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Let 𝑃 be a given Hermitian matrix satisfying 𝑃2 = 𝐼. Using the eigenvalue decomposition of 𝑃, we consider the least squares
solutions to the matrix equation 𝐴𝑋 = 𝐵 with the constraints 𝑃𝑋 = 𝑋𝑃 and 𝑋∗ = 𝑋. A similar problem of this matrix equation
with generalized constrained is also discussed.

1. Introduction

Throughout we denote the complex 𝑚 × 𝑛 matrix space by
C𝑚×𝑛. The symbols 𝐼, 𝐴∗, 𝐴−1, and ‖𝐴‖ stand for the identity
matrix with the appropriate size, the conjugate transpose, the
inverse, and the Frobenius norm of 𝐴 ∈ C𝑚×𝑛, respectively.

It is a very active research topic to study solutions to
various matrix equations [1–4]. There are many authors who
have investigated the classical matrix equation

𝐴𝑋 = 𝐵 (1)

with different constraints such as symmetric, reflexive,
Hermitian-generalized Hamiltonian, and repositive definite
[5–9]. By special matrix decompositions such as singular
value decompositions (SVDs) and CS decompositions [10–
12], Hu and his collaborators [13–15], Dai [16], and Don
[17] have presented the existence conditions and detailed
representations of constrained solutions for (1) with corre-
sponding constraints, respectively. For instance, Peng and
Hu [18] presented the eigenvectors-involved solutions to
(1) with reflexive and antireflexive constraints; Wang and
Yu [19] derived the bi(skew-)symmetric solutions and the
bi(skew-)symmetric least squares solutions with the min-
imum norm to this matrix equation; Qiu and Wang [20]
proposed an eigenvectors-free method to (1) with 𝑃𝑋 = 𝑋𝑃
and 𝑋∗ = 𝑠𝑋 constraints, where 𝑃 is a Hermitian involutory
matrix and 𝑠 = ±1.

Inspired by the work mentioned above, we focus on the
matrix equation (1) with 𝑃𝑋 = 𝑋𝑃 and 𝑋∗ = 𝑋 constraints,
which can be described as follows: find𝑋 such that

{‖𝐴𝑋 − 𝐵‖
2
= min, 𝑃𝑋 = 𝑋𝑃,𝑋∗ = 𝑋} . (2)

Moreover, we also discuss the least squares solutions of
(1) with 𝑃𝑋 = 𝑋𝐺𝑃𝐺∗ and 𝑋∗ = 𝑋 constraints, where 𝐺 is a
given unitary matrix of order 𝑛.

In Section 2, we present the least squares solutions to the
matrix equation (1) with the constraints 𝑃𝑋 = 𝑋𝑃 and 𝑋∗ =
𝑋. In Section 3, we derive the least squares solutions to the
matrix equation (1) with the constraints 𝑃𝑋 = 𝑋𝐺𝑃𝐺∗ and
𝑋
∗
= 𝑋. In Section 4, we give an algorithm and a numerical

example to illustrate our results.

2. Least Squares Solutions to the
Matrix Equation (1) with the Constraints
𝑃𝑋 = 𝑋𝑃 and 𝑋∗ = 𝑋

It is required to transform the constrained problem to
unconstrained one. To this end, let

𝑃 = 𝑈 diag (𝐼
𝑘
, −𝐼
𝑛−𝑘
) 𝑈
∗ (3)

be the eigenvalue decomposition of the Hermitian matrix 𝑃
with unitary matrix𝑈. Obviously, 𝑃𝑋 = 𝑋𝑃 holds if and only
if

diag (𝐼
𝑘
, −𝐼
𝑛−𝑘
)𝑋 = 𝑋 diag (𝐼

𝑘
, −𝐼
𝑛−𝑘
) , (4)
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where𝑋 = 𝑈∗𝑋𝑈. Partitioning

𝑋 = (
𝑋
11
𝑋
12

𝑋
21
𝑋
22

) , 𝑋
11
∈ C
𝑘×𝑘
, 𝑋
22
∈ C
(𝑛−𝑘)×(𝑛−𝑘)

, (5)

(4) is equivalent to

𝑋
12
= −𝑋
12
, 𝑋

21
= −𝑋
21
. (6)

Therefore,

𝑋 = 𝑈 diag (𝑋
11
, 𝑋
22
) 𝑈
∗
, 𝑋
11
∈ C
𝑘×𝑘
,

𝑋
22
∈ C
(𝑛−𝑘)×(𝑛−𝑘)

.

