_{1}^{*} . \\
0 &
\end{array}\right.
$$

where $Y_{14}=Y_{14}^{*}$ and $Y_{24}=Y_{24}^{*}$ are arbitrary matrix.

## 4. An Algorithm and Numerical Examples

Based on the main results of this paper, we in this section propose an algorithm for finding the least squares solutions to the matrix equation $A X=B$ with the constraints $P X=X P$ and $X^{*}=X$. All the tests are performed by MATLAB 6.5 which has a machine precision of around $10^{-16}$.

Algorithm 3. (1) Input $A, B \in \mathbb{C}^{m \times n}, P \in \mathbb{C}^{n \times n}$ and compute $U \in \mathbb{C}^{n \times n}, I_{k} \in \mathbb{C}^{k \times k},-I_{n-k} \in \mathbb{C}^{(n-k) \times(n-k)}$ by the eigenvalue decomposition to $P$.
(2) Compute $A_{1}, A_{2}, B_{1}, B_{2}$ according to (9).
(3) Compute $N_{1}, N_{2}, M_{1}, M_{2}, \Sigma_{1}, \Sigma_{2}$ by the singular value decomposition of $A_{1}, A_{2}$.
(4) Compute $B_{11}, B_{12}, B_{21}, B_{22}$ according to (16).
(5) Compute $X$ by Theorem 1.

## 3. Least Squares Solutions to the Matrix Equation (1) with the Constraints $P X=X G P G^{*}$ and $X^{*}=X$

In this section, we generalize the constraints $P X=X P$ to $P X=X G P G^{*}$, where $G$ is a given unitary matrix of order $n$. Obviously, the constraint is equal to

$$
\begin{equation*}
P X G=X G P . \tag{21}
\end{equation*}
$$

Notice that (1) can be equivalently rewritten in

$$
\begin{equation*}
A X G=B G \tag{22}
\end{equation*}
$$

Denoting by $Y=X G$ and setting $C=B G$, the equation becomes

$$
\begin{equation*}
A Y=C, \tag{23}
\end{equation*}
$$

with the constraints $P Y=Y P$ and $Y^{*}=Y$.
Therefore, the least squares solutions to matrix equation (1) with the constraints $P X=X G P G^{*}$ and $X^{*}=X$ can be solved similar to Theorem 1.

Theorem 2. Given $A, B \in \mathbb{C}^{m \times n}$. Then the least squares solutions to the matrix equation (1) with the constraints $P X=$ $X G P G^{*}$ and $X^{*}=X$ can be expressed as

$$
\begin{equation*}
\left.N_{2}\left(\frac{\Sigma_{2}^{-1} C_{21}+C_{21}^{*} \Sigma_{2}^{-1}}{C_{22}^{*} \Sigma_{2}^{-1}} \quad \Sigma_{2}^{-1} C_{22}\right) N_{2}^{*}\right) U^{*} G^{*} \tag{24}
\end{equation*}
$$

## Example 4. Suppose

$$
\begin{gather*}
A=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1.2 i & 0 & 0 \\
0 & 0 & 0 & 0.8 i
\end{array}\right], \\
B=\left[\begin{array}{cccc}
-3 & -0.8 i & -1-3 i & -1 \\
-1-i & -1 & 9 i & -7 \\
-2 & -2 & 2 i & -2
\end{array}\right],  \tag{25}\\
P=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right] .
\end{gather*}
$$

Applying Algorithm 3, we obtain the following:

$$
U=\left[\begin{array}{cccc}
0 & -i & 0 & 0 \\
i & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

$$
\begin{align*}
& A_{1}=\left[\begin{array}{cc}
0 & 0 \\
1.2 & 0 \\
0 & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
0.8 i & 0
\end{array}\right], \\
& B_{1}=\left[\begin{array}{cc}
0.8 & 3 . i \\
-i & -1+i \\
-2 i & 2 i
\end{array}\right], \quad B_{2}=\left[\begin{array}{cc}
-1 & -1-3 i \\
-7 & 9 i \\
-2 & 2 i
\end{array}\right] \text {, } \\
& M_{1}=\left[\begin{array}{ccc}
0 & i & 0 \\
-i & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad M_{2}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & i \\
1 & 0 & 0
\end{array}\right] \text {, } \\
& N_{1}=\left[\begin{array}{ll}
i & 0 \\
0 & 1
\end{array}\right], \quad N_{2}=\left[\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right], \\
& \Sigma_{1}=[1.2], \quad \Sigma_{2}=[0.8], \quad B_{11}=[i], \\
& B_{12}=[-1-i], \quad B_{21}=[2 i], \quad B_{22}=[-2], \\
& X=\left[\begin{array}{cccc}
3 & -0.83+0.83 i & 0 & 0 \\
-0.83-0.83 i & 0 & 0 & 0 \\
0 & 0 & -2 & 2.5 \\
0 & 0 & 2.5 & 0
\end{array}\right] . \tag{26}
\end{align*}
$$

## Conflict of Interests

The authors declare that they have no conflict of interests regarding the publication of this paper.