(7)

The constraint𝑋∗ = 𝑋 is equivalent to

𝑋 = 𝑈 diag (𝑋
1
, 𝑋
2
) 𝑈
∗
, 𝑋
∗

𝑖
= 𝑋
𝑖
, 𝑖 = 1, 2, (8)

with𝑋
1
∈ C𝑘×𝑘, 𝑋

2
∈ C(𝑛−𝑘)×(𝑛−𝑘).

Partition 𝑈 = (𝑈
1
, 𝑈
2
) and denote

𝐴
1
= 𝐴𝑈
1
, 𝐴

2
= 𝐴𝑈
2
, 𝐵

1
= 𝐵𝑈
1
, 𝐵

2
= 𝐵𝑈
2
;

(9)

then assume that the singular value decomposition of𝐴
1
and

𝐴
2
is as follows:

𝐴
1
= 𝑀
1
[
Σ
1
0

0 0
]𝑁
∗

1
, 𝐴

2
= 𝑀
2
[
Σ
2
0

0 0
]𝑁
∗

2
, (10)

where 𝑀
1
,𝑀
2
, 𝑁
1
, and 𝑁

2
are unitary matrices, Σ

1
=

diag(𝛼
1
, . . . , 𝛼

𝑟
), 𝛼
𝑖
> 0 (𝑖 = 1, . . . , 𝑟), 𝑟 = rank(𝐴

1
), Σ
2
=

diag(𝛽
1
, . . . , 𝛽

𝑙
), 𝛽
𝑗
> 0 (𝑗 = 1, ⋅ ⋅ ⋅ , 𝑙), and 𝑙 = rank(𝐴

2
).

Theorem 1. Given 𝐴, 𝐵 ∈ C𝑚×𝑛. Then the least squares
solutions to the matrix equation (1) with the constraints 𝑃𝑋 =
𝑋𝑃 and 𝑋∗ = 𝑋 can be expressed as

𝑋 = 𝑈 diag
(
(
(

(

𝑁
1
(

Σ
−1

1
𝐵
11
+ 𝐵
∗

11
Σ
−1

1

2
Σ
−1

1
𝐵
12

𝐵
∗

12
Σ
−1

1
𝑋
14

)𝑁
∗

1
0

0 𝑁
2
(

Σ
−1

2
𝐵
21
+ 𝐵
∗

21
Σ
−1

2

2
Σ
−1

2
𝐵
22

𝐵
∗

22
Σ
−1

2
𝑋
24

)𝑁
∗

2

)
)
)

)

𝑈
∗
, (11)

where𝑋
14
= 𝑋
∗

14
and𝑋

24
= 𝑋
∗

24
are arbitrary matrix.

Proof. According to (8) and the unitary invariance of Frobe-
nius norm

‖𝐴𝑋 − 𝐵‖ =
𝐴𝑈 diag (𝑋1, 𝑋2) 𝑈

∗
− 𝐵


=
𝐴𝑈 diag (𝑋1, 𝑋2) − 𝐵𝑈

 .

(12)

By (9), the least squares problem is equivalent to

‖𝐴𝑋 − 𝐵‖ =
(𝐴1𝑋1 − 𝐵1, 𝐴2𝑋2 − 𝐵2)

 . (13)

We get

‖𝐴𝑋 − 𝐵‖
2
=
𝐴1𝑋1 − 𝐵1



2

+
𝐴2𝑋2 − 𝐵2



2

. (14)

According to (10), the least squares problem is equivalent to

‖𝐴𝑋 − 𝐵‖
2
=



𝑀
1
[
Σ
1
0

0 0
]𝑁
∗

1
𝑋
1
− 𝐵
1



2

+



𝑀
2
[
Σ
2
0

0 0
]𝑁
∗

2
𝑋
2
− 𝐵
2



2

=



[
Σ
1
0

0 0
]𝑁
∗

1
𝑋
1
𝑁
1
−𝑀
∗

1
𝐵
1
𝑁
1



2

+



[
Σ
2
0

0 0
]𝑁
∗

2
𝑋
2
𝑁
2
−𝑀
∗

2
𝐵
2
𝑁
2



2

.