## Acknowledgments

This research was supported by the Natural Science Foundation of Hebei province (A2012403013), the Natural Science Foundation of Hebei province (A2012205028), and the Education Department Foundation of Hebei province (Z2013110).

## References

[1] Q.-W. Wang and Z.-H. He, "A system of matrix equations and its applications," Science China Mathematics, vol. 56, no. 9, pp. 1795-1820, 2013.
[2] Q.-W. Wang and Z.-H. He, "Solvability conditions and general solution for mixed Sylvester equations," Automatica, vol. 49, no. 9, pp. 2713-2719, 2013.
[3] Q.-W. Wang and Z.-H. He, "Some matrix equations with applications," Linear and Multilinear Algebra, vol. 60, no. 11-12, pp. 1327-1353, 2012.
[4] S.-F. Yuan, Q.-W. Wang, and X.-F. Duan, "On solutions of the quaternion matrix equation $A X=B$ and their applications in color image restoration," Applied Mathematics and Computation, vol. 221, pp. 10-20, 2013.
[5] K.-E. Chu, "Symmetric solutions of linear matrix equations by matrix decompositions," Linear Algebra and Its Applications, vol. 119, pp. 35-50, 1989.
[6] Z.-H. He and Q.-W. Wang, "A real quaternion matrix equation with applications," Linear and Multilinear Algebra, vol. 61, no. 6, pp. 725-740, 2013.
[7] I. Kyrchei, "Explicit representation formulas for the minimum norm least squares solutions of some quaternion matrix equations," Linear Algebra and Its Applications, vol. 438, no. 1, pp. 136-152, 2013.
[8] Y. Li, Y. Gao, and W.-B. Guo, "A Hermitian least squares solution of the matrix equation $A X B=C$ subject to inequality restrictions," Computers \& Mathematics with Applications, vol. 64, no. 6, pp. 1752-1760, 2012.
[9] L. Wu, "The re-positive definite solutions to the matrix inverse problem AX = B," Linear Algebra and Its Applications, vol. 174, pp. 145-151, 1992.
[10] K.-E. Chu, "Singular value and generalized singular value decompositions and the solution of linear matrix equations," Linear Algebra and Its Applications, vol. 88-89, pp. 83-98, 1987.
[11] C.-C. Paige, "Computing the generalized singular value decomposition," SIAM Journal on Scientific and Statistical Computing, vol. 7, no. 4, pp. 1126-1146, 1986.
[12] C.-C. Paige and M.-A. Saunders, "Towards a generalized singular value decomposition," SIAM Journal on Numerical Analysis, vol. 18, no. 3, pp. 398-405, 1981.
[13] C.-J. Meng, X.-Y. Hu, and L. Zhang, "The skew-symmetric orthogonal solutions of the matrix equation $A X=B$," Linear Algebra and Its Applications, vol. 402, pp. 303-318, 2005.
[14] C.-J. Meng and X.-Y. Hu, "An inverse problem for symmetric orthogonal matrices and its optimal approximation," Mathematica Numerica Sinica, vol. 28, no. 3, pp. 269-280, 2006.
[15] Z.-Z. Zhang, X.-Y. Hu, and L. Zhang, "On the Hermitiangeneralized Hamiltonian solutions of linear matrix equations," SIAM Journal on Matrix Analysis and Applications, vol. 27, no. 1, pp. 294-303, 2005.
[16] H. Dai, "On the symmetric solutions of linear matrix equations," Linear Algebra and Its Applications, vol. 131, pp. 1-7, 1990.
[17] F.-J. Henk Don, "On the symmetric solutions of a linear matrix equation," Linear Algebra and Its Applications, vol. 93, pp. 1-7, 1987.
[18] Z.-Y. Peng and X.-Y. Hu, "The reflexive and anti-reflexive solutions of the matrix equation $A X=B$," Linear Algebra and Its Applications, vol. 375, pp. 147-155, 2003.
[19] Q.-W. Wang and J. Yu, "On the generalized bi (skew-) symmetric solutions of a linear matrix equation and its procrust problems," Applied Mathematics and Computation, vol. 219, no. 19, pp. 9872-9884, 2013.
[20] Y.-Y. Qiu and A.-D. Wang, "Eigenvector-free solutions to $A X=$ $B$ with $P X=X P$ and $X^{H}=s X$ constraints," Applied Mathematics and Computation, vol. 217, no. 12, pp. 5650-5657, 2011.