(15)

Assume that

𝑁
∗

1
𝑋
1
𝑁
1
= [
𝑋
11
𝑋
12

𝑋
13
𝑋
14

] , 𝑁
∗

2
𝑋
2
𝑁
2
= [
𝑋
21
𝑋
22

𝑋
23
𝑋
24

] ,

𝑀
∗

1
𝐵
1
𝑁
1
= [
𝐵
11
𝐵
12

𝐵
13
𝐵
14

] , 𝑀
∗

2
𝐵
2
𝑁
2
= [
𝐵
21
𝐵
22

𝐵
23
𝐵
24

] .

(16)

Then we have

‖𝐴𝑋 − 𝐵‖
2
=



[
Σ
1
0

0 0
] [
𝑋
11
𝑋
12

𝑋
13
𝑋
14

] − [
𝐵
11
𝐵
12

𝐵
13
𝐵
14

]



2

+



[
Σ
2
0

0 0
] [
𝑋
21
𝑋
22

𝑋
23
𝑋
24

] − [
𝐵
21
𝐵
22

𝐵
23
𝐵
24

]



2

=
Σ1𝑋11 − 𝐵11



2

+
Σ2𝑋21 − 𝐵21



2

+
Σ1𝑋12 − 𝐵12



2

+
Σ2𝑋22 − 𝐵22



2

+
𝐵13


2

+
𝐵14


2

+
𝐵23


2

+
𝐵24


2

.

(17)
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Hence

‖𝐴𝑋 − 𝐵‖
2
= min (18)

is solvable if and only if there exist 𝑋
11
, 𝑋
12
, 𝑋
21
, 𝑋
22

such
that

Σ1𝑋11 − 𝐵11


2

= min, Σ1𝑋12 − 𝐵12


2

= min,

Σ2𝑋21 − 𝐵21


2

= min, Σ2𝑋22 − 𝐵22


2

= min.
(19)

It follows from (19) that

𝑋
11
=
Σ
−1

1
𝐵
11
+ 𝐵
∗

11
Σ
−1

1

2
, 𝑋

12
= Σ
−1

1
𝐵
12
,

𝑋
21
=
Σ
−1

2
𝐵
21
+ 𝐵
∗

21
Σ
−1

2

2
, 𝑋

22
= Σ
−1

2
𝐵
22
.

(20)

Substituting (20) into (16) and then into (8), we can get that
the form of𝑋 is (11).

3. Least Squares Solutions to the
Matrix Equation (1) with the Constraints
𝑃𝑋 = 𝑋𝐺𝑃𝐺

∗ and 𝑋∗ = 𝑋

In this section, we generalize the constraints 𝑃𝑋 = 𝑋𝑃 to
𝑃𝑋 = 𝑋𝐺𝑃𝐺

∗, where 𝐺 is a given unitary matrix of order 𝑛.
Obviously, the constraint is equal to

𝑃𝑋𝐺 = 𝑋𝐺𝑃. (21)

Notice that (1) can be equivalently rewritten in

𝐴𝑋𝐺 = 𝐵𝐺. (22)

Denoting by 𝑌 = 𝑋𝐺 and setting 𝐶 = 𝐵𝐺, the equation
becomes

𝐴𝑌 = 𝐶, (23)

with the constraints 𝑃𝑌 = 𝑌𝑃 and 𝑌∗ = 𝑌.
Therefore, the least squares solutions to matrix equation

(1) with the constraints 𝑃𝑋 = 𝑋𝐺𝑃𝐺∗ and 𝑋∗ = 𝑋 can be
solved similar to Theorem 1.

Theorem 2. Given 𝐴, 𝐵 ∈ C𝑚×𝑛. Then the least squares
solutions to the matrix equation (1) with the constraints 𝑃𝑋 =
𝑋𝐺𝑃𝐺

∗ and 𝑋∗ = 𝑋 can be expressed as

𝑋 = 𝑈 diag
(
(
(
(

(

𝑁
1
(

Σ
−1

1
𝐶
11
+ 𝐶
∗

11
Σ
−1

1

2
Σ
−1

1
𝐶
12

𝐶
∗

12
Σ
−1

1
𝑌
14

)𝑁
∗

1
0

0 𝑁
2
(

Σ
−1

2
𝐶
21
+ 𝐶
∗

21
Σ
−1

2

2
Σ
−1

2
𝐶
22

𝐶
∗

22
Σ
−1

2
𝑌
24

)𝑁
∗

2

)
)
)
)

)

𝑈
∗
𝐺
∗
,

(24)

where 𝑌
14
= 𝑌
∗

14
and 𝑌

24
= 𝑌
∗

24
are arbitrary matrix.

4. An Algorithm and Numerical Examples

Based on the main results of this paper, we in this section
propose an algorithm for finding the least squares solutions to
the matrix equation 𝐴𝑋 = 𝐵 with the constraints 𝑃𝑋 = 𝑋𝑃
and 𝑋∗ = 𝑋. All the tests are performed by MATLAB 6.5
which has a machine precision of around 10−16.

Algorithm 3. (1) Input 𝐴, 𝐵 ∈ C𝑚×𝑛, 𝑃 ∈ C𝑛×𝑛 and compute
𝑈 ∈ C𝑛×𝑛, 𝐼

𝑘
∈ C𝑘×𝑘, −𝐼

𝑛−𝑘
∈ C(𝑛−𝑘)×(𝑛−𝑘) by the eigenvalue

decomposition to 𝑃.
(2) Compute 𝐴

1
, 𝐴
2
, 𝐵
1
, 𝐵
2
according to (9).

(3) Compute𝑁
1
, 𝑁
2
,𝑀
1
,𝑀
2
, Σ
1
, Σ
2
by the singular value

decomposition of 𝐴
1
, 𝐴
2
.

(4) Compute 𝐵
11
, 𝐵
12
, 𝐵
21
, 𝐵
22
according to (16).

(5) Compute𝑋 byTheorem 1.

Example 4. Suppose

𝐴 = [

[

0 0 0 0

0 1.2𝑖 0 0

0 0 0 0.8𝑖

]

]

,

𝐵 = [

[

−3 −0.8𝑖 −1 − 3𝑖 −1

−1 − 𝑖 −1 9𝑖 −7

−2 −2 2𝑖 −2

]

]

,

𝑃 =

[
[
[

[

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

]
]
]

]

.

(25)

Applying Algorithm 3, we obtain the following:

𝑈 =

[
[
[

[

0 −𝑖 0 0

𝑖 0 0 0

0 0 0 1

0 0 1 0

]
]
]

]

,
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𝐴
1
= [

[

0 0

1.2 0

0 0

]

]

, 𝐴
2
= [

[

0 0

0 0

0.8𝑖 0

]

]

,

𝐵
1
= [

[

0.8 3.𝑖

−𝑖 −1 + 𝑖

−2𝑖 2𝑖

]

]

, 𝐵
2
= [

[

−1 −1 − 3𝑖

−7 9𝑖

−2 2𝑖

]

]

,

𝑀
1
= [

[

0 𝑖 0

−𝑖 0 0

0 0 1

]

]

, 𝑀
2
= [

[

0 1 0

0 0 𝑖

1 0 0

]

]

,

𝑁
1
= [
𝑖 0

0 1
] , 𝑁

2
= [
−𝑖 0

0 𝑖
] ,

Σ
1
= [1.2] , Σ

2
= [0.8] , 𝐵

11
= [𝑖] ,

𝐵
12
= [−1 − 𝑖] , 𝐵

21
= [2𝑖] , 𝐵

22
= [−2] ,

𝑋 =

[
[
[

[

3 −0.83 + 0.83𝑖 0 0

−0.83 − 0.83𝑖 0 0 0

0 0 −2 2.5

0 0 2.5 0

]
]
]

]

.

(26)
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